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Abstract: This article is devoted to a class of nonassociative algebras with metagroup relations.
This class includes, in particular, generalized Cayley–Dickson algebras. The separability of the
nonassociative algebras with metagroup relations is investigated. For this purpose the cohomology
theory is utilized. Conditions are found under which such algebras are separable. Algebras satisfying
these conditions are described.
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1. Introduction

Associative separable algebras play an important role and have found many-sided application
(see, for example, [1–9] and references therein). Studies of their structure are based on cohomology
theory. On the other hand, cohomology theory of associative algebras was investigated by Hochschild
and other authors [10–13], but it is not applicable to nonassociative algebras. Cohomology theory of
group algebras is an important and great part of algebraic topology.

It is worth mentioning that nonassociative algebras with some identities in them found
many-sided applications in physics, noncommutative geometry, quantum field theory, partial
differential equations (PDEs) and other sciences (see [14–25] and references therein).

An extensive area of investigations of PDEs intersects with cohomologies and deformed
cohomologies [13]. Therefore, it is important to develop this area over octonions, generalized
Cayley–Dickson algebras and more general metagroup algebras (see also Appendix A). Some results
in this area are presented in [26]. The structure of metagroups, their construction and examples,
and smashed and twisted wreath products were studied and described in [26–28]. In particular, a class
of metagroup algebras contains a family of generalized Cayley–Dickson algebras and nonassociative
analogs of C∗ algebras.

For comparison it is worth noting that there are algebras with relations T induced by Jordan-type
or Lie-type homomorphisms in the sense of [29]. Their unified approach (UJLA) was studied in [22].
In those works the unital universal envelope UR(A) of a nonassociative algebra A with relations T was
considered, where R denotes an associative commutative unital ring. The algebra UR(A) is associative
and may be noncommutative. This theory is applicable to Lie algebras, alternative algebras, Jordan
algebras and UJLA fitting to algebras with relations T.

However, this technique is not applicable to the metagroup algebras studied in this article. Indeed,
there are several obstacles. The algebra UR(A) is associative and with it a lot of information about the
metagroup algebras is lost. A derivation functor cannot serve as a starting point for a construction
of a cohomology theory for the metagroup algebras. Moreover relations in metagroup algebras are
external to them and do not fit to the nonassociative algebras with relations T considered in [22,29].
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This article is devoted to a separability of nonassociative algebras with metagroup relations.
Conditions are found under which they are separable. Algebras satisfying these conditions are
described in Theorems 1–3.

All main results of this paper are obtained for the first time.

2. Separable Nonassociative Algebras

Nonassociative metagroups, their centers, metagroup algebras and modules over them were
defined in [26–28] (see also Appendix A). To avoid misunderstandings we also give specific necessary
definitions and notations.

Definition 1. Let Ψ be a (proper or improper) subgroup in the center C(G) of a metagroup G, let 1 denote a
unit in T , e be a unit in G and let

A be a nonassociative metagroup algebra over a commutative associative unital ring T such that

Ψ1 ⊆ (G1) ∩ T e, (1)

where (G1) ∪ T e ⊂ A, A = T [G] denotes a metagroup algebra.
A G-graded A-module P (also see Definition 3 in [26]) is called projective if it is isomorphic with a direct

summand of a free G-graded A-module. The metagroup algebra A is called separable if it is a projective G-graded
Ae-module.

One puts µ(z) = 1Az for each z ∈ Ae, where A is considered as the G-graded right Ae-module.

Proposition 1. Suppose that A is a nonassociative algebra satisfying condition (1). Then the following
conditions are equivalent:

A is separable (2)

the exact sequence
0→ Ker µ→ Ae −→µ A→ 0 splits (3)

an element b ∈ Ae exists such that µ(b) = 1A and xb = bx and b(xy) = (bx)y and (xb)y = x(by)
and (xy)b = x(yb) f or all x and y in A,

(4)

where Ae is considered as the G-graded two-sided A-module.

Proof. The implication (2)⇒ (3) is evident.
(3)⇒ (4). If the exact sequence (3) splits, then Ae as the Ae-module is isomorphic with A⊕ ker(µ),

where ⊕ denotes a direct sum. Therefore, A is separable. The sequence (3) splits if and only if
there exists p ∈ HomAe(A, Ae) such that µp = idA. With this homomorphism p put b = p(1A).
Then (xb)y = (xp(1A))y = p(x1A)y = p(x(1Ay)) = p((xy)1A) = (xy)b, hence µ(b) = µp(1A) = 1A
and xb = xp(1A) = p(x1A) = p(1Ax) = p(1A)x = bx. Thus (4) is valid.

(4)⇒ (2). Suppose that condition (4) is fulfilled. Then a mapping p : A→ Ae exists such that
p(x) = bx. The element b has the decomposition b = ∑j bjgj with gj = gj,1 ⊗ gj,2, where gj,1 ∈ G
and gj,2 ∈ Gop and bj ∈ T for each j. Therefore, using condition (4) above and conditions (1)–(3) in
Definition 3 in [26] we infer that

p(xy) = ∑
j

∑
k

∑
l

bjgj((ckxk)(dlyl)) = ∑
j

bj(gjx)y = (bx)y = p(x)y

and
p(yx) = (by)x = (yb)x = y(bx) = yp(x)
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for each x and y ∈ A, where x = ∑k ckxk and y = ∑l dlyl with xk and yl in G, ck and dl in T for each
k and l. Thus p ∈ HomAe(A, Ae). Moreover, µ(p(x)) = µ(bx) = µ(b)x = 1Ax = x for each x ∈ A,
consequently, the exact sequence (3) splits.

Definition 2. An element b ∈ Ae fulfilling condition (4) in Proposition 1 is called a separating idempotent of
an algebra A.

Lemma 1. Let A be a nonassociative algebra satisfying condition (1). Let also M be a two-sided A-module.

I f p ∈ HomAe(ker(µ), M) and κ : A→ Ae with κ(x) = x⊗ 1− 1⊗ x f or each x ∈ A, then pκ

is a derivation o f A with values in M.
(5)

A mapping χ : p 7→ pκ is an isomorphism o f HomAe(ker(µ), M) onto Z1
T (A, M). (6)

χ−1(B1
T (A, M)) = {ψ|ker(µ) : ψ ∈ HomAe(Ae, M)}. (7)

Proof. (5). Since µκ = 0, then Im(κ) ⊆ ker(µ). By virtue of Theorem 1 in [26] µκ is the derivation
having also properties (6) and (7).

Theorem 1. Suppose that A is a nontrivial nonassociative algebra satisfying condition (1). Then H1
T (A, M) =

0 for each two-sided A-module M if and only if A is a separable T -algebra.

Proof. In view of Proposition 1 the algebra A is separable if and only if the exact sequence (3) splits.
That is, a homomorphism h exists h ∈ HomAe(A, ker(µ)) such that its restriction h|ker(µ) is the identity
mapping. Therefore, if H1

T (A, ker(µ)) = 0, then the algebra A is separable due to Lemma 1.
Vice versa if a homomorphism h ∈ HomAe(Ae, ker(µ)) exists with h|ker(µ) = id, then each

p ∈ HomAe(ker(µ), M) has the form f |ker(µ) with f = ph ∈ HomAe(Ae, M). By virtue of Lemma 1
Z1
T (A, M) = B1

T (A, M) for each two-sided A-module M.

Theorem 2. Let a noncommutative algebra A fulfill condition (1) and

Dim(A/J(A)) ≤ 1 (8)

and A/J(A) is projective as the T -module (9)

and J(A)k = 0 f or some k ≥ 1, (10)

where J(A) denotes the radical of A.
Then a subalgebra D in A exists such that A = D⊕ J(A) as T -modules and A/J(A) is isomorphic with

D as the algebra.

Proof. For k = 1 we get A = D.
For k = 2 a natural projection π : A → A/J exists, where J = J(A) = rad(AA), since J2 = 0.

The algebra A is G-graded and T ⊆ Z(A), hence rad((Ae)Ae) ⊆ (rad(AA))e, where e is the unit
element of G. In view of conditions (1)–(3) in Definition 3 in [26] J is the two-sided ideal in A and
Jm
r = Jm

l for each positive integer m, where J1
l = J, J1

r = J, Jm+1
l = J Jm

l and Jm+1
r = Jm

r J. Condition (4)
in Definition 1 in [27] and conditions (1)–(3) in Definition 3 in [26] imply that A/J is also G-graded,
since T ⊂ Z(A).

By condition (9) the T -module A/J is projective, consequently, an exact splitting sequence of
T -modules exists

0→ J → A→ A/J → 0. (11)
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Thus a homomorphism κ : A/J → A of T -modules exists such that πκ = id on A/J. For any two
elements x and y in A/J we put

Φ(x, y) = κ(xy)− κ(x)κ(y) (12)

Therefore, we infer that

πΦ(x, y) = πκ(xy)− π(κ(x)κ(y)) = xy− xy = 0 (13)

since π is the algebra homomorphism and πκ = id. Thus Φ(x, y) ∈ ker(π) = J. One has by the
definition that

Dim(A/J) = sup{n : ∃ two-sided A/J-module M Hn
T (A/J, M) 6= 0} (14)

Then put ux = uκ(x) and xu = κ(x)u to be the right and left actions of A/J on J. Since κ is the
homomorphism of T -modules and T ⊆ Z(A), then for each pure states x, y and u we infer:

(xy)u− t3x(yu) = κ(xy)u− (κ(x)κ(y))u = Φ(x, y)u ∈ J2 = 0 (15)

where t3 = t3(x, y, u). Then we deduce that

u(xy)− t−1
3 (ux)y = uκ(xy)− u(κ(x)κ(y)) = uΦ(x, y) ∈ J2 = 0 (16)

where t3 = t3(u, x, y). Thus J has the structure of the two-sided A/J-module.
Evidently, Φ is T -bilinear. