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1. Introduction

Nonassociative algebras compose a great area of algebra. In nonassociative algebra,
noncommutative geometry, and quantum field theory, there frequently appear binary systems which
are nonassociative generalizations of groups and related with loops, quasi-groups, Moufang loops,
etc., (see References [1–4] and references therein). It was investigated and proved in the 20th century
that a nontrivial geometry exists if and only if there exists a corresponding loop [1,5,6].

Octonions and generalized Cayley–Dickson algebras play very important roles in mathematics
and quantum field theory [7–13]. Their structure and identities attract great attention. They are
used not only in algebra and noncommutative geometry but also in noncommutative analysis, PDEs,
particle physics, mathematical physics, the theory of Lie groups, algebras and their generalization,
mathematical analysis, and operator theory and their applications in natural sciences including physics
and quantum field theory (see References [7,11,12,14–19] and references therein).

A multiplicative law of their canonical bases is nonassociative and leads to a more general
notion of a metagroup instead of a group [11,20,21]. The preposition “meta” is used to emphasize
that such an algebraic object has properties milder than a group. By their axiomatics, metagroups
satisfy the conditions of Equations (1)–(3) and rather mild relations (Equation (9)). They were used
in References [20,21] for investigations of automorphisms, derivations, and cohomologies of
nonassociative algebras. In the associative case, twisted and wreath products of groups are used
for investigations not only in algebra but also in algebraic geometry, geometry, coding theory, and
PDEs and their applications [22–25]. Twisted structures also naturally appear in investigations in the
G-N theory of wave propagation of the components of displacement, stress, temperature distribution,
and change in the volume fraction field in an isotropic homogeneous thermoelastic solid with voids
subjected to thermal loading due to laser pulse [26].

In this article, nonassociative metagroups are studied. Necessary preliminary results on
metagroups are described in Section 2. Quotient groups of metagroups are investigated in Theorem 1.
Identities in metagroups established in Lemmas 1, 2, and 4 are applied in Sections 3 and 4.

Different types of smashed products of metagroups are investigated in Theorems 3 and 4.
Besides them, direct products are also considered in Theorem 2. They provide large families of
metagroups (see Remark 2).

In Section 4, smashed twisted wreath products of metagroups and particularly also of groups are
scrutinized. It appears that, generally, they provide loops (see Theorem 5). If additional conditions
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are imposed, they give metagroups (see Theorem 6). Their metaisomorphisms are investigated
in Theorem 7. In Theorem 8 and Corollary 2, smashed splitting extensions of nontrivial central
metagroups are studied.

All main results of this paper are obtained for the first time. They can be used for further
studies of binary systems, nonassociative algebra cohomologies, structure of nonassociative algebras,
operator theory and spectral theory over Cayley–Dickson algebras, PDEs, noncommutative analysis,
noncommutative geometry, mathematical physics, and their applications in the sciences (see also the
conclusions).

2. Nonassociative Metagroups

To avoid misunderstandings, we give necessary definitions. A reader familiar with
References [1,20,21] may skip Definition 1. For short, it will be written as a metagroup instead
of a nonassociative metagroup.

Definition 1. Let G be a set with a single-valued binary operation (multiplication) G2 3 (a, b) 7→ ab ∈ G
defined on G satisfying the following conditions:

For each a and b in G, there is a unique x ∈ G with ax = b (1)

and a unique y∈ G exists satisfying ya = b, which are denoted by

x = a\b = Divl(a, b) and y = b/a = Divr(a, b) correspondingly, (2)

There exists a neutral (i.e., unit) element eG = e ∈ G:

eg = ge = g for each g ∈ G. (3)

If the set G with the single-valued multiplication satisfies the conditions of Equations (1) and (2),
then it is called a quasi-group. If the quasi-group G satisfies also the condition of Equation (3), then it
is called an algebraic loop (or in short, a loop).

The set of all elements h ∈ G commuting and associating with G is as follows:

Com(G) := {a ∈ G : ∀b ∈ G, ab = ba}, (4)

Nl(G) := {a ∈ G : ∀b ∈ G, ∀c ∈ G, (ab)c = a(bc)}, (5)

Nm(G) := {a ∈ G : ∀b ∈ G, ∀c ∈ G, (ba)c = b(ac)}, (6)

Nr(G) := {a ∈ G : ∀b ∈ G, ∀c ∈ G, (bc)a = b(ca)}, (7)

N(G) := Nl(G) ∩ Nm(G) ∩ Nr(G); (8)

C(G) := Com(G) ∩ N(G) is called the center C(G) of G.

We call G a metagroup if a set G possesses a single-valued binary operation and satisfies the
conditions of Equations (1)–(3) and

(ab)c = t(a, b, c)a(bc) (9)

for each a, b, and c in G, where t(a, b, c) = tG(a, b, c) ∈ C(G). If G is a quasi-group satisfying the
condition of Equation (9), then it will be called a strict quasi-group.

Then, the metagroup G will be called a central metagroup, if it satisfies also the following
condition:

ab = t2(a, b)ba (10)

for each a and b in G, where t2(a, b) ∈ C(G).
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If H is a submetagroup (or a subloop) of the metagroup G (or the loop G) and gH = Hg for each
g ∈ G, then H will be called almost normal. If, in addition, (gH)k = g(Hk) and k(gH) = (kg)H for
each g and k in G, then H will be called a normal submetagroup (or a normal subloop respectively).

Henceforward, notations Invl(a) = Divl(a, e) and Invr(a) = Divr(a, e) will be used.
Elements of a metagroup G will be denoted by small letters; subsets of G will be denoted by

capital letters. If A and B are subsets in G, then A− B means the difference of them: A− B = {a ∈
A : a /∈ B}. Henceforward, maps and functions on metagroups are supposed to be single-valued
unless otherwise specified.

Lemma 1. If G is a metagroup, then for each a and b ∈ G, the following identities are fulfilled:

b\e = (e/b)t(e/b, b, b\e) (11)

(a\e)b = (a\b)t(e/a, a, a\e)/t(e/a, a, a\b); (12)

b(e/a) = (b/a)t(b/a, a, a\e)/t(e/a, a, a\e). (13)

Proof. The conditions of Equations (1)–(3) imply that

b(b\a) = a, b\(ba) = a; (14)

(a/b)b = a, (ab)/b = a (15)

for each a and b in G. Using the condition of Equation (9) and the identities of Equations (14) and
(15), we deduce the following:

e/b = (e/b)(b(b\e)) = (b\e)/t(e/b, b, b\e)

which leads to Equation (11).
Let c = a\b; then, from the identities of Equations (11) and (14), it follows that

(a\e)b = (e/a)t(e/a, a, a\e)(ac) = ((e/a)a)(a\b)t(e/a, a, a\e)/t(e/a, a, a\b)

which provides Equations (12).
Now, let d = b/a; then, the identities of Equations (11) and (15) imply that

b(e/a) = (da)(a\e)/t(e/a, a, a\e) = (b/a)t(b/a, a, a\e)/t(e/a, a, a\e)

which demonstrates Equation (13).

Lemma 2. Assume that G is a metagroup. Thenm for every a, a1, a2, and a3 in G and p1, p2, and p3 in C(G),
we have the following:

t(p1a1, p2a2, p3a3) = t(a1, a2, a3); (16)

t(a, a\e, a)t(a\e, a, e/a) = e. (17)

Proof. Since (a1a2)a3 = t(a1, a2, a3)a1(a2a3) and t(a1, a2, a3) ∈ C(G) for every a1, a2, a3 in G, then

t(a1, a2, a3) = ((a1a2)a3)/(a1(a2a3)). (18)

Therefore, for every a1, a2, a3 in G and p1, p2, and p3 in C(G), we infer the following:

t(p1a1, p2a2, p3a3) = (((p1a1)(p2a2))(p3a3))/((p1a1)((p2a2)(p3a3)))

= ((p1 p2 p3)((a1a2)a3))/((p1 p2 p3)(a1(a2a3))) = ((a1a2)a3)/(a1(a2a3)),
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since

b/(pa) = p−1b/a and b/p = p\b = bp−1 (19)

For each p ∈ C(G), a and b in G, because C(G) is the commutative group. Thus, t(p1a1, p2a2, p3a3) =

t(a1, a2, a3).
From the condition in Equation (9), Lemma 1, and the identity of Equation (16), it follows that

t(a, a\e, a) = ((a(a\e))a)/(a((a\e)a)) = a/[at(e/a, a, a\e)] = e/t(a\e, a, e/a)

for each a ∈ G, implying Equation (17).

