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Abstract: In this paper, for a given direction b ∈ Cn \ {0} we investigate slice entire functions of
several complex variables, i.e., we consider functions which are entire on a complex line {z0 + tb :
t ∈ C} for any z0 ∈ Cn. Unlike to quaternionic analysis, we fix the direction b. The usage of the
term slice entire function is wider than in quaternionic analysis. It does not imply joint holomorphy.
For example, it allows consideration of functions which are holomorphic in variable z1 and continuous
in variable z2. For this class of functions there is introduced a concept of boundedness of L-index
in the direction b where L : Cn → R+ is a positive continuous function. We present necessary and
sufficient conditions of boundedness of L-index in the direction. In this paper, there are considered
local behavior of directional derivatives and maximum modulus on a circle for functions from this
class. Also, we show that every slice holomorphic and joint continuous function has bounded L-index
in direction in any bounded domain and for any continuous function L : Cn → R+.

Keywords: bounded index; bounded L-index in direction; slice function; entire function;
bounded l-index
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1. Introduction

In recent years, analytic functions of several variables with bounded index have been intensively
investigated. The main objects of investigations are such function classes: entire functions of several
variables [1–3], functions analytic in a polydisc [4], in a ball [5] or in the Cartesian product of the
complex plane and the unit disc [6].

For entire functions and analytic function in a ball there were proposed two approaches to
introduce a concept of index boundedness in a multidimensional complex space. They generate
so-called functions of bounded L-index in a direction, and functions of bounded L-index in
joint variables.

Let us introduce some notations and definitions.
Let R+ = (0,+∞), R∗+ = [0,+∞), 0 = (0, . . . , 0), b = (b1, . . . , bn) ∈ Cn \ {0} be a given direction,

L : Cn → R+ be a continuous function, F : Cn → C an entire function. The slice functions on a line
{z0 + tb : t ∈ C} for fixed z0 ∈ Cn we will denote as gz0(t) = F(z0 + tb) and lz0(t) = L(z0 + tb).

Definition 1 ([7]). An entire function F : Cn → C is called a function of bounded L-index in a direction b,
if there exists m0 ∈ Z+ such that for every m ∈ Z+ and for all z ∈ Cn one has

|∂m
b F(z)|

m!Lm(z)
≤ max

0≤k≤m0

|∂k
bF(z)|

k!Lk(z)
, (1)
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where ∂0
bF(z) = F(z), ∂bF(z) =

n
∑

j=1

∂F(z)
∂zj

bj, ∂k
bF(z) = ∂b

(
∂k−1

b F(z)
)

, k ≥ 2.

The least such integer number m0, obeying (1), is called the L-index in the direction b of
the function F and is denoted by Nb(F, L). If such m0 does not exist, then we put Nb(F, L) = ∞,
and the function F is said to be of unbounded L-index in the direction b in this case. If L(z) ≡ 1,
then the function F is said to be of bounded index in the direction b and Nb(F) = Nb(F, 1) is
called the index in the direction b. Let l : C → R+ be a continuous function. For n = 1,
b = 1, L(z) ≡ l(z), z ∈ C inequality (1) defines a function of bounded l-index with the l-index
N(F, l) ≡ N1(F, l) [8,9], and if in addition l(z) ≡ 1, then we obtain a definition of index boundedness
with index N(F) ≡ N1(F, 1) [10,11]. It is also worth to mention paper [12], which introduces the
concept of generalized index. It is quite close to the bounded l-index. Let Nb(F, L, z0) stands for the
L-index in the direction b of the function F at the point z0, i.e., it is the least integer m0, for which
inequality (1) is satisfied at this point z = z0. By analogy, the notation N( f , l, z0) is defined if n = 1,
i.e., in the case of functions of one variable.

The concept of L-index boundedness in direction requires to consider a slice {z0 + tb : t ∈ C}.
We fixed z0 ∈ Cn and used considerations from one-dimensional case. Then we construct uniform
estimates above all z0. This is a nutshell of the method.

In view of this, Prof S. Yu. Favorov (2015) posed the following problem in a conversation with
one of the authors.

Problem 1 ([13]). Let b ∈ Cn \ {0} be a given direction, L : Cn → R+ be a continuous function. Is it possible
to replace the condition “F is holomorphic in Cn” by the condition “F is holomorphic on all slices z0 + tb” and
to deduce all known properties of entire functions of bounded L-index in direction for this function class?

There is a negative answer to Favorov’s question [13]. This relaxation of restrictions by the
function F does not allow the proving of some theorems. Here by D we denote a closure of domain D.
There was proved the following proposition.

