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Abstract: Approximation and some other basic properties of various linear and nonlinear operators
are potentially useful in many different areas of researches in the mathematical, physical, and
engineering sciences. Motivated essentially by this aspect of approximation theory, our present
study systematically investigates the approximation and other associated properties of a class of the
Szász-Mirakjan-type operators, which are introduced here by using an extension of the familiar Beta
function. We propose to establish moments of these extended Szász-Mirakjan Beta-type operators
and estimate various convergence results with the help of the second modulus of smoothness and
the classical modulus of continuity. We also investigate convergence via functions which belong to
the Lipschitz class. Finally, we prove a Voronovskaja-type approximation theorem for the extended
Szász-Mirakjan Beta-type operators.

Keywords: gamma and beta functions; Szász-Mirakjan operators; Szász-Mirakjan Beta type
operators; extended Gamma and Beta functions; confluent hypergeometric function; Modulus
of smoothness; modulus of continuity; Lipschitz class; local approximation; Voronovskaja type
approximation theorem
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1. Introduction, Definitions and Preliminaries

In approximation theory and its related fields, approximation and other basic properties of various
linear and nonlinear operators are investigated, because mainly of the potential for their usefulness in
many areas of researches in the mathematical, physical, and engineering sciences. Our study in this
article is motivated essentially by the demonstrated applications of such results as those associated
with various approximation operators. With this objective in view, we begin by providing the following
definitions and other (chiefly historical) background material related to our presentation here.

For a given continuous function, f ∈ C[0, ∞), and for x ∈ [0, ∞), Otto Szász [1] defined a family
of operators in the year 1950, which we recall here as follows,

Sn( f ; x) = e−nx
∞

∑
k=0

(nx)k

k!
f
(

k
n

)
(n ∈ N := {1, 2, 3, · · · }), (1)
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This family of operators was considered earlier in 1941 by G. M. Mirakjan (see [2]). There are several
integral and other modifications, variations, and basic (or q-) extensions of the Szász-Mirakjan-type
operators. These include the Bézier, Kantorovich, Durrmeyer, and other types of modifications and
extensions of the Szász-Mirakjan operators (see, for details, [3–15]). In particular, Gupta and Noor [6]
introduced an integral modification of the Szász-Mirakjan operators in Equation (1) by considering a
weight function in terms of the Beta basis functions as given below.

Tn( f ; x) =
∞

∑
k=1

sn,k (x)
∫ ∞

0
bn,k (t) f (t) dt + sn,0 (x) f (0), (2)

where

sn,k (x) = e−nx (nx)k

k!
,

bn,k (t) =
1

B(k, n + 1)
tk−1

(1 + t)n+k+1 =
(n + 1)k
(k− 1)!

tk−1

(1 + t)n+k+1 ,

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
= B(β, α),

and (λ)` (` ∈ N0 := N∪ {0}) represents the Pochhammer symbol given by

(λ)` :=
Γ(λ + `)

Γ(λ)
=


1 (` = 0)

λ(λ + 1)(λ + 2) · · · (λ + `− 1) (` ∈ N)

in terms of the classical (Euler’s) Gamma function Γ(z) and the classical Beta function B(α, β).
Gupta and Noor [6] observed that the operators in Equation (2) reproduce not only the constant

function, but linear functions as well. Owing to this valuable property of the operators in Equation (2),
many authors investigated the different approximation properties of the summation-integral operators
in Equation (2) (see, for example, [16–18]). Gupta and Noor [6] also derived some direct results for the
operators Tn, a pointwise rate of convergence, a Voronovskaja-type asymptotic formula, and an error
estimate in simultaneous approximation.

In recent years, some extensions of such well-known special functions as, for example, the classical
Gamma and Beta functions, have been considered by several authors. For example, in 1994, Chaudhry
and Zubair [19] introduced the following extension of the Gamma function,

Γp (x) :=
∫ ∞

0
tx−1 exp

(
−t− p

t

)
dt

(
<(p) > 0

)
. (3)

Subsequently, in 1997, Chaudhry et al. [20] presented the following extension of Euler’s
Beta function,

Bp (x, y) :=
∫ 1

0
tx−1 (1− t)y−1 exp

(
− p

t (1− t)

)
dt (4)(

< (p) > 0; < (x) > 0; < (y) > 0
)
.