Theorem 1. If G is a metagroup and C0 is a subgroup in a center C(G) such that t(a, b, c) ∈ C0 for each a, b,
and c in G, then its quotient G/C0 is a group.

Proof. As traditionally, the following notation is used:

AB = {x = ab : a ∈ A, b ∈ B}, (20)

Invl(A) = {x = a\e : a ∈ A}, (21)

Invr(A) = {x = e/a : a ∈ A} (22)

for subsets A and B in G. Then from the conditions of Equations (4)–(8), it follows that, for each a, b,
and c in G, the following identities take place:

((aC0)(bC0))(cC0) = (aC0)((bC0)(cC0)) and aC0 = C0a. Evidently eC0 = C0. In view of Lemmas 1 and 2
(aC0)\e = e/(aC0), consequently, for each aC0 ∈ G/C0 a unique inverse (aC0)

−1 exists. Thus the quotient
G/C0 of G by C0 is a group.

Lemma 3. Let G be a metagroup, then Invr(G) and Invl(G) are metagroups.

Proof. At first, we consider Invr(G). Let a1 and a2 belong to G. Then, there are unique e/a1 and e/a2,
since the map Invr is single-valued (see Definition 1). Since Invr ◦ Invl(a) = a and Invl ◦ Invr(a) = a
for each a ∈ G, then Invr : G → G and Invl : G → G are bijective and surjective maps.

We put â1 ◦ â2 = (e/a2)(e/a1) for each a1 and a2 in G, where âj = Invr(aj) for each j ∈ {1, 2}.
This provides a single-valued map from Invr(G)× Invr(G) into Invr(G). Then, for each a, b, x, and y
in G, the equations â ◦ x̂ = b̂ and ŷ ◦ â = b̂ are equivalent to (e/x)(e/a) = e/b and (e/a)(e/y) = e/b,
respectively. That is, x̂ = (e/b)/(e/a) and ŷ = (e/a)\(e/b) are unique. On the other hand, e/e = e
and ê ◦ b̂ = e/b = b̂ ◦ ê = b̂ for each b ∈ G.

Then, we infer the following:

â1 ◦ (â2 ◦ â3) = ((e/a3)(e/a2))(e/a1) =

tG(e/a3, e/a2, e/a1)(e/a3)((e/a2)(e/a1)) = tG(â3, â2, â1)(â1 ◦ â2) ◦ â3,

Consequently, tInvr(G)(â1, â2, â3) = e/tG(â3, â2, â1). Evidently, Invr(C(G)) = C(G) and C(Invr(G)) =

C(G). Thus, the conditions of Equations (1)–(3) and (9) are satisfied for Invr(G).
Similarly, putting Invl(aj) = ǎj and ǎ1 ◦ ǎ2 = (a2\e)(a1\e) for each aj ∈ G and j ∈ {1, 2, 3}, the

conditions of Equations (1)–(3) and (9) are verified for Invl(G).

Lemma 4. Assume that G is a metagroup and that a ∈ G, b ∈ G, and c ∈ G. Then

e/(ab) = (e/b)(e/a)t(e/a, a, b)/t(e/b, e/a, ab) (23)
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and
(ab)\e = (b\e)(a\e)t(ab, b \ e, a\e)/t(a, b, b\e). (24)

(a/(bc) = ((a/c)/b)t(a/(bc), b, c), (25)

(bc)\a = (c\(b\a))/t(b, c, (bc) \ a). (26)

Proof. From Equations (9) and (15), we deduce that
((e/b)(e/a))(ab) = t(e/b, e/a, ab)(e/b)((e/a)(ab)) = t(e/b, e/a, ab)/t(e/a, a, b), which implies

Equation (23). Then, from Equations (9) and (14), we infer the following:

(ab)((b\e)(a\e)) = ((ab)(b\e))(a\e)/t(ab, b\e, a\e) = t(a, b, b\e)/t(ab, b\e, a\e)

which implies Equation (24).
Utilizing Equations (14) and (9), we get b(c((bc) \ a)) = a/t(b, c, (bc)\a); hence, c((bc)\a) = (b \

a)/t(b, c, (bc)\a), implying Equation (26).
Equations (15) and (9) imply that ((a/(bc))b)c = t(a/(bc), b, c)a; consequently,

(a/c)t(a/(bc), b, c) = (a/(bc))b, and hence,

((a/c)/b)t(a/(bc), b, c) = a/(bc).

3. Smashed Products and Smashed Twisted Products of Metagroups

Theorem 2. Let Gj be a family of metagroups (see Definition 1), where j ∈ J, J is a set. Then, their direct
product G = ∏j∈J Gj is a metagroup and

C(G) = ∏
j∈J
C(Gj). (27)

Proof. It is given in Theorem 8 in Reference [21].

Remark 1. Let A and B be two metagroups, and let C be a commutative group such that

Cm(A) ↪→ C, Cm(B) ↪→ C, C ↪→ C(A) and C ↪→ C(B), (28)

where Cm(A) denotes a minimal subgroup in C(A) containing tA(a, b, c) for every a, b, and c in A.
Using direct products, it is always possible to extend either A or B to get such a case. In particular, either

A or B may be a group. On A× B, an equivalence relation Ξ is considered such that

(γv, b)Ξ(v, γb) and (γv, b)Ξγ(v, b) and (γv, b)Ξ(v, b)γ (29)

for every v in A, b in B, and γ in C.

Let φ : A→ A(B) be a single-valued mapping, (30)

where A(B) denotes a family of all bijective surjective single-valued mappings of B onto B subjected to the
conditions of Equations (31)–(34) given below. If a ∈ A and b ∈ B, then it will be written shortly ba instead of
φ(a)b, where φ(a) : B→ B. Let also

ηA,B,φ : A× A× B→ C, κA,B,φ : A× B× B→ C
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and
ξA,B,φ : ((A× B)/Ξ)× ((A× B)/Ξ)→ C

be single-valued mappings written shortly as η, κ, and ξ correspondingly such that

(bu)v = bvuη(v, u, b), eu = e, be = b; (31)

η(v, u, γb) = η(v, u, b); (32)

(cb)u = cubuκ(u, c, b); (33)

κ(u, γc, b) = κ(u, c, γb) = κ(u, c, b) (34)

and κ(u, γ, b) = κ(u, b, γ) = e;

ξ((γu, c), (v, b)) = ξ((u, c), (γv, b)) = ξ((u, c), (v, b))

and
ξ((γ, e), (v, b)) = e and ξ((u, c), (γ, e)) = e (35)

for every u and v in A, b, and c in B, γ in C, where e denotes the neutral element in C and in A and B.
We put

(a1, b1)(a2, b2) = (a1a2, ξ((a1, b1), (a2, b2))b1ba1
2 ) (36)

for each of a1 and a2 in A and of b1 and b2 in B.
The Cartesian product A× B supplied with such a binary operation of Equation (36) will be denoted by

A
⊗φ,η,κ,ξ B.

Then, we put
(a1, b1) ? (a2, b2) = (a1a2, ξ((a1, b1), (a2, b2))b

a1
2 b1) (37)

for each of a1 and a2 in A and of b1 and b2 in B.
The Cartesian product A × B supplied with a binary operation of Equation (37) will be denoted by

A ?φ,η,κ,ξ B.