Proposition 1 ([13], Theorem 5). For every direction b ∈ Cn \ {0} there exists a function F(z) and a bounded
domain D ⊂ Cn with following properties:

(1) F is holomorphic function of bounded index on every slice {z0 + tb : t ∈ C} for each fixed z0 ∈ Cn;
(2) F is not entire function in Cn;
(3) F does not satisfy (1) in D, i.e., for any p ∈ Z+ there exists m ∈ Z+ and zp ∈ D

|∂m
b F(zp)|

m!
> max

{
|∂k

bF(zp)|
k!

: 0 ≤ k ≤ p

}
.

Let D be a bounded domain in Cn. If inequality (1) holds for all z ∈ D instead Cn, then F is called
function of bounded L-index in the direction b in the domain D. The least such integer m0 is called the
L-index in the direction b ∈ Cn \ {0} in the domain D and is denoted by Nb(F, L, D) = m0.

Proposition 2 ([13], Theorem 2). Let D be a bounded domain in Cn, b ∈ Cn \ {0} be arbitrary direction.
If L : Cn → R+ is continuous function and F(z) is an entire function such that (∀z0 ∈ D) : F(z0 + tb) 6≡ 0,
then Nb(F, L, D) < ∞.

Hence, if we replace holomorphy in Cn by holomorphy on the slices {z0 + tb : t ∈ C},
then conclusion of Proposition 2 is not valid. Thus, Proposition 1 shows impossibility to replace
joint holomorphy by slice holomorphy without additional hypothesis. The proof of Proposition 2 uses
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continuity in joint variables (see [13], Equation (6)). It leads to the following question (see [14], where it
is also formulated. There was considered a case L(z) ≡ 1).

Problem 2. What are additional conditions providing validity of Proposition 2 for slice holomorphic functions?

A main goal of this investigation is to deduce an analog of Proposition 2 for slice holomorphic functions.
Please note that the positivity and continuity of the function L are weak restrictions to deduce

constructive results. Thus, we assume additional restrictions by the function L.
Let us denote

λb(η) = sup
z∈Cn

sup
t1,t2∈C

{
L(z + t1b)
L(z + t2b)

: |t1 − t2| ≤
η

min{L(z + t1b), L(z + t2b)}

}
.

By Qn
b we denote a class of positive continuous function L : Cn → R+, satisfying the condition

(∀η ≥ 0) : λb(η) < +∞, (2)

Moreover, it is sufficient to require validity of (2) for one value η > 0.
For a positive continuous function l(t), t ∈ C, and η > 0 we define λ(η) ≡ λb

1 (η) in the cases
when b = 1, n = 1, L ≡ l. As in [15], let Q ≡ Q1

1 be a class of positive continuous functions l(t), t ∈ C,
obeying the condition 0 < λ(η) < +∞ for all η > 0.

Besides, we denote by 〈a, c〉 =
n
∑

j=1
ajcj the scalar product in Cn, where a, c ∈ Cn.

Let H̃n
b be a class of functions which are holomorphic on every slices {z0 + tb : t ∈ C} for each

z0 ∈ Cn and let Hn
b be a class of functions from H̃n

b which are joint continuous. The notation ∂bF(z)

stands for the derivative of the function gz(t) at the point 0, i.e., for every p ∈ N ∂
p
bF(z) = g(p)

z (0),
where gz(t) = F(z + tb) is entire function of complex variable t ∈ C for given z ∈ Cn. In this research,
we will often call this derivative as directional derivative because if F is entire function in Cn then the
derivatives of the function gz(t) matches with directional derivatives of the function F.

Please note that if F ∈ Hn
b then for every p ∈ N ∂bF ∈ Hn

b. It can be proved by using of
Cauchy’s formula.

Together the hypothesis on joint continuity and the hypothesis on holomorphy in one direction do
not imply holomorphy in whole n-dimensional complex space. We give some examples to demonstrate
it. For n = 2 let f : C→ C be an entire function, g : C→ C be a continuous function. Then f (z1)g(z2),
f (z1)± g(z2), f (z1 · g(z2)) are functions which are holomorphic in the direction (1, 0) and are joint
continuous in C2. Moreover, if we have performed an affine transformation{

z1 = b2z′1 + b1z′2,

z2 = b2z′1 − b1z′2

then the appropriate new functions are also holomorphic in the direction (b1, b2) and are joint
continuous in C2, where b1 6= 0, b2 6= 0.

A function F ∈ H̃n
b is said to be of bounded L-index in the direction b, if there exists m0 ∈ Z+ such

that for all m ∈ Z+ and each z ∈ Cn inequality (1) is true. All notations, introduced above for entire
functions of bounded L-index in direction, keep for functions from H̃n

b.

2. Sufficient Sets

Now we prove several assertions that establish a connection between functions of bounded
L-index in direction and functions of bounded l-index of one variable. The similar results for entire
functions of several variables were obtained in [7,16]. The next proofs use ideas from the mentioned
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papers. The proofs of Propositions 3, 4 and Theorems 1, 2 literally repeat arguments from proofs of
corresponding propositions for entire functions [7,16]. Therefore, we omit these proofs.

Proposition 3. If a function F ∈ H̃n
b has bounded L-index in the direction b then for every z0 ∈ Cn the entire

function gz0(t) is of bounded lz0 -index and N(gz0 , lz0) ≤ Nb(F, L).

Proposition 4. If a function F ∈ H̃n
b has bounded L-index in the direction b then

Nb(F, L) = max
{

N(gz0 , lz0) : z0 ∈ Cn
}

.

Theorem 1. A function F ∈ H̃n
b has bounded L-index in the direction b if and only if there exists a number

M > 0 such that for all z0 ∈ Cn the function gz0(t) is of bounded lz0 -index with N(gz0 , lz0) ≤ M < +∞, as a
function of variable t ∈ C. Thus, Nb(F, L) = max{N(gz0 , lz0) : z0 ∈ Cn}.

Theorem 2. Let b ∈ Cn \ {0} be a given direction, A0 ⊂ Cn such that {z + tb : t ∈ C, z ∈ A0} = Cn.
A function F ∈ H̃n

b has bounded L-index in the direction b if and only if there exists a number M > 0 such that
for all z0 ∈ A0 the function gz0(t) is of bounded lz0-index with N(gz0 , lz0) ≤ M < +∞, as a function of one
variable t ∈ C and Nb(F, L) = max{N(gz0 , lz0) : z0 ∈ A0}.

Remark 1. An arbitrary hyperplane A0 = {z̃ ∈ Cn : 〈z̃, c〉 = 1}, where 〈c, b〉 6= 0, satisfies conditions of
Theorem 2.

Corollary 1. If F ∈ H̃n
b is of bounded L-index in the direction b and j0 is chosen such that bj0 6= 0,

then Nb(F, L) = max{N(gz0 , lz0) : z0 ∈ Cn, z0
j0
= 0}, and if

n
∑

j=0
bj 6= 0, then Nb(F, L) = max

{
N(gz0 , lz0) :

z0 ∈ Cn,
n
∑

j=0
z0

j = 0
}

.

We note that for a given z ∈ Cn the choice of z0 ∈ Cn and t ∈ C such that
n
∑

j=1
z0

j = 0 and

z = z0 + tb, is unique.
Theorem 3 requires replacement of the space H̃n

b by the spaceHn
b. In other words, we use joint

continuity in its proof.

Theorem 3. Let A = Cn, i.e., A be an everywhere dense set in Cn and let a function F ∈ Hn
b. The function F

is of bounded L-index in the direction b if and only if there exists M > 0 such that for all z0 ∈ A a function
gz0(t) is of bounded lz0 -index N(gz0 , lz0) ≤ M < +∞ and Nb(F, L) = max{N(gz0 , lz0) : z0 ∈ A}.

Proof. The necessity follows from Theorem 1.
Sufficiency. Since A = Cn, then for every z0 ∈ Cn there exists a sequence z(m), that z(m) → z0 as

m → +∞ and z(m) ∈ A for all m ∈ N. However, F(z + tb) is of bounded lz-index for all z ∈ A as a
function of variable t. That is why in view the definition of bounded lz-index there exists M > 0 that

for all z ∈ A, t ∈ C, p ∈ Z+
|g(p)

z (t)|
p!lp(t) ≤ max

{
|g(k)z (t)|
k!lk

z (t)
: 0 ≤ k ≤ M

}
.

Substituting instead of z a sequence z(m) ∈ A, z(m) → z0, we obtain that for every m ∈ N

|∂p
bF(z(m) + tb)|

p!Lp(z(m) + tb)
≤max

{
|∂k

bF(z(m) + tb)|
k!Lk(z(m) + tb)

: 0 ≤ k ≤ M

}
.
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However, F and ∂
p
bF are continuous in Cn for all p ∈ N and L is a positive continuous function.

Thus, in the obtained expression the limiting transition is possible as m→ +∞ (z(m) → z0). Evaluating
the limit as m→ +∞ we obtain that for all z0 ∈ Cn, t ∈ C, m ∈ Z+

|∂p
bF(z0 + tb)|

p!Lp(z0 + tb)
≤max

{
|∂k

bF(z0 + tb)|
k!Lk(z0 + tb)

: 0 ≤ k ≤ M

}
.

This inequality implies that F(z + tb) is of bounded L(z + tb)-index as a function of variable t for
every given z ∈ Cn. Applying Theorem 1 we obtain the desired conclusion. Theorem 3 is proved.

Remark 1 and Theorem 3 imply the following corollary.

Corollary 2. Let b ∈ Cn \ {0} be a given direction, A0 ⊂ Cn such that its closure A0 = {z ∈ Cn :
〈z, c〉 = 1}, where 〈c, b〉 6= 0. And let a function F ∈ Hn

b and its derivatives ∂
p
bF ∈ Hn

b for all p ∈ N.
The function F(z) is of bounded L-index in the direction b if and only if there exists a number M > 0
such that for all z0 ∈ A0 the function gz0(t) is of bounded lz0-index with N(gz0 , lz0) ≤ M < +∞ and
Nb(F, L) = max{N(gz0 , lz0) : z0 ∈ A0}.

3. Local Behavior of Directional Derivative

The following proposition is crucial in theory of functions of bounded index. It initializes series
of propositions which are necessary to prove logarithmic criterion of index boundedness. It was
first obtained by G. H. Fricke [17] for entire functions of bounded index. Later the proposition was
generalized for entire functions of bounded l-index [18], analytic functions of bounded l-index [19],
entire functions of bounded L-index in direction [7], functions analytic in a polydisc [4] or in a ball [5]
with bounded L-index in joint variables,

Theorem 4. Let L ∈ Qn
b. A function F ∈ H̃n

b is of bounded L-index in the direction b if and only if for
each η > 0 there exist n0 = n0(η) ∈ Z+ and P1 = P1(η) ≥ 1 such that for every z ∈ Cn there exists
k0 = k0(z) ∈ Z+, 0 ≤ k0 ≤ n0, and

max
{∣∣∣∂k0

b F(z + tb)
∣∣∣ : |t| ≤ η

L(z)

}
≤ P1

∣∣∣∂k0
b F(z)

∣∣∣ . (3)

Proof. Our proof is based on the proof of appropriate theorem for entire functions of bounded L-index
in direction [7].

Necessity. Let Nb(F; L)≡N < +∞. Let [a], a ∈ R, stands for the integer part of the number a in
this proof. We denote

q(η) = [2η(N + 1)(λb(η))
2N+1] + 1.

For z ∈ Cn and p ∈ {0, 1, . . . , q(η)} we put

Rb
p(z, η) = max

{
|∂k

bF(z + tb)|
k!Lk(z + tb)

: |t| ≤ pη

q(η)L(z)
, 0 ≤ k ≤ N

}
,

R̃b
p(z, η)=max

{
|∂k

bF(z + tb)|
k!Lk(z)

: |t| ≤ pη

q(η)L(z)
, 0≤ k≤N

}
.
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However, |t| ≤ pη
q(η)L(z) ≤

η
L(z) , then λb

(
pη

q(η)

)
≤ λb(η). It is clear that Rb

p(z, η), R̃b
p(z, η) are

well-defined. Moreover,

Rb
p(z, η) =

=max
{
|∂k

b F(z+tb)|
k!Lk(z)

(
L(z)

L(z+tb)

)k

: 0≤ k≤N, |t|≤ pη
q(η)L(z)

}
≤

≤max
{
|∂k

b F(z+tb)|
k!Lk(z)

(
λb
( pη

q(η)

))k
: |t|≤ pη

q(η)L(z), 0≤ k≤N
}
≤

≤max
{
|∂k

b F(z+tb)|
k!Lk(z) (λb(η))

k : |t| ≤ pη
q(η)L(z) , 0 ≤ k≤N

}
≤

≤ (λb(η))
Nmax

{
|∂k

b F(z+tb)|
k!Lk(z) : |t|≤ pη

q(η)L(z) , 0 ≤ k ≤ N
}
=

= R̃b
p(z, η)(λb(η))

N ,

(4)

R̃b
p(z, η) =

=max
{
|∂k

b F(z+tb)|
k!Lk(z+tb)

(
L(z+tb)

L(z)

)k
: |t|≤ pη

q(η)L(z) , 0 ≤ k ≤ N
}
≤

≤max
{
|∂k

b F(z+tb)|
k!Lk(z+tb)

(
λb

(
pη

q(η)

))k
: |t|≤ pη

q(η)L(z) , 0≤ k≤N
}
≤

≤ max
{
(λb(η))

k |∂k
b F(z+tb)|

k!Lk(z+tb) : |t| ≤ pη
q(η)L(z) , 0 ≤ k ≤ N

}
≤

≤ (λb(η))
N max

{
|∂k

b F(z+tb)|
k!Lk(z+tb) : |t| ≤ pη

q(η)L(z) , 0 ≤ k ≤ N
}

=

= Rb
p(z, η)(λb(η))

N .

(5)

Let kz
p ∈ Z, 0 ≤ kz

p ≤ N, and tz
p ∈ C, |tz

p| ≤
pη

q(η)L(z) , be such that

R̃b
p(z, η) =

|∂kz
p

b F(z + tz
pb)|

kz
p!Lkz

p(z)
. (6)

However, for every given z ∈ Cn the function F(z+ tb) and its derivative are entire as functions of
variables t. Then by the maximum modulus principle, equality (6) holds for tz

p such that |tz
p| =

pη
q(η)L(z) .

We set t̃z
p = p−1

p tz
p. Then

|t̃z
p| =

(p− 1)η
q(η)L(z)

, (7)

|t̃z
p − tz

p| =
|tz

p|
p

=
η

q(η)L(z)
. (8)

It follows from (7) and the definition of R̃b
p−1(z, η) that

R̃b
p−1(z, η) ≥

|∂kz
p

b F(z + t̃z
pb)|

kz
p!Lkz

p(z)
.

Therefore,

0≤ R̃b
p(z, η)− R̃b

p−1(z, η)≤

∣∣∣∣∂kz
p

b F(z+tz
pb)
∣∣∣∣−∣∣∣∣∂kz

p
b F(z+t̃z

pb)
∣∣∣∣

kz
p !Lkz

p (z)
=

= 1
kz

p !Lkz
p (z)

∫ 1
0

d
ds

∣∣∣∣∂kz
p

b F(z + (t̃z
p + s(tz

p − t̃z
p))b)

∣∣∣∣ ds.

(9)
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For every analytic complex-valued function of real variable ϕ(s), s ∈ R, the inequality
d
ds |ϕ(s)| ≤

∣∣∣ d
ds ϕ(s)

∣∣∣ holds, where ϕ(s) 6= 0. Applying this inequality to (9) and using the mean value
theorem we obtain

R̃b
p(z, t0, η)− R̃b

p−1(z, t0, η) ≤

≤
|tz

p − t̃z
p|

kz
p!Lkz

p(z)

∫ 1

0

∣∣∣∣∂kz
p+1

b F(z + (t̃z
p + s(tz

p − t̃z
p))b)

∣∣∣∣ ds =

=
|tz

p − t̃z
p|

kz
p!Lkz

p(z)

∣∣∣∣∂kz
p+1

b F(z + (t̃z
p + s∗(tz

p − t̃z
p))b)

∣∣∣∣ =
= L(z)(kz

p + 1)|tz
p − t̃z

p|
|∂kz

p+1
b F(z + (t̃z

p + s∗(tz
p − t̃z

p))b)|
(kz

p + 1)!Lkz
p+1(z)

,

where s∗ ∈ [0, 1]. The point t̃z
p + s∗(tz

p − t̃z
p) belongs to the set{

t ∈ C : |t| ≤ pη

q(η)L(z)
≤ η

L(z)

}
.

Using the definition of boundedness of L-index in direction, the definition of q(η), inequalities (4)
and (8), for kz

p ≤ N we have

R̃b
p(z, η)− R̃b

p−1(z, η) ≤
|∂kz

p+1
b F(z + (t̃z

p + s∗(tz
p − t̃z

p))b)|
(kz

p + 1)!Lkz
p+1(z + (t̃z

p + s∗(tz
p − t̃z

p))b)
×

×
(L(z+(t̃z

p+s∗(tz
p− t̃z

p))b)
L(z)

)kz
p+1

L(z)(kz
p+1)|tz

p− t̃z
p|≤η

N+1
q(η)

(λb(η))
N+1×

×max

{
|∂k

bF(z + (t̃z
p + s∗(tz

p − t̃z
p))b)|

k!Lk(z + (t̃z
p + s∗(tz

p − t̃z
p))b)

: 0≤ k≤N

}
≤η

N+1
q(η)

(λb(η))
N+1Rb

p(z, η)≤

≤ η(N + 1)(λb(η))
2N+1

[2η(N + 1)(λb(η))2N+1] + 1
R̃b

p(z, η) ≤ 1
2

R̃b
p(z, η)

It follows that R̃b
p(z, η) ≤ 2R̃b

p−1(z, η). Using inequalities (4) and (5), we obtain for Rb
p(z, η)

Rb
p(z, η) ≤ 2(λb(η))

N R̃b
p−1(z, η) ≤ 2(λb(η))

2N Rb
p−1(z, η).