Obviously, each of the definitions in Equations (3) and (4) also remains valid when p = 0, in which
case we have the following relationships,

Γ0 (x) = Γ (x) and B0 (x, y) = B (x, y) .
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Özergin et al. [21] considered the following generalizations of the Gamma and Beta functions,

Γ(α,β)
p (x) :=

∫ ∞

0
tx−1

1F1

(
α; β;−t− p

t

)
dt

(
<(α) > 0; <(β) > 0; <(p) > 0; <(x) > 0

)
and

B(α,β)
p (x, y) :=

∫ 1

0
tx−1 (1− t)y−1

1F1

(
α; β;− p

t (1− t)

)
dt

(
<(α) > 0; <(β) > 0; <(p) > 0; <(x) > 0; <(y) > 0

)
,

respectively. Here, as usual, 1F1 denotes the (Kummer’s) confluent hypergeometric function. It is
obvious that

Γ(α,α)
p (x) = Γp (x) and Γ(α,α)

0 (x) = Γ (x)

and that
B(α,α)

p (x, y) = Bp (x, y) and B(α,α)
0 (x, y) = B (x, y) .

Finding different integral representations of the generalized Beta function is important and useful
for later use. It is also useful to discuss the relationships between the classical Gamma and Beta
functions and their generalizations. In fact, by definition, it is easily seen that∫ ∞

0
Γp (x) dp = Γ (x + 1)

(
< (x) > −1

)
.

and that (see, for example, [21]) ∫ ∞

0
Bp (x, y) dp = B (x + 1, y + 1) (5)

(
< (x) > −1; < (y) > −1

)
.

Note that various further extensions and generalizations of the classical Gamma and Beta
functions, as well as their corresponding hypergeometric and related functions, were introduced
and studied by, among others, Lin et al. [22] and Srivastava et al. [23].

We now introduce the following generalization of Szász-Mirakjan Beta-type operators via the
above extension of the Beta function as follows,

S∗n( f , x) =
∞

∑
k=0

e−nx (nx)k

k!
1

B(k + 2, n + 1)

·
∫ ∞

0

∫ ∞

0

tk

(1 + t)n+k+1 exp
(
− p(1 + t)2

t

)
f (t) dt dp

(6)

for x ∈ [0, ∞), and for a function f ∈ Cν[0, ∞), provided that the double integral in Equation (6) is
convergent when n > ν. Here, and in what follows, we have

Cν[0, ∞) :=
{

f : f ∈ C[0, ∞) and | f (t)| 5 M (1 + t)ν (M > 0; ν > 0)
}

.
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We note that, by setting t = u
1+u in Equation (4), we get

Bp (x, y) =
∫ ∞

0

ux−1

(1 + u)x+y exp
(
− p(1 + u)2

u

)
du. (7)

So, if we take in consideration Equations (5) and (7) in the definition Equation (6), then we can
say that the operators, S∗n, are a generalization of the operators, Tn, given by Equation (2).

In this article, we investigate the moments of the general Szász-Mirakjan Beta-type operators S∗n
and find the rate of convergence with the help of the classical and second moduli of continuity. We also
derive a Voronovskaja-type approximation theorem associated with these general operators, S∗n.

2. A Set of Auxiliary Results

In this section, we give the moments of Szász-Mirakjan Beta-type operators, S∗n, defined by
Equation (6). We first recall for the Sn that

Sn (1, x) = 1, Sn (t, x) = x and Sn

(
t2, x

)
= x2 +

x
n

, (8)

just as in [1].

Lemma 1. The moments of the Szász-Mirakjan Beta-type operators, S∗n, defined by (6) are given by

S∗n(1, x) = 1, (9)

S∗n(t, x) = x +
2
n

(10)

and
S∗n(t

2, x) =
n

n− 1
x2 +

6
n− 1

x +
6

n(n− 1)
. (11)

Proof. By using the known formulas in Equation (8), we find from the definition (6) that

S∗n(1, x) =
∞

∑
k=0

e−nx (nx)k

k!
1

B(k + 2, n + 1)

·
∫ ∞

0

∫ ∞

0

tk

(1 + t)n+k+1 exp
(
− p(1 + t)2

t

)
dt dp

=
∞

∑
k=0

e−nx (nx)k

k!
1

B(k + 2, n + 1)

∫ ∞

0
Bp(k + 1, n) dp

=
∞

∑
k=0

e−nx (nx)k

k!
B(k + 2, n + 1)
B(k + 2, n + 1)

= Sn(1, x) = 1.
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For n > 1, we have

S∗n(t, x) =
∞

∑
k=0

e−nx (nx)k

k!
1

B(k + 2, n + 1)

·
∫ ∞

0

∫ ∞

0

tk+1

(1 + t)n+k+1 exp
(
− p(1 + t)2

t

)
dt dp

=
∞

∑
k=0

e−nx (nx)k

k!
1

B(k + 2, n + 1)

·
∫ ∞

0
Bp(k + 2, n− 1) dp

=
∞

∑
k=0

e−nx (nx)k

k!
B(k + 3, n)

B(k + 2, n + 1)

=
∞

∑
k=0

e−nx (nx)k

k!
Γ(k + 3)Γ(n)
Γ(n + k + 3)

Γ(n + k + 3)
Γ(k + 2)Γ(n + 1)

=
∞

∑
k=0

e−nx (nx)k

k!
k + 2

n

= Sn(t, x) +
2
n

Sn(1, x) = x +
2
n

and, for n > 2, we find that

S∗n(t
2, x) =

∞

∑
k=0

e−nx (nx)k

k!
1

B(k + 2, n + 1)

·
∫ ∞

0

∫ ∞

0

tk+2

(1 + t)n+k+1 exp
(
− p(1 + t)2

t

)
dt dp

=
∞

∑
k=0

e−nx (nx)k

k!
1

B(k + 2, n + 1)

·
∫ ∞

p=0
Bp(k + 3, n− 2) dp

=
∞

∑
k=0

e−nx (nx)k

k!
B(k + 4, n− 1)
B(k + 2, n + 1)

=
∞

∑
k=0

e−nx (nx)k

k!
Γ(k + 4)Γ(n− 1)

Γ(n + k + 3)
Γ(n + k + 3)

Γ(k + 2)Γ(n + 1)

=
∞

∑
k=0

e−nx (nx)k

k!
(k + 3) (k + 2)

n(n− 1)

=
n

n− 1
Sn(t2, x) +

5
n− 1

Sn(t, x) +
6

n(n− 1)
Sn(1, x)

=
n

n− 1
x2 +

6
n− 1

x +
6

n(n− 1)
.

The proof of Lemma 1 is thus completed.

Lemma 2. The central moments of the Szász-Mirakjan Beta-type operators, S∗n, defined by Equation (6) are
given by

S∗n(t− x, x) =
2
n

(12)

and
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S∗n
(
(t− x)2 , x

)
=

1
n− 1

x2 +
2(n + 2)
n(n− 1)

x +
6

n(n− 1)
=: εn(x). (13)

Proof. The assertions (12) and (13) of Lemma 2 follow easily from those of Lemma 1, so we omit the
details involved.

3. Local Approximation

Let CB [0, ∞) be the set of all real-valued continuous and bounded functions f on [0, ∞), which is
endowed with the norm given by

‖ f ‖ = sup
x∈[0,∞)

| f (x)| .

Then Peetre’s K-functional is defined by

K2 ( f ; δ) = inf
{
‖ f − g‖+ δ

∥∥g′′
∥∥ : g ∈ C2

B [0, ∞)
}

,

where
C2
B [0, ∞) :=

{
g : g ∈ CB [0, ∞) and g′, g′′ ∈ CB [0, ∞)

}
.

There exists a positive constant C > 0 such that (see, for example, [24])

K2 ( f , δ) 5 Cω2

(
f ,
√

δ
)

, (14)

where δ > 0 and ω2 denotes the second-order modulus of smoothness for f ∈ CB [0, ∞), which is
defined by

ω2

(
f ;
√

δ
)
= sup

0<h5δ

sup
x∈[0,∞)

| f (x + 2h)− 2 f (x + h) + f (x)| .

The usual modulus of continuity for f ∈ CB [0, ∞) is given by

ω ( f ; δ) = sup
0<h5δ

sup
x∈[0,∞)

| f (x + h)− f (x)| .

Lemma 3 below provides an auxiliary inequality which is useful in proving our next theorem
(see Theorem 1).

Lemma 3. For all g ∈ C2
B [0, ∞), it is asserted that∣∣∣S̃∗n(g, x)− g(x)

∣∣∣ 5 δn(x)
∥∥g′′(x)

∥∥ , (15)

where

δn(x) =
1

n− 1
x2 +

2 (n + 2)
n (n− 1)

x +
2 (5n− 2)
n2(n− 1)

(16)

and

S̃∗n( f , x) = S∗n( f , x) + f (x)− f
(

x +
2
n

)
(17)

for f ∈ CB [0, ∞).

Proof. First of all, we find from (17) that

S̃∗n(t− x, x) = S∗n(t− x, x)− 2
n
=

2
n
− 2

n
= 0. (18)
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Now, by using the Taylor’s formula, we have

g(t)− g(x) = (t− x)g′(x) +
∫ t

x
(t− u)g′′(u) du,

which, in view of Equation (18), yields

S̃∗n(g, x)− g(x) = S̃∗n(t− x, x)g′(x) + S̃∗n

(∫ t

x
(t− u)g′′(u) du, x

)
= S∗n

(∫ t

x
(t− u)g′′(u)du, x

)
−
∫ x+ 2

n

x

(
x +

2
n
− u

)
g′′(u) du.

On the other hand, as ∣∣∣∣∫ t

x
(t− u)g′′(u) du

∣∣∣∣ 5 ∫ t

x
|t− u| ·

∣∣g′′(u)∣∣ du

5
∥∥g′′

∥∥ ∫ t

x
|t− u| du

5 (t− x)2 ∥∥g′′
∥∥

and ∣∣∣∣∣
∫ x+ 2

n

x

(
x +

2
n
− u

)
g′′(u) du

∣∣∣∣∣ 5
(

2
n

)2 ∥∥g′′
∥∥ ,

we conclude that∣∣∣S̃∗n(g, x)− g(x)
∣∣∣ 5 S∗n((t− x)2 , x)

∥∥g′′
∥∥+ 4

n2

∥∥g′′
∥∥

=

(
1

n− 1
x2 +

2(n + 2)
n(n− 1)

x +
6

n(n− 1)
+

4
n2

)∥∥g′′
∥∥

=

(
1

n− 1
x2 +

2(n + 2)
n(n− 1)

x +
2(5n− 2)
n2(n− 1)

)∥∥g′′
∥∥ = δn(x)

∥∥g′′
∥∥ .

This is the result asserted by Lemma 3.

We now state and prove our main results in this section.

Theorem 1. Let f ∈ CB [0, ∞). Then, for every x ∈ [0, ∞), there exists a constant L > 0, such that

|S∗n( f , x)− f (x)| 5 Lω2

(
f ;
√

δn(x)
)
+ ω

(
f ;

2
n

)
,

where ω2 ( f ; δ) is the second-order modulus of smoothness, ω ( f ; δ) is the usual modulus of continuity, and
δn(x) is given by Equation (16).