Theorem 3. Let the conditions of Remark 1 be fulfilled. Then, the Cartesian product A× B supplied with
a binary operation of Equation (36) is a metagroup. Moreover, there are embeddings of A and B into
A

⊗φ,η,κ,ξ B = C1 such that B is an almost normal submetagroup in C1. If in addition Cm(C1) ⊆ Cm(B) ⊆ C,
then B is a normal submetagroup.

Proof. The first part of this theorem was proven in Theorem 9 in Reference [21]. Naturally, A is
embedded into C1 as {(a, e) : a ∈ A} and B is embedded into C1 as {(e, b) : b ∈ B}. Let a ∈ A and b0 ∈
B; then, (a, b0)B = {(a, ξ((a, b0), (e, b))b0ba) : b ∈ B} and B(a, b0) = {(a, ξ((e, b), (a, b0))bb0) : b ∈ B},
since be

0 = b0 by (31). From Ba = B, b0B = B, Bb0 = B, C ⊂ C(B) and Equations (30) and (35),
it follows that (a, b0)B = B(a, b0), where Ba = {ba : b ∈ B}. Thus, B is an almost normal submetagroup
in C1 (see Definition 1). If in addition Cm(C1) ⊆ Cm(B) ⊆ C, then evidently B is a normal submetagroup
(see also the condition of Equation (29)), since tC1(g, b, h) ∈ Cm(C1) and tC1(h, g, b) ∈ Cm(C1) for each
g and h in G, b ∈ H.

Theorem 4. Suppose that the conditions of Remark 1 are satisfied. Then, the Cartesian product A× B supplied
with a binary operation of Equation (37) is a metagroup. Moreover, there exist embeddings of A and B into
A ?φ,η,κ,ξ B = C2 such that B is an almost normal submetagroup in C2. If additionally Cm(C2) ⊆ Cm(B) ⊆ C,
then B is a normal submetagroup.
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Proof. The conditions of Remark 1 imply that the binary operation of Equation (37) is single-valued.
We consider the following formulas:
I1 = ((a1, b1) ? (a2, b2)) ? (a3, b3) and I2 = (a1, b1) ? ((a2, b2) ? (a3, b3)), where a1, a2, and a3 are in

A and where b1, b2, and b3 are in B. Utilizing Equations (31)–(35) and (37), we get the following:

I1 = ((a1a2)a3, ξ((a1a2, ba1
2 b1), (a3, b3))ξ((a1, b1), (a2, b2))b

a1a2
3 (ba1

2 b1))

and

I2 = (a1(a2a3), ξ((a1, b1), (a2a3, ba2
3 b2))[ξ((a2, b2), (a3, b3))]

a1(ba1a2
3 ba1

2 )b1κ(a1, ba2
3 , b2)η(a1, a2, b3)).

Therefore
I1 = t((a1, b1), (a2, b2), (a3, b3))I2 (38)

with

t((a1, b1), (a2, b2), (a3, b3)) = tA(a1, a2, a3)ξ((a1, b1), (a2, b2))

ξ((a1a2, ba1
2 b1), (a3, b3))/{tB(b

a1a2
3 , ba1

2 , b1)

ξ((a1, b1), (a2a3, ba2
3 b2))[ξ((a2, b2), (a3, b3))]

a1 κ(a1, ba2
3 , b2)η(a1, a2, b3))},

(39)

Consequently, t((a1, b1), (a2, b2), (a3, b3)) ∈ C for each aj ∈ A, bj ∈ B, j ∈ {1, 2, 3}. We denote

t((a1, b1), (a2, b2), (a3, b3))

in more details by
tA?φ,η,κ,ξ B((a1, b1), (a2, b2), (a3, b3))

(see Equation (39)).
Evidently, Equation (3) is a consequence of Equations (35) and (37).
Note that, if γ ∈ C, then

γ((a1, b1) ? (a2, b2)) = (γa1a2, ξ((a1, b1), (a2, b2))b
a1
2 b1) =

(a1a2, ba1
2 b1)γξ((a1, b1), (a2, b2)) = ((a1, b1) ? (a2, b2))γ.

Therefore, γ ∈ C(A ?φ,η,κ,ξ B). Consequently, C ⊆ C(A ?φ,η,κ,ξ B).
Then, we seek a solution of the following equation:

(a1, b1) ? (a, b) = (e, e), (40)

where a ∈ A, b ∈ B.
From Equations (2) and (37), it follows that

a1 = e/a (41)

Consequently, ξ((e/a, b1), (a, b))b(e/a)b1 = e. Therefore, Equations (1) and (35) imply that

b1 = [ξ((e/a, b(e/a)), (a, b))b(e/a)]\e. (42)

Thus, a1 ∈ A and b1 ∈ B prescribed by Equations (41) and (42) provide a unique solution of
Equation (40).

Analogously for the following equation

(a, b)(a2, b2) = (e, e), (43)
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where a ∈ A, b ∈ B, we deduce that
a2 = a\e. (44)

Consequently, ξ((a, b), (a\e, b2))ba
2b = e, and hence, ba

2 = e/[ξ((a, b), (a\e, b2))b]. From Equations (31)
and (32), it follows that (ba

2)
e/a = η(e/a, a, b2)b2; consequently,

b2 = (e/b)e/a/{[(ξ((a, b), (a\e, (e/b)e/a))]e/aη(e/a, a, (e/b)e/a)}. (45)

Thus, a unique solution of Equation (43) is given by Equations (44) and (45).
Then, we have (a1, b1) = (e, e)/(a, b) and (a2, b2) = (a, b)\(e, e) and get the following:

(a, b) \ (c, d) = ((a, b)\(e, e))(c, d)

t((e, e)/(a, b), (a, b), ((a, b)\(e, e))(c, d))/t((e, e)/(a, b), (a, b), (a, b)\(e, e)); (46)

(c, d)/(a, b) = (c, d)((e, e)/(a, b))

t((e, e)/(a, b), (a, b), (a, b)\(e, e))/t((c, d)(e/(a, b)), (a, b), (a, b)\(e, e)) (47)

and eG = (e, e), where G = A ?φ,η,κ,ξ B. This means that the properties of Equations (1)–(3) and (9)
are fulfilled for A ?φ,η,κ,ξ B.

Evidently, there are embeddings of A and B into C2 as (A, e) and (e, B), respectively. Suppose that
a ∈ A and b0 ∈ B, then

(a, b0) ? B = {(a, ξ((a, b0), (e, b))bab0) : b ∈ B} and
B ? (a, b0) = {(a, ξ((e, b), (a, b0))b0b) : b ∈ B}.

Therefore, (a, b0) ? B = B ? (a, b0) by the conditions of Equations (30) and (35), since Ba = B and
C ⊂ C(B). Thus, B is an almost normal submetagroup in C2 (see Definition 1). If additionally Cm(C2) ⊆
Cm(B) ⊆ C, then apparently B is a normal submetagroup (see also the condition of Equation (29)),
since tC2(g, b, h) ∈ Cm(C2) and tC2(h, g, b) ∈ Cm(C2) for each g and h in G, b ∈ B.

Definition 2. We call the metagroup A
⊗φ,η,κ,ξ B provided by Theorem 3 (or A ?φ,η,κ,ξ B by Theorem 4)

a smashed product (or a smashed twisted product correspondingly) of metagroups A and B with smashing factors
φ, η, κ, and ξ.

Remark 2. From Theorems 2–4, it follows that, taking nontrivial η, κ, and ξ and starting even from groups
with nontrivial C(Gj) or C(A), it is possible to construct new metagroups with nontrivial C(G) and ranges
tG(G, G, G) of tG that may be infinite.