Hence,

max
{
|∂k

b F(z+tb)|
k!Lk(z+tb) : |t| ≤ η

L(z) ,0 ≤ k ≤ N
}

=Rb
q(η)(z, η) ≤

≤2(λb(η))
2N Rb

q(η)−1(z, η)≤ (2(λb(η))
2N)2Rb

q(η)−2(z, η)≤
≤ · · · ≤ (2(λb(η))

2N)q(η)Rb
0 (z, η) =

= (2(λb(η))
2N)q(η) max

{
|∂k

b F(z)|
k!Lk(z) : 0 ≤ k ≤ N

}
.

(10)

Let kz ∈ Z, 0 ≤ kz ≤ N, and t̃z ∈ C, |t̃z| = η
L(z) be such that

|∂kz
b F(z)|

kz!Lkz(z)
= max

0≤k≤N

|∂k
bF(z)|

k!Lk(z)
,

and
|∂kz

b F(z + t̃zb)| = max{|∂kz
b F(z + tb)| : |t| ≤ η/L(z)}.
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Inequality (10) implies

|∂kz
b F(z + t̃zb)|

kz!Lkz(z + t̃zb)
≤ max

{
|∂kz

b F(z + tb)|
kz!Lkz(z + tb)

: |t| = η

L(z)

}
≤

≤ max

{
|∂k

bF(z + tb)|
k!Lk(z + tb)

: |t| = η

L(z)
, 0 ≤ k ≤ N

}
≤

≤ (2(λb(η))
2N)q(η)

∣∣∂kz
b F(z)

∣∣
kz!Lkz(z)

.

Hence,

max
{
|∂kz

b F(z + tb)| : |t| ≤ η/L(z)
}
≤

≤ (2(λb(η))
2N)q(η) Lkz(z + t̃zb)

Lkz(z)
|∂kz

b F(z)| ≤

≤ (2(λb(η))
2N)q(η)(λb(η))

N |∂kz
b F(z)| ≤

≤ (2(λb(η))
2N)q(η)(λb(η))

N |∂kz
b F(z)|.

Thus, we obtain (3) with n0 = Nb(F, L) and

P1(η) = (2(λb(η))
2N)q(η)(λb(η))

N > 1.

Sufficiency. Suppose that for each η > 0 there exist n0 = n0(η) ∈ Z+ and P1 = P1(η) ≥ 1 such that
for every z ∈ Cn there exists k0 = k0(z) ∈ Z+, 0 ≤ k0 ≤ n0, for which inequality (3) holds. We choose
η > 1 and j0 ∈ N such that P1 ≤ η j0 . For given z ∈ Cn, k0 = k0(z) and j ≥ j0 by Cauchy’s formula for
F(z + tb) as a function of one variable t

∂
k0+j
b F(z) =

j!
2πi

∫
|t|=η/L(z)

∂k0
b F(z + tb)

tj+1 dt.

Therefore, in view of (3) we have

|∂k0+j
b F(z)|

j!
≤ Lj(z)

η j max
{
|∂k0

b F(z + tb)| : |t| = η

L(z)

}
≤ P1

Lj(z)
η j |∂

k0
b F(z)|,

Hence, for all j ≥ j0, z ∈ Cn

|∂k0+j
b F(z)|

(k0 + j)!Lk0+j(z)
≤ j!k0!

(j + k0)!
P1

η j

|∂k0
b F(z)|

k0!Lk0(z)
≤ η j0−j |∂

k0
b F(z)|

k0!Lk0(z)
≤
|∂k0

b F(z)|
k0!Lk0(z)

.

Since k0 ≤ n0, the numbers n0 = n0(η) and j0 = j0(η) are independent of z and t0, this inequality
means that a function F has bounded L-index in the direction b and Nb(F, L) ≤ n0 + j0. The proof of
Theorem 4 is complete.

Theorem 4 implies the next proposition that describes the boundedness of L-index in direction
for an equivalent function to L. Let L∗(z) be a positive continuous function in Cn. We denote
L � L∗, if for some θ1, θ2, 0 < θ1 ≤ θ2 < +∞, and for all z ∈ Cn the following inequalities hold
θ1L(z) ≤ L∗(z) ≤ θ2L(z).

Proposition 5. Let L ∈ Qn
b, L � L∗. A function F ∈ H̃n

b has bounded L∗-index in the direction b if and only
if F is of bounded L-index in the direction b.
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Proof. First, it is not easy to check that the function L∗ also belongs to the class Qn
b. Let Nb(F, L∗) < +∞.