Proof. We observe from Equation (17) that

|S∗n( f , x)− f (x)| 5
∣∣∣S̃∗n( f , x)− f (x)

∣∣∣+ ∣∣∣∣ f (x)− f
(

x +
2
n

)∣∣∣∣
5
∣∣∣S̃∗n( f − g, x)− ( f − g)(x)

∣∣∣+ ∣∣∣∣ f (x)− f
(

x +
2
n

)∣∣∣∣
+
∣∣∣S̃∗n(g, x)− g(x)

∣∣∣
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for g ∈ C2
B [0, ∞). Thus, by applying Lemma 3 for g ∈ C2

B [0, ∞), we get

|S∗n( f , x)− f (x)| 5 4 ‖ f − g‖+ δn(x)
∥∥g′′

∥∥+ ω

(
f ;

2
n

)
,

which, by taking the infimum on the right-hand side over all g ∈ C2
B [0, ∞) and using (14), yields

|S∗n( f , x)− f (x)| 5 4K2( f ; δn(x)) + ω

(
f ;

2
n

)
5 Lω2

(
f ;
√

δn(x)
)
+ ω

(
f ;

2
n

)
.

where L = 4M > 0. This evidently completes the demonstration of Theorem 1.

Theorem 2. Let E be any bounded subset of the interval [0, ∞), and suppose that 0 < α 5 1. If f ∈ CB [0, ∞)

is locally LipM (α) , that is, if the following inequality holds true,

| f (y)− f (x)| 5 M |y− x|α
(
y ∈ E; x ∈ [0, ∞)

)
,

then, for each x ∈ [0, ∞),

|S∗n( f , x)− f (x)| 5 M
([

εn(x)
] α

2 + 2
[
d(x, E)

]α), (19)

εn (x) is given by Equation (13), M is a constant depending on α and f , and d (x, E) is the distance between x
and E defined as follows:

d (x, E) = inf
{
|y− x| : y ∈ E

}
.

Proof. Let E denote the closure of E in [0, ∞). Then there exists a point x0 ∈ E such that

|x− x0| = d(x, E).

By the above-mentioned definition of LipM (α) , we get

|S∗n( f , x)− f (x)| 5 S∗n
(
| f (y)− f (x)| , x

)
5 S∗n

(
| f (y)− f (x0)| , x

)
+ S∗n (| f (x)− f (x0)| , x)

5 M
{

S∗n(|y− x0|α , x) + |x− x0|α
}

5 M
{

S∗n
(
|y− x|α + |x− x0|α , x

)
+ |x− x0|α

}
5 M

{
S∗n(|y− x0|α , x) + 2 |x− x0|α

}
.

Now, if we use the Hölder inequality with

p =
2
α

and q =
2

2− α
,

we find that

|S∗n( f , x)− f (x)| 5 M
([

S∗n
(
(y− x0)

2 , x
)] α

2
+ 2
[
d(x, E)

]α
)

= M
([

εn(x)
] α

2 + 2
[
d(x, E)

]α
)

.
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We have thus completed our demonstration of the result asserted by Theorem 2.

4. A Voronovskaja-Type Approximation Theorem

By applying Equations (5) to (7), as well as Lemma 1, we first prove the following result.

Lemma 4. It is asserted that

S∗n(t
3, x) =

n2

(n− 1)(n− 2)
x3 +

12n
(n− 1)(n− 2)

x2

+
36

(n− 1)(n− 2)
x +

24
n(n− 1)(n− 2)

(20)

and

S∗n(t
4, x) =

n3

(n− 1)(n− 2)(n− 3)
x4 +

20n2

(n− 1)(n− 2)(n− 3)
x3

+
120n

(n− 1)(n− 2)(n− 3)
x2 +

240
(n− 1)(n− 2)(n− 3)

x

+
120

n(n− 1)(n− 2)(n− 3)
.

(21)

Furthermore, the following result holds true,

S∗n
(
(t− x)4 , x

)
=

3(n + 6)
(n− 1)(n− 2)(n− 3)

x4 +
4(3n2 + 32n + 12)

n(n− 1)(n− 2)(n− 3)
x3

+
12(n2 + 21n + 18)

n(n− 1)(n− 2)(n− 3)
x2 +

144(n + 2)
n(n− 1)(n− 2)(n− 3)

x

+
120

n(n− 1)(n− 2)(n− 3)
.