With suitable smashing factors φ, η, κ, and ξ and with nontrivial metagroups or groups A and B, it is easy
to get examples of metagroups in which e/a 6= a\e for an infinite family of elements a in A

⊗φ,η,κ,ξ B or in
A ?φ,η,κ,ξ B. Evidently, smashed products and smashed twisted products (see Definition 2) are nonassociative
generalizations of semidirect products. Combining Theorems 3 and 4 with Lemmas 3 and 4 provides other types
of smashed products by taking b̂1 ◦ b̂a1

2 instead of b1ba1
2 or b̌a1

2 ◦ b̌1 instead of ba1
2 b1 on the right sides of Equations

(36) and (37), correspondingly, etc.

4. Smashed Twisted Wreath Products of Metagroups

Lemma 5. Let D be a metagroup and A be a submetagroup in D. Then, there exists a subset V in D such that
D is a disjoint union of vA, where v ∈ V, that is,

D =
⋃

v∈V vA (48)
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and
(∀v1 ∈ V, ∀v2 ∈ V, v1 6= v2)⇒ (v1 A ∩ v2 A) = ∅). (49)

Proof. The cases A = {e} and A = D are trivial. Let A 6= {e} and A 6= D, and let C(D) be a center of
D. From the conditions of Equations (4)–(8), it follows that z ∈ C(D) ∩ A implies z ∈ C(A).

Assume that b ∈ D and z ∈ C(D) are such that zbA ∩ bA 6= ∅. It is equivalent to (∃s1 ∈ A, ∃s2 ∈
A, zbs1 = bs2). From Equation (14), it follows that (zbs1 = bs2) ⇔ (zs1 = s2) ⇔ (z = s2/s1 ∈ A)

because z ∈ C(D). Thus,

(∃b ∈ D, ∃z ∈ C(D), zbA ∩ bA = ∅)⇔ (∃b ∈ D, ∃z ∈ C(D)− A). (50)

Suppose now that b1 ∈ D, b2 ∈ D and b1 A ∩ b2 A 6= ∅. This is equivalent to (∃s1 ∈ A, ∃s2 ∈ A,
b1s1 = b2s2). By the identity of Equation (15), the latter is equivalent to b1 = (b2s2)/s1. On the other
hand,

(b2s2)/s1 = (b2s2)(e/s1)t(e/s1, s1, s1 \ e)/t((b2s2)/s1, s1, s1\e)
= b2(s2(e/s1))t(b2, s2, e/s1)t(e/s1, s1, s1 \ e)/t((b2s2)/s1, s1, s1\e)

by Equations (9), (13), and (15). Together with (50) this gives the equivalence:

(∃b1 ∈ D, ∃b2 ∈ D, b1 A ∩ b2 A 6= ∅)⇔ (∃b1 ∈ D, ∃b2 ∈ D, ∃s ∈ A, ∃z ∈ C(D)− A, b1 = zb2s). (51)

Let Υ be a family of subsets K in D such that k1 A ∩ k2 A = ∅ for each k1 6= k2 in K. Let Υ be
directed by inclusion. Then, Υ 6= ∅, since A ⊂ D and A 6= D. Therefore, from Equations (50) and (51)
and the Kuratowski-Zorn lemma (see Reference [27]), the assertion of this lemma follows, since a
maximal element V in Υ gives Equations (48) and (49).

Definition 3. A set V from Lemma 5 is called a right transversal (or complete set of right coset representatives)
of A in D.

The following corollary is an immediate consequence of Lemma 5.

Corollary 1. Let D be a metagroup, A be a submetagroup in D, and V be a right transversal of A in D. Then,

∀a ∈ D, ∃1s ∈ A, ∃1b ∈ V, a = sb f or a given triple (A, D, V). (52)

Remark 3. We denote b in the decomposition of Equation (52) by b = τ(a) = aτ and s = ψ(a) = aψ, where
τ and ψ are the shortened notations of τA,D,V and ψA,D,V , respectively. That is, there are single-valued maps

τ : D → V and ψ : D → A. (53)

These maps are idempotent τ(τ(a)) = τ(a) and ψ(ψ(a)) = ψ(a) for each a ∈ D.

I f b = aτ , then we denote e/b by ae/τ and b\e by aτ\e. (54)

According to Equation (2), s = a/b; hence, aψ = a/aτ . From Equation (13) ,it follows that a/b =

a(e/b)t(e/b, b, b \ e)/t(a/b, b, b\e); consequently, by Lemma 2,

s = aae/τt(ae/τ , aτ , aτ\e)/t(aae/τ , aτ , aτ\e). (55)

Notice that the metagroup need not be power-associative. Then, e/s and s\e can be calculated with the
help of the identity of Equation (11). Suppose that a and y belong to D, s = aψ, b = aτ , s2 = yψ, and b2 = yτ .
Then, (aτy) = b(s2b2). According to Equation (52) there exists a unique decomposition b(s2b2) = s3b3,
where s3 ∈ A, b3 ∈ V; hence, (aτy)τ = b3. On the other hand, by Equation (9) ay = s(b(s2b2))t(s, b, y) =
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(ss3)b3t(s, b, y)/t(s, s3, b3). We denote a subgroup C(D) ∩ A in C(D) by CA(D) or shortly CA, when D is
specified. From Lemma 2 and Equation (51), it follows that

C(D)τ is isomorphic with C(D)/CA, (56)

where C(D)τ = {aτ : a ∈ C(D)}.
Let Cm(A) be a minimal subgroup in C(A) generated by a set {tA(a, b, c) : a ∈ A, b ∈ A, c ∈ A}.

From Equation (9), it follows that Cm(A) ⊂ CA(D) and AC(D) is a submetagroup in D. By virtue of Theorem
1, (AC(D))/CA(D) and A/CA(D) are groups such that A/CA(D) ↪→ (AC(D))/CA(D). For each d ∈ D,
there exists a unique decomposition

d = dψdτ (57)

by Equation (53). Take in particular γ ∈ C(D); then, γ = γψγτ , where γψ ∈ CA(D), γτ ∈ V. Therefore,
C(D)/CA(D) ⊂ V and there exists a subset V0 in V such that (C(D)/CA(D))V0 = V, since C(D)/CA(D)

is a subgroup in (AC(D))/CA(D) (see Equation (56)). Equation (57) implies that (dτ)ψ = e and (dψ)τ = e
for each d ∈ D. Using this, we subsequently deduce that

(dψγ)ψ = dψγψ, (58)

(dψγ)τ = γτ , (59)

(dτγ)ψ = γψ, (60)

(dτγ)τ = dτγτ (61)

for each d ∈ D and γ ∈ C(D). Hence,
(dγ) = (dγ)ψ(dγ)τ = (dψdτ)(γψγτ) = (dψγψ)(dτγτ) = (dψγ)ψ(dτγ)τ ,

where dψγψ ∈ A and dτγτ ∈ V. From a uniqueness of this representation, it follows that

(dγ)ψ = dψγψ (62)

and
(dγ)τ = dτγτ f or each d ∈ D and γ ∈ C(D). (63)

Using Equation (63) we infer that

(aτy)τ = (ay)τ [tD(aψ, (aτy)ψ, (ay)τ)/tD(aψ, aτ , y)]τ . (64)

On the other hand, if γ ∈ C(D), then γψ = γ/γτ and Equations (64) and (60) imply particularly that

(aτγ)τ = (aγ)τ f or each a ∈ D and γ ∈ C(D), (65)

since tD(a, d, γ) = e for each a and d in D and γ ∈ C(D). Then, from s = aψ, aτy = s3b3, it follows
that aψ(aτy)ψ = ss3 and (ay)ψ = [(ss3)b3tD(s, b, y)/tD(s, s3, b3)]

ψ; consequently, by Lemma 2 and
Equation (62),

aψ(aτy)ψ = (ay)ψ[tD(aψ, (aτy)ψ, (ay)τ)/tD(aψ, aτ , y)]ψ (66)

for each a and y in D. Particularly,

aψ(aτγ)ψ = (aγ)ψ f or each a ∈ D and γ ∈ C(D). (67)

From Equations (64) and (65), it follows that the metagroup D acts on V transitively by right shift
operators Ry, where Rya = ay for each a and y in D. Therefore, we put

(aτ)[c] := (aτc)τ f or each a and c in D. (68)
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Then from Equations (64), (65), (68), and (9) and Lemma 2, we deduce that, for each a, c, and d in D

(aτ)[cd] = ((aτ)[c])[d][tD((aτc)ψ, (aτc)τ , d)/(tD((aτc)ψ, ((aτc)τd)ψ, ((aτc)d)τ)tD(aτ , c, d))]τ . (69)

In particular, (aτ)[e] = aτ for each a ∈ D. Next, we put eτ = b∗. It is convenient to choose b∗ = e. Hence,
b[s]∗ = (eτ)[s] = (eτs)τ = sτ = e = eτ for each s ∈ A. Thus, the submetagroup A is the stabilizer of e and
Equation (68) implies that

e[s] = e and e[q] = q f or each s ∈ A and q ∈ V. (70)

Remark 4. Let B and D be metagroups, A be a submetagroup in D, and V be a right transversal of A in D.
Let also the conditions of Equations (28)–(35) be satisfied for A and B. By Theorem 2, there exists a metagroup

F = BV , where BV = ∏v∈V Bv, Bv = B f or each v ∈ V. (71)

It contains a submetagroup
F∗ = { f ∈ F : card(σ( f )) < ℵ0},

where σ( f ) = {v ∈ V : f (v) 6= e} is a support of f ∈ F and card(Ω) denotes the cardinality of a set Ω.
Let Th f = f h for each f ∈ F and h : V → A. We put
Ŝd(Th f J) = ThS−1

d
f Sd J,

where J : V × F → B, J( f , v) = f Jv, Sd Jv = Jv[d\e] for each d ∈ D, f ∈ F and v ∈ V. Then, for each f ∈ F,
d ∈ D we put

f {d} = Ŝd(Tgd f E), (72)

where
s(d, v) = e/(v/d)ψ, gd(v) = s(d, v),

f Ev = f (v) f or each v ∈ V (73)

(see also Equations (52) and (68)). Hence,
f {e} = f , (74)

since ve\e = v and s(e, v) = e.

Lemma 6. Let the conditions of Remark 4 be satisfied. Then, for each of f and f1 in F and of d and d1 in D,
v ∈ V,

( f f1)
{d}(v) = κ(s(d, v), f (v[d\e]), f1(v[d\e])) f {d}(v) f {d}1 (v) (75)

and
f {dd1}(v) = {[( f {d1}){d}]w2(d,d1,v)(vw1(d, d1, v))}w3(d, d1, v), (76)

where wj = wj(d, d1, v) ∈ C(D), j ∈ {1, 2, 3}, wτ
1 = w1.

Proof. Equations (72) and (33) imply the identity of Equation (75).
Let v ∈ V, d and d1 belong to D, and f ∈ F; then, from Equations (72) and (73), it follows that

f {dd1}(v) = f s(dd1,v)(v[(dd1)\e]) (77)

and
( f {d1}){d}(v) = ( f s(d1,v))s(d,v[d1\e])((v[d1\e])[d\e]). (78)

From Equations (24), (69), (58), (61), (11), and (13) and Lemma 2, we deduce that

(dd1)\e = (d1\e)(d \ e)tD(dd1, d1\e, d\e)/tD(d, d1, d1\e)
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and
v[(dd1)\e] = (v[d1\e])[d\e]w1(d, d1, v), (79)

where w1(d, d1, v) = γτ , where

γ = tD(dd1, d1\e, d \ e)tD((v/d1)
ψ, (v/d1)

τ , d\e)
/[tD(d, d1, d1\e)tD(v, e/d1, e/d)tD((v/d1)

ψ, ((v/d1)
τ/d)ψ, (v/(dd1))

τ)].

Then Equations (73), (66), (25), (13), and (62) and Lemma 2 imply that

s(dd1, v) = e/([(v/d1)(e/d)]ψγ
ψ
1 , (80)

where γ1 = tD(v/(dd1), d, d1)tD(e/d, d, d \ e)/tD(v/(dd1), d, d\e) by (13), (25) and Lemma 2;

[(v/d1)(e/d)]ψ = (v/d1)
ψ[(v/d1)

τ(e/d)]ψγ
ψ
2 , (81)

where
γ2 = tD((v/d1)

ψ, (v/d1)
τ , e/d)/tD((v/d1)

ψ, ((v/d1)
τ(e/d))ψ, ((v/d1)(e/d))τ).

Note that
s(dd1, v) = (e/[(v/d1)

τ(e/d)]ψ)(e/(v/d1)
ψ)γ3/{γψ

1 γ
ψ
2 } (82)

by Equations (81) and (23), where

γ3 = tD(e/(v/d1)
ψ, (v/d1)

ψ, [(v/d1)
τ(e/d)]ψ)

/tD(e/[(v/d1)
τ(e/d)]ψ, e/(v/d1)

ψ, (v/d1)
ψ[(v/d1)

τ(e/d)]ψ).

Then,
(v/d1)

τ = [v(d1\e)]τγτ
4 = v[d1\e]γτ

4

by Equations (11), (13), (63), and (68), where γ4 ∈ Cm(D). Hence,

[(v/d1)
τ(e/d)]ψ = [v[d1\e](e/d)]ψγ

ψ
5 ,

since
(γτ

4 )
ψ = e, (83)

where γ5 = tD(v[d1\e]/d, d, d\e)/tD(e/d, d, d \ e).
Thus, the identities of Equations (80)–(83) imply that

s(dd1, v) = s(d, v[d1\e])s(d1, v)w2(d, d1, v), (84)

where
w2(d, d1, v) = γ3/(γψ

1 γ
ψ
2 γ

ψ
5 ), w2(d, d1, v) ∈ C(D).

By Lemmas 1 and 2 and Equation (73), representations of γj simplify:

γ2 = tD(e/s(d1, v), v[d1\e], e/d)/tD(e/s(d1, v), e/s(d, v[d1\e]), v[(dd1)\e]),
γ3 = tD(s(d1, v), e/s(d1, v), e/s(d, v[d1\e]))

/tD(s(d, v[d1\e]), s(d1, v), e/(s(d, v[d1\e])s(d1, v))).

Therefore, w2(d, d1, v) ∈ C(D) ∩ A for each d and d1 in D and v ∈ V, since s(d, d1, v), s(d, v[d1\e]),
and s(d1, v) belong to A. Then, from Equations (77), (84), (31), (32), we infer that

f {dd1}(v) = {[( f s(d1,v))s(d,v[d1\e])]w2(d,d1,v)((v[d1\e])[d\e]w1(d, d1, v))}w3(d, d1, v), (85)
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where w3(d, d1, v) = e/[η(s(d, v[d1\e])w2, s(d1, v), b)η(s(d, v[d1\e]), w2, bs(d1,v))],
w2 = w2(d, d1, v), b = f ((v[d1\e])[d\e]w1(d, d1, v)). Equations (68) and (61) imply that (vγ)[a] =

v[a]γτ for each v ∈ V and γ ∈ C(D), a ∈ D; consequently, ((vw1)
[d1\e])[d\e] = (v[d1\e])[d\e]w1, and

hence, vw1 ∈ V for each v ∈ V, d and d1 in D, w1 = w1(d, d1, v) by Equation (79), since w1 = γτ .
Thus Equation (76) follows from Equations (78) and (85).

Definition 4. Suppose that the conditions of Remark 4 are satisfied and on the Cartesian product C = D× F
(or C∗ = D× F∗) a binary operation is given by the following formula:

(d1, f1)(d, f ) = (d1d, ξ((dψ
1 , f1), (dψ, f )) f1 f {d1}), (86)

where ξ((dψ
1 , f1), (dψ, f ))(v) = ξ((dψ

1 , f1(v)), (dψ, f (v))) for every d and d1 in D, f and f1 in F (or F∗

respectively), and v ∈ V.

Theorem 5. Let C, C∗, D, F, and F∗ be the same as in Definition 4. Then, C and C∗ are loops and there are
natural embeddings D ↪→ C, F ↪→ C, D ↪→ C∗, and F∗ ↪→ C∗ such that F (or F∗) is an almost normal subloop
in C (or C∗ respectively).

Proof. The operation of Equation (86) is single-valued. Let a = (d, f ) and b = (d0, f0), where d and d0

are in D and where f and f0 are in F (or F∗).
The equation ay = b is equivalent to dd2 = d0 and

ξ((dψ, f ), (dψ
2 , f2)) f f {d}2 = f0,

where d2 ∈ D, f2 ∈ F (or f2 ∈ F∗ respectively), y = (d2, f2), ξ((dψ, f ), (dψ
2 , f2))(v) =

ξ((dψ, f (v)), (dψ
2 , f2(v))) for each v ∈ V. Therefore, d2 = d\d0, f {d}2 = [ξ((dψ, f ), ((d\d0)

ψ, f2)) f ]\ f0

by Equation (1) and Theorem 2. On the other hand, f {e}2 = f2 by Equation (74) and f2(v) =

{[( f {d}2 ){d3}]w2(vw1)}w3 by Equation (76), where wj = wj(d, d3, v), j ∈ {1, 2, 3}, d3 = d\e, and
dd3 = e by Equation (14). Thus, using Equation (35), we get that

y = (d\d0, {{([ξ((dψ, f ), ((d\d0)
ψ, [( f \ f0)

{d\e}]w2 w3)) f ] \ f0)
{d\e}}w2(vw1)}w3)

belongs to C (or C∗ respectively), giving Equation (1).
Then, we seek a solution x ∈ C (or x ∈ C∗ respectively) of the equation xa = b. It is equivalent to

two equations: d1d = d0 and

ξ((dψ
1 , f1(v)), (d, f (v))) f1(v) f {d1}(v) = f0(v)

for each v ∈ V, where d1 ∈ D, f1 ∈ F (or f1 ∈ F∗ respectively), and x = (d1, f1). Therefore, d1 = d0/d
and f1(v) = f0(v)/[ξ(((d0/d)ψ, f1(v)), (d, f (v))) f {d0/d}(v)]. Thus,

x = (d0/d, f0/[ξ(((d0/d)ψ, f1), (d, f )) f {d0/d}])

belongs to C (or C∗ respectively), giving Equation (2).
Moreover, (e, e)(d, f ) = (d, f ) and (d, f )(e, e) = (d, f ) for each d ∈ D, f ∈ F (or f ∈ F∗

respectively) by Equations (35) and (86). Therefore, the condition of Equation (3) is also satisfied.
Thus, C and C∗ are loops.

Evidently D 3 d 7→ (d, e) and F 3 f 7→ (e, f ) ∈ C (or F∗ 3 f 7→ (e, f ) ∈ C∗ respectively) provide
embeddings of D and F (or D and F∗ respectively) into C (or C∗ respectively).
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It remains to verify that F (or F∗ respectively) is an almost normal subloop in C (or C∗ respectively).
Assume that d1 ∈ D, f1 ∈ F. Then,

(d1, f1)F = {(d1, ξ((dψ
1 , f1), (e, f )) f1 f {d1}) : f ∈ F}

and
F(d1, f1) = {(d1, ξ((e, f ), (dψ

1 , f1)) f f1) : f ∈ F}.

Using the embedding CV ↪→ F and Equation (35), we infer that (d1, f1)F = F(d1, f1), since
F{d1} = F by Equation (68), Lemma 5, and Equation (30). It can be verified similarly that F∗ is the
almost normal subloop in C∗.

Definition 5. The product Equation (86) in the loop C (or C∗) of Theorem 5 is called a smashed twisted wreath
product of D and F (or a restricted smashed twisted wreath product of D and F∗ respectively) with smashing
factors φ, η, κ, and ξ, and it will be denoted by C = D∆φ,η,κ,ξ F (or C∗ = D∆φ,η,κ,ξ F∗ respectively). The loop C
(or C∗) is also called a smashed splitting extension of F (or of F∗ respectively) by D.

Theorem 6. Let the conditions of Remark 4 be satisfied and Cm(D) ⊆ C, where C is as in Equation (28). Then,
C and C∗ supplied with the binary operation of Equation (86) are metagroups.

Proof. In view of Theorem 5, C and C∗ are loops. To each element b in B, there corresponds an element
{b(v) : ∀v ∈ V, b(v) = b} in F which can be denoted by b also. From the conditions of Equations
(29)–(35), we deduce that

γa = γ and f γ = f for every γ ∈ C and a ∈ A. (87)

Hence, Equations (87) and (86) imply that (C(A), C(F)) ⊆ C(C). On the other hand, w1 = γτ

with γ ∈ Cm(D) and w2 = γ3/(γψ
1 γ

ψ
2 γ

ψ
5 ) with γ1,...,γ5 in Cm(D) (see Equation (84)); hence, the

condition Cm(D) ⊂ C implies that Equation (76) simplifies to

f {dd1}(v) = ( f {d}(v)){d1}w3(d, d1, v) (88)

for each f ∈ F, v ∈ V, and d and d1 in D, since C ⊆ C(A) by Equation (28). Next, we consider the
following products:

I1 = ((d2, f2)(d1, f1))(d, f ) = ((d2d1, ξ((dψ
2 , f2), (d

ψ
1 , f1)) f2 f {d2}

1 )(d, f ) (89)

and
I2 = (d2, f2)((d1, f1)(d, f )) = (d2, f2)(d1d, ξ((dψ

1 , f1), (dψ, f )) f1 f {d1}). (90)

Then, Equations (86), (90), and (33)–(35) imply that

I2 = (d2(d1d), ξ((dψ
1 , f1), (dψ, f ))ξ((dψ

2 , f2), ((d1d)ψ, f1 f {d1}))κ(s(d2, v), f1(v[d2\e]), f {d1}(v[d2\e])) f2(v)[ f {d2}
1 (v)( f {d1}){d2}(v)]. (91)

From Equations (88), (89), (76), and (35), we infer that

I1 = ((d2d1)d, ξ((dψ
1 , f1), (dψ, f ))ξ(((d2d1)

ψ, f2 f {d2}
1 ), (dψ, f ))( f2 f {d2}

1 )( f {d1}){d2}w3, (92)

where w3 = w3(d1, d2, v). Therefore, from Equations (91) and (92), we infer that

I1 = tC((d2, f2), (d1, f1), (d, f ))I2, (93)

where
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tC((d2, f2), (d1, f1), (d, f )) = tD(d2, d1, d)tB( f2, f1, f {d2d1})ξ((dψ
1 , f1), (dψ, f ))

ξ((dψ
2 , f2), ((d1d)ψ, f1 f {d1}))κ(s(d2, v), f1(v[d2\e]), f {d1}(v[d2\e]))

/[ξ((dψ
2 , f2), (d

ψ
1 , f1))ξ(((d2d1)

ψ, f2 f {d2}
1 ), (dψ, f ))w3(d1, d2, v)]; (94)

tB( f2, f1, f )(v) = tB( f2(v), f1(v), f (v)); (95)

ξ((dψ
2 , f2), (d

ψ
1 , f1))(v) = ξ((dψ

2 , f2(v)), (d
ψ
1 , f1(v))) (96)

for every f , f1, f2 in F, d, d1, d2 in D, and v ∈ V. Then from Equation (93), C(F) = (C(B))V

(see Theorem 2) and Equation (28), it follows that the loops C and C∗ satisfy the condition of Equation
(9), since (C, CV) ⊆ C(C). Thus, C and C∗ are metagroups.

Remark 5. Generally, if A 6= {e} and A 6= D, B, φ, η, κ, and ξ are nontrivial, where A, B, and D are
metagroups or particularly may be groups, then the loops C and C∗ of Theorem 5 can be non-metagroups.
If Equation (35) drops the conditions ξ((e, e), (v, b)) = e and ξ((v, b), (e, e)) = e for each v ∈ V and
b ∈ B, then the proofs of Theorems 3–5 demonstrate that C1 and C2 are strict quasi-groups and that C and C∗

are quasi-groups.

Definition 6. Let P1 and P2 be two loops with centers C(P1) and C(P2). Let also

µ(a, b) = ν(a, b)µ(a)µ(b) (97)

for each a and b in P1, where ν(a, b) ∈ C(P2). Then, µ will be called a metamorphism of P1 into P2. If in
addition µ is surjective and bijective, then it will be called a metaisomorphism and it will be said that P1 is
metaisomorphic to P2.

Theorem 7. Suppose that A, B, and D are metagroups and that A ⊂ D, V1, and V2 are right transversals of A
in D, Fj = BVj ,

Pj = D∆φ,η,κ,ξ Fj, P∗j = D∆φ,η,κ,ξ F∗j , j ∈ {1, 2}.

Then, P1 is metaisomorphic to P2 and P∗1 to P∗2 .

Proof. By virtue of Theorem 5, Pj and P∗j are loops, where j ∈ {1, 2}, CVj ⊂ C(Pj). From Equations (62)
and (73), it follows that

sj(δd, v) = sj(d, v/δ) = δψj sj(d, v) (98)

for each d ∈ D, v ∈ Vj, and δ ∈ C(D), where sj, v[a]j , dτj , and dψj correspond to Vj, j ∈ {1, 2}. Then,
Equations (68) and (63) imply that

v[δ/d]j = v[e/d]δτj (99)

for each d ∈ D, v ∈ Vj, and δ ∈ C(D), j ∈ {1, 2}. Therefore, from the identities of Equations (98), (99),
and (84) and Lemma 2, we infer that

w2(δd, δ1d1, δ2v) = w2(d, d1, v) (100)

for each of d and d1 in D, δ, δ1 and δ2 in C(D), and v ∈ V.
For each of f ∈ F1 and v ∈ V2, we put

µ f (v) = f e/vψ1 (vτ1). (101)
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From Lemma 5, it follows that Vτ1
2 = V1 and vτ1

1 6= vτ1
2 for each v1 6= v2 in V2, where Vτ1

2 = {vτ1 :
v ∈ V2}. Then, Equations (87), (62), (100), and (101) and Lemma 1 imply that

f {d}µ = f µ{d} (102)

for each f ∈ F1, d ∈ D, where f µ{d} = (µ f ){d}, f {d}µ = µ( f {d}) (see also Equation (72)). From the
identity of Equation (102) and the conditions of Equations (33) and (34), we infer that

µ((d1, f1)(d, f ))(v) = κ(e/vψ1 , f1(vτ1), f {d1}(vτ1))(µ(d1, f1))(µ(d, f )) (103)

for each of d and d1 in D, f and f1 in F1, and v ∈ V2, where µ(d, f ) = (d, µ f ), (d, f )(v) = (d, f (v)).
Hence,

ν((d1, f1), (d, f ))(v) = κ(e/vψ1 , f1(vτ1), f {d1}(vτ1)) ∈ C (104)

for each v ∈ V2 (see also Equations (28) and (30)). Thus, P1 is metaisomorphic to P2 and P∗1 to P∗2 .

Theorem 8. Suppose that D is a nontrivial metagroup. Then, there exists a smashed splitting extension C∗ of a
nontrivial central metagroup H by D such that [H, C∗]C(H) = H, where [a, b] = (e/a)((e/b)(ab)) for each
a and b in C∗.

Proof. Let d0 be an arbitrary fixed element in D− C(D). Assume that A is a submetagroup in D such
that A is generated by d0 and a subgroup C0 contained in a center C(D) of D, Cm(D) ⊆ C0 ⊆ C(D),
where Cm(D) is a minimal subgroup in a center C(D) of D such that tD(a, b, c) ∈ Cm(D) for each of a,
b, and c in D. Therefore,

akan = p(k, n, a)ak+n (105)

for each a ∈ A, k, and n in C = {0,−1, 1,−2, 2, ...}, where the following notation is used: a2 = aa,
an+1 = ana and a−n = e/an, and a0 = e for each n ∈ N and p(k, n, a) ∈ Cm(A). Hence, in
particular, A is a central metagroup. Then, d0Cm(A) is a cyclic element in the quotient group
A/Cm(A) (see Theorem 1). Then, we choose a central metagroup B generated by an element b0

and a commutative group C1 such that b0 /∈ C1, Cm(D) ↪→ C1 and C(A) ↪→ C1 and the quotient group
B/Cm(B) is of finite order l > 1. Then, let φ : A→ A(B) satisfy the condition of Equation (30) and be
such that

φ(d0)b0 = b2
0. (106)

To satisfy the condition of Equation (106), a natural number l can be chosen as a divisor of
2|d0Cm(A)| − 1 if the order |d0Cm(A)| of d0Cm(A) in A/Cm(A) is positive; otherwise, l can be taken as
any fixed odd number l > 1 if A/Cm(A) is infinite.

Then, we take a right transversal V of A in D so that A is represented in V by e. Let Ξ, η, κ, and ξ

be chosen to satisfy the conditions of Equations (29)–(35), where Cm(B) ↪→ C, Cm(A) ↪→ C, C0 ↪→ C,
and C1 ↪→ C. With these data, according to Theorem 6, C∗ is a metagroup, since Cm(D) ↪→ C1 and
Cm(D) ↪→ C0. That is, C∗ is a smashed splitting extension of the central metagroup F∗ by D.

Apparently, there exists f0 ∈ F∗ such that f0(e) = b0, f0(v) = e for each v ∈ V − {e}. Therefore,
f {v}0 (v) = b0 for each v ∈ V, since s(v, v) = e, v[v\e] = [v(v\e)]τ = e.

Let v1 6= v2 belong to V. Then, (v2(v1\e))τ = v3 ∈ V. Assume that v3 = e. The latter is
equivalent to v2(v1\e) = a ∈ A. From Equation (13), it follows that v2 = a/(v1\e) = γav1, where
γ = tD(v1, v1\e, v1)/tD(av1, v1\e, v1) by Equation (11) and Lemma 2, since e/(v1\e) = v1. Hence,
v2 = vτ

2 = (γav1)
τ = γτv1 by Equation (63), and consequently, (v2(v1\e))τ = γτ = e, contradicting

the supposition v1 6= v2. Thus, v3 6= e, and consequently, f {v1}
0 (v2) = es(v1,v2) = e by Equation (31).

This implies that { f {v}0 : v ∈ V}C(F∗) generates F∗.
Evidently, [v(d0\e)]τ 6= e for each v ∈ V − {e}, since d0\e ∈ A and the following conditions

s ∈ D, sq ∈ A, and q ∈ A imply that s ∈ A because A is the submetagroup in D. Note that
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e/d = (d \ e)/tA(e/d, d, d\e) for each d ∈ A by Equation (11); consequently, s(d, e) = dtA(e/d, d, d\e).
On the other hand, tA(a, b, c) ∈ C for each of a, b, and c in A and

f γ
0 = f0 f or each γ ∈ C (107)

by Equation (87); hence, f {d0}
0 (e) = φ(d0)b0 = b2

0, and consequently,

f {d0}
0 = f 2

0 ,

since
f {d0}
0 (v) = e f or each v ∈ V − {e}. (108)

Therefore, we deduce using Equation (107) that

[(e, f0), (e/d0, e)] = (e, w f0), (109)

where
w = ξ((e, f0), (e/d0, e))ξ((d0, e), (e/d0, f0))

ξ((e, e/ f0), (e, ( f0)
2))/tF∗(e/ f0, f0, f0), (110)

tF∗( f , g, h)(v) = tB( f (v), g(v), h(v)) f or each v ∈ V, f , g and h in F∗. (111)

Thus, w = w(v) ∈ C for each v ∈ V and f0 ∈ [F∗, C∗], since CV ∩ F∗ ⊂ C(F∗). Hence, F∗ ⊆
[F∗, C∗]C(F∗), since F∗ ↪→ C∗ and C(C∗) ∩ F∗ ⊆ C(F∗). On the other hand, Cm(A) ↪→ C, Cm(B) ↪→ C,
Cm(D) ↪→ Cj, and Cj ↪→ C for each j ∈ {0, 1}. Therefore, Equations (107), (108), and (88) imply that
cF∗ = F∗c and c[F∗, C∗]C(F∗) = [F∗, C∗]C(F∗)c for each c ∈ C∗. Hence, [F∗, C∗]C(F∗) ⊆ F∗. Taking
H = F∗, we get the assertion of this theorem.