Then by Theorem 4 for every η∗ > 0 there exist n0(η
∗) ∈ Z+ and P1(η

∗) ≥ 1 such that for every z ∈ Cn

and some k0, 0 ≤ k0 ≤ n0, inequality (3) holds with L∗ and η∗ instead of L and η. But the condition
L � L∗ means that for some θ1, θ2 ∈ R+, 0 < θ1 ≤ θ2 < +∞ and for all z ∈ Cn the double inequality
holds θ1L(z) ≤ L∗(z) ≤ θ2L(z). Taking η∗ = θ2η we obtain

P1|∂k0
b F(z)| ≥ max

{
|∂k0

b F(z + tb)| : |t| ≤ η∗/L∗(z)
}
≥

≥ max
{
|∂k0

b F(z + tb)| : |t| ≤ η/L(z)
}

.

Thus, by Theorem 4 in view of arbitrariness of η∗ the function F(z) has bounded L-index in the
direction b. We can obtain the converse proposition by replacing L with L∗.

Please note that Proposition 5 can be slightly refined. The following proposition is easy deduced
from (1).

Proposition 6. Let L1(z), L2(z) be positive continuous functions, F ∈ H̃n
b be a function of bounded L1-index

in the direction b, for all z ∈ Cn the inequality L1(z) ≤ L2(z) holds. Then Nb(L2, F) ≤ Nb(L1, F).

Using Fricke’s idea [20], we obtain modification of Theorem 4.

Theorem 5. Let L ∈ Qn
b. If there exist η > 0, n0 = n0(η) ∈ Z+ and P1 = P1(η) ≥ 1 such that for all

z ∈ Cn there exists k0 = k0(z) ∈ Z+, 0 ≤ k0 ≤ n0, for which the inequality holds

max{|∂k0
b F(z + tb)| : |t| ≤ η/L(z)} ≤ P1|∂k0

b F(z)|,

then the function F ∈ H̃n
b has bounded L-index in the direction b ∈ Cn \ {0}.

Proof. Our proof is based on the proof of appropriate theorem for entire functions of bounded L-index
in direction [21].

Assume that there exist η > 0, n0 = n0(η) ∈ Z+ and P1 = P1(η) ≥ 1 such that for every z ∈ Cn

there exists k0 = k0(z) ∈ Z+, 0 ≤ k0 ≤ n0, for which

max{|∂k0
b F(z + tb)| : |t| ≤ η

L(z)
} ≤ P1|∂k0

b F(z)|. (11)

If η > 1, then we choose j0 ∈ N such that P1 ≤ η j0 . And for η ∈ (0; 1] we choose j0 ∈ N obeying
the inequality j0!k0!

(j0+k0)!
P1 < 1. This j0 exists because

j0!k0!
(j0 + k0)!

P1 =
k0!

(j0 + 1)(j0 + 2) · . . . · (j0 + k0)
P1 → 0, j0 → ∞.

Applying Cauchy’s formula to the function F(z + tb) as function of complex variable t for j ≥ j0
we obtain that for every z ∈ Cn there exists integer k0 = k0(z), 0 ≤ k0 ≤ n0, and

∂
k0+j
b F(z) =

j!
2πi

∫
|t|= η

L(z)

∂k0
b F(z + tb)

tj+1 dt.

Taking into account (11), one has

|∂k0+j
b F(z)|

j!
≤ Lj(z)

η j max
{
|∂k0

b F(z + tb)| : |t| = η

L(z)

}
≤ P1

Lj(z)
η j |∂

k0
b F(z)|. (12)
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In view of choice j0 for η > 1 and for all j ≥ j0 we deduce

|∂k0+j
b F(z)|

(k0 + j)!Lk0+j(z)
≤ j!k0!

(j + k0)!
P1

η j

|∂k0
b F(z)|

k0!Lk0(z + t0b)
≤ η j0−j |∂

k0
b F(z)|

k0!Lk0(z)
≤
|∂k0

b F(z)|
k0!Lk0(z)

.

Since k0 ≤ n0, the numbers n0 = n0(η) and j0 = j0(η) are independent of z, and z ∈ Cn is
arbitrary, the last inequality means that the function F is of bounded L-index in the direction b and
Nb(F, L) ≤ n0 + j0.

If η ∈ (0, 1), then (12) implies for all j ≥ j0

|∂k0+j
b F(z)|

(k0 + j)!Lk0+j(z)
≤ j!k0!P1

(j + k0)!
|∂k0

b F(z)|
η jk0!Lk0(z)

≤
|∂k0

b F(z)|
η jk0!Lk0(z)

or in view of the choice of j0

|∂k0+j
b F(z)|
(k0 + j)!

ηk0+j

Lk0+j(z)
≤
|∂k0

b F(z)|
k0!

ηk0

Lk0(z)
.

Thus, the function F has bounded L̃-index in the direction b, where L̃(z) = L(z)
η . Then by

Proposition 5 the function F is of bounded L-index in the direction b. Theorem is proved.

4. Bounded Index in Direction in Bounded Domain

Let D be a bounded domain in Cn. If inequality (1) is fulfilled for all z ∈ D instead Cn, then F is
called function of bounded L-index in the direction b in the domain D. The least such integer m0 is called the
L-index in the direction b in the domain D and is denoted by Nb(F, L, D) = m0. By D we denote a closure
of domain D.

Theorem 6. Let D be an arbitrary bounded domain in Cn, b ∈ Cn \ {0} be arbitrary direction. If L : Cn →
R+ is continuous function, F ∈ Hn

b and (∀p ∈ N) ∂
p
bF ∈ Hn

b and (∀z0 ∈ D) : F(z0 + tb) 6≡ 0,
then Nb(F, L, D) < ∞.

Proof. Proof of this theorem is similar to proof of corresponding lemma in [13]. For every given z0 ∈ D
we develop the entire function F(z0 + tb) in power series by powers t

F(z0 + tb) =
∞

∑
m=0

∂m
b F(z0)

m!
tm (13)

in the disc
{

t ∈ C : |t| ≤ 1
L(z0)

}
.

The quantity |∂m
b F(z0)|

m! is the modulus of coefficient of power series (13) at the point t = 0.
Substitute t = 1

L(z0)
. Since F ∈ Hn

b, for every z0 ∈ D

|∂m
b F(z0)|

m!Lm(z0)
→ 0 (m→ ∞),

i.e., there exists m0 = m(z0, b) such that inequality (1) holds at the point z = z0 for all m ∈ Z+.
We will show that sup{m0 : z0 ∈ D} < +∞. On the contrary, we suppose that the set of all values

m0 is unbounded in z0, that is sup{m0 : z0 ∈ D} = +∞. Hence, for every m ∈ Z+ there exists z(m) ∈ D
and pm > m

|∂pm
b F(z(m))|

pm!Lpm(z(m))
> max

{
|∂k

bF(z(m))|
k!Lk(z(m))

: 0 ≤ k ≤ m

}
. (14)
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Since {z(m)} ⊂ D, there exists subsequence z
′(m) → z′ ∈ G as m → +∞. By Cauchy’s formula

one has
∂

p
bF(z)

p!
=

1
2πi

∫
|t|=r

F(z + tb)
tp+1 dt

for any p ∈ N, z ∈ D. Rewrite (14) in the form

max
{
|∂k

b F(z(m))|
k!Lk(z(m))

: 0 ≤ k ≤ m
}

<

< 1
Lpm (z(m))

∫
|t|=r/L(z(m))

|F(z(m)+tb)|
|t|pm+1 |dt| ≤ 1

rpm max{|F(z)| : z ∈ Dr},
(15)

where Dr =
⋃

z∗∈D{z ∈ Cn : |z− z∗| ≤ |b|r
L(z∗)}. We can choose r > 1, because F ∈ Hn

b. Evaluating limit
for every directional derivative of fixed order in (15) as m→ ∞ we obtain

(∀k ∈ Z+) :
|∂k

bF(z′)|
k!Lk(z′)

≤ lim
m→∞

1
rpm

max{|F(z)| : z ∈ Dr} ≤ 0.

The passing to the limit is possible because ∂k
bF is joint continuous. Thus, all derivatives in the

direction b of the function F at the point z′ equal 0 and F(z′) = 0. In view of (13) F(z′ + tb) ≡ 0.
This is a contradiction.

5. Conclusions

The proposed approach can be applied in analytic theory of differential equations. It is known
that concept of bounded index allows the investigation of properties of analytic solutions of linear
higher-order differential equations with analytic coefficients. Therefore, it leads to the question of
what the additional conditions are, providing index boundedness of every slice holomorphic solutions
for linear higher-order directional derivative equations with slice holomorphic coefficients? In other
words, is joint continuity a sufficient condition?

Since there are known analogs of Cauchy’s formula for quaternionic variables and for Clifford
algebras, the authors assume that The results in this paper can be generalized in these cases, i.e., in the
case of slice holomorphic functions of quaternionic variable.
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