(22)

Proof. We begin by recalling the following moments of the Szász-Mirakjan operators,

Sn

(
t3, x

)
= x3 +

3x2

n
+

x
n2 (23)

and

Sn

(
t4, x

)
= x4 +

6x3

n
+

7x2

n2 +
x
n3 . (24)

Using Equations (8) and the above formulas (23) and (24), we thus find for n > 3 that
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S∗n(t
3, x) =

∞

∑
k=0

e−nx (nx)k

k!
1

B(k + 2, n + 1)

·
∫ ∞

0

∫ ∞

0

tk+3

(1 + t)n+k+1 exp
(
− p(1 + t)2

t

)
dt dp

=
∞

∑
k=0

e−nx (nx)k

k!
1

B(k + 2, n + 1)

∫ ∞

0
Bp(k + 4, n− 3) dp

=
∞

∑
k=0

e−nx (nx)k

k!
B(k + 5, n− 2)
B(k + 2, n + 1)

=
∞

∑
k=0

e−nx (nx)k

k!
Γ(k + 5)Γ(n− 2)

Γ(n + k + 3)
Γ(n + k + 3)

Γ(k + 2)Γ(n + 1)

=
∞

∑
k=0

e−nx (nx)k

k!
(k + 4) (k + 3) (k + 2)

n(n− 1)(n− 2)

=
n2

(n− 1)(n− 2)
Sn(t3, x) +

9n
(n− 1)(n− 2)

Sn(t2, x)

+
26

(n− 1)(n− 2)
Sn(t, x) +

24
n(n− 1)(n− 2)

Sn(1, x)

=
n2

(n− 1)(n− 2)

(
x3 +

3x2

n
+

x
n2

)
+

9n
(n− 1)(n− 2)

(
x2 +

x
n

)
+

26
(n− 1)(n− 2)

x +
24

n(n− 1)(n− 2)

=
n2

(n− 1)(n− 2)
x3 +

12n
(n− 1)(n− 2)

x2 +
36

(n− 1)(n− 2)
x

+
24

n(n− 1)(n− 2)
.

On the other hand, for n > 4, we find that

S∗n(t
4, x) =

∞

∑
k=0

e−nx (nx)k

k!
1

B(k + 2, n + 1)

·
∫ ∞

0

∫ ∞

0

tk+4

(1 + t)n+k+1 exp
(
− p(1 + t)2

t

)
dt dp

=
∞

∑
k=0

e−nx (nx)k

k!
1

B(k + 2, n + 1)

∫ ∞

0
Bp(k + 5, n− 4) dp

=
∞

∑
k=0

e−nx (nx)k

k!
B(k + 6, n− 3)
B(k + 2, n + 1)

=
∞

∑
k=0

e−nx (nx)k

k!
Γ(k + 6)Γ(n− 3)

Γ(n + k + 3)
Γ(n + k + 3)

Γ(k + 2)Γ(n + 1)

=
∞

∑
k=0

e−nx (nx)k

k!
(k + 5)(k + 4) (k + 3) (k + 2)

n(n− 1)(n− 2)(n− 3)
,
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that is, that

S∗n(t
4, x) =

n3

(n− 1)(n− 2)(n− 3)
Sn(t4, x) +

14n2

(n− 1)(n− 2)(n− 3)
Sn(t3, x)

+
71n

(n− 1)(n− 2)(n− 3)
Sn(t2, x) +

154
(n− 1)(n− 2)(n− 3)

Sn(t, x)

+
120

n(n− 1)(n− 2)(n− 3)
Sn(1, x)

=
n3

(n− 1)(n− 2)(n− 3)
x4 +

20n2

(n− 1)(n− 2)(n− 3)
x3

+
120n

(n− 1)(n− 2)(n− 3)
x2 +

240
(n− 1)(n− 2)(n− 3)

x

+
120

n(n− 1)(n− 2)(n− 3)
,

which, together, complete the proof of Lemma 4.