Corollary 2. Let the conditions of Theorem 8 be satisfied and D be generated by Cm(D) and at least two
elements d1, d2,... such that d1 6= e and [d2\e, d1\e] = e. Then, the smashed splitting extension C∗ can be
generated by C(F∗) and elements c1, c2,... such that dj\e ∈ F∗cj for each j.

Proof. We take d0 = d1 in the proof of Theorem 8; thus, c1 = (d1\e, e), c2 = (d2\e, f0), and cj = (dj\e, e)
for each j ≥ 3. Therefore Equations (66), (108), and (35) imply that

[c2, c1] = (e, p f0), where

p = ξ((d2\e, f0), (d1\e, e))ξ((d1, e), ((d2\e)(d1 \ e), f0))

ξ((e, e)/(d2\e, f0), (d2 \ e, ( f0)
2))/tF∗(e/ f0, f0, f0), (112)

since [d2\e, d1\e] = e and e/(d2\e) = d2. Thus, the submetagroup of C∗ which is generated by Cm(D)

and {cj : j} contains the metagroup D and (e, p f0). Therefore, the following set { f {d} : d ∈ D}C(F∗)
generates the central metagroup F∗, since V ⊂ D and { f {v} : v ∈ V}C(F∗) generate F∗. Notice that
Cm(D) ↪→ C(F∗). Hence, {cj : j}C(F∗) generates C∗.

Example 1. Assume that A is a unital algebra over a commutative associative unital ring F supplied with
a scalar involution a 7→ ā so that its norm N and trace T maps have values in F and fulfil conditions:

aā = N(a)1 with N(a) ∈ F, (113)

a + ā = T(a)1 with T(a) ∈ F, (114)
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T(ab) = T(ba) (115)

for each a and b in A.
We remind that, if a scalar f ∈ F satisfies the condition ∀a ∈ A f a = 0⇒ a = 0, then such element f is

called cancelable. For such a cancelable scalar f , the Cayley–Dickson doubling procedure induces a new algebra
C(A, f ) over F such that

C(A, f ) = A⊕ Al, (116)

(a + bl)(c + dl) = (ac− f d̄b) + (da + bc̄)l (117)

and
(a + bl) = ā− bl (118)

for each a and b in A. Such an element l is called a doubling generator. From Equations (113)–(115), it
follows that ∀a ∈ A, ∀b ∈ A T(a) = T(a + bl) and N(a + bl) = N(a) + f N(b). Apparently, the algebra
A is embedded into C(A, f ) as A 3 a 7→ (a, 0), where (a, b) = a + bl. It is put by induction An( f(n)) =

C(An−1, fn), where A0 = A, f1 = f , n = 1, 2, ..., and f(n) = ( f1, ..., fn). Then, An( f(n)) is a generalized
Cayley–Dickson algebra, when F is not a field, or a Cayley–Dickson algebra, when F is a field.

There is an algebra A∞( f ) :=
⋃∞

n=1 An( f(n)), where f = ( fn : n ∈ N). In the case of char(F) 6= 2,
let Im(z) = z− T(z)/2 be the imaginary part of a Cayley–Dickson number z and, hence, N(a) := N2(a, ā)/2,
where N2(a, b) := T(ab̄).

If the doubling procedure starts from A = F1 =: A0, then A1 = C(A, f1) is a ∗-extension of F. If A1

has a basis {1, u} over F with the multiplication table u2 = u + w, where w ∈ F and 4w + 1 6= 0, with the
involution 1̄ = 1, ū = 1− u, then A2 is the generalized quaternion algebra and A3 is the generalized octonion
(Cayley–Dickson) algebra.

Particularly, for F = R and fn = 1 for each n by Ar the real Cayley-Dickson algebra with generators
i0, ..., i2r−1 will be denoted such that i0 = 1, i2j = −1 for each j ≥ 1, and ijik = −ikij for each j 6= k ≥ 1.
Note that the Cayley–Dickson algebra Ar for each r ≥ 3 is nonassociative, for example, (i1i2)i4 = −i1(i2i4),
etc. Moreover, for each r ≥ 4, the Cayley–Dickson algebra Ar is nonalternative (see References [7,11,12]).
Frequently, ā is also denoted by a∗ or ã.

Then, Gr = {ij, − ij : j = 0, 1, ..., 2r − 1} is a finite metagroup for each 3 ≤ r < ∞. Equation (117) is
an example of the smashed product.

Then, one can take a Cayley–Dickson algebra An over a commutative associative unital ring R of
characteristic different from two such that A0 = R, n ≥ 2. There are basic generators i0, i1, ..., i2n−1,
where i0 = 1. Choose Ψ as a multiplicative subgroup contained in the ring R such that f j ∈ Ψ for each
j = 0, ..., n. Put Gn = {i0, i1, ..., i2n−1} × Ψ. Then, Gn is a central metagroup because, in this case, Ψ

is commutative.

Example 2. More generally, suppose that H is a group such that Ψ ⊂ H, with relations hik = ikh and
(hg)ik = h(gik) for each k = 0, 1, ..., 2n − 1 and each h and g in H. Then, Gn = {i0, i1, ..., i2n−1} × H is also
a metagroup. If the group H is noncommutative, then the latter metagroup can be noncentral (see the condition
of Equation (10) in Definition 1). Utilizing the notation of Example 1, we get that the Cayley–Dickson algebra
A∞ over the real field R with fn = 1 for each n provides a pattern of a metagroup G∞ = {ij, − ij : 0 ≤ j ∈ Z},
where Z denotes the ring of integers.

Example 3. Certainly, in general, metagroups need not be central. On the other hand, if a metagroup is
associative, then it is a group [1]. Apparently, each group is a metagroup also. For a group G, its associativity
evidently means that tG(a, b, c) = e [1].

From the given metagroups, new metagroups can be constructed using their direct, semidirect products,
smashed products, and smashed twisted wreath products. Therefore, there are abundant families of noncentral
metagroups and also of central metagroups different from groups.
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Equations (39), (46), (47), (85), (86), and (94)–(96) provide examples of metagroups with complicated
nonassociative noncommutative structures. The presented above theorems also permit to construct different
examples of nonassociative quasi-groups and loops.

5. Conclusions

The results of this article can be used for further studies of metagroups, quasi-groups, loops,
and noncommutative manifolds related with them. Besides applications of metagroups, loops,
and quasi-groups outlined in the introduction, it is interesting to mention possible applications
in mathematical coding theory and classification of information flows and their technological
implementations [28–30] because, frequently, codes are based on binary systems. Moreover, twisted
products are used for creating complicated codes [22]. In view of this, to study creating more
complicated codes with the help of smashed twisted products of metagroups, Equations (86)
and (94)–(96) provide additional options in the nonassociative case in comparison with the
associative case.

Wreath products of groups are used for studies of varieties [24], so it will be interesting to
investigate noncommutative varieties using metagroups. Then, twisted products are utilized for
investigations of Lie groups and semi-Riemann manifolds [23,25]. Therefore, we will study their
nonassociative metagroup analogs that can be used in noncommutative geometry and quantum field
theory [16,31–35] because Lie groups and manifolds are actively used in these areas.
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