Theorem 3. Let f , f ′, f ′′ ∈ Cν[0, ∞) for ν = 4. Then, the following Voronovskaja-type approximation result
holds true,

lim
n→∞

{
n [S∗n( f , x)− f (x)]

}
= 2 f ′(x) +

(
x2

2
+ x
)

f ′′(x). (25)

Proof. By Taylor’s expansion of f (t) at the point t = x, we have

f (t) = f (x) + f ′ (x) (t− x) +
1
2

f ′′(x)(t− x)2 + Ψ(t, x)(t− x)2, (26)

where Ψ(t, x) is remainder term, Ψ(·, x) ∈ Cν[0, ∞) and Ψ(t, x)→ 0 as t→ x.

Applying the Szász-Mirakjan Beta-type operators S∗n to Equation (26) and, using Lemma 2,
we obtain

S∗n( f , x)− f (x) = f ′(x) S∗n(t− x, x) +
1
2

f ′′(x) S∗n
(
(t− x)2 , x

)
+ S∗n

(
Ψ(t, x) (t− x)2 , x

)
=

2
n

f ′(x) +
1
2

(
1

n− 1
x2 +

2(n + 2)
n(n− 1)

x +
6

n(n− 1)

)
f ′′(x)

+ S∗n
(
Ψ(t, x) (t− x)2 , x

)
.

(27)

We now apply the Cauchy-Schwarz inequality to the third term on the right-hand side of
Equation (27). We thus find that

n
∣∣∣S∗n(Ψ(t, x) (t− x)2 , x

)∣∣∣ 5√n2S∗n
(
(t− x)4 , x

)
·
√

S∗n
([

Ψ(t, x)
]2, x

)
.

Let
η(t, x) :=

[
Ψ(t, x)

]2.

In this case, we observe that η(x, x) = 0 and also that η(·, x) ∈ Cν[0, ∞). Then, it follows that

lim
n→∞

{
S∗n
([

Ψ(t, x)
]2, x

)}
= lim

n→∞

{
S∗n
(
η(t, x), x

)}
= η(x, x) = 0
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uniformly with respect to x ∈ [0, b] (b > 0) and the following limit,

lim
n→∞

{
n2S∗n

(
(t− x)4, x

)}
is finite. Consequently, we have

lim
n→∞

{
nS∗n

(
Ψ(t, x) (t− x)2 , x

)}
= 0.

Thus, in the limit when n→ ∞ in Equation (27), we obtain

lim
n→∞

{
n
[
S∗n( f , x)− f (x)

]}
= 2 f ′(x) +

(
x2

2
+ x
)

f ′′(x).

The proof of Theorem 3 is thus completed.

5. Concluding Remarks and Observations

We find it worthwhile to reiterate the fact that, in approximation theory and related fields,
the approximation and some other basic properties of various linear and nonlinear operators are
investigated because mainly of the potential for their usefulness in many areas of researches in the
mathematical, physical, and engineering sciences. This article has been motivated essentially by the
demonstrated applications of such results as those associated with various approximation operators.

In our present investigation, we have systematically studied a number of approximation properties
of a class of the Szász-Mirakjan Beta-type operators, which we have introduced here by using
an extension of the familiar Beta function B(α, β). We have established the moments of these
extended Szász-Mirakjan Beta-type operators and estimated several convergence results with the
help of the second modulus of smoothness and the classical modulus of continuity. We have also
investigated convergence via functions belonging to the Lipschitz class. Finally, we have proved a
Voronovskaja-type approximation theorem for the general Szász-Mirakjan Beta-type operators.

Using the other substantially more general forms of the classical Beta function B(α, β), which
we have indicated in Section 1 of this article (see, for example, [22,23]), one can analogously develop
further extensions and generalizations of the various results which we have presented here. In many
of these suggested areas of further researches on the subject of this article, some other, possibly deeper,
mathematical analytic tools and techniques will have to be called for.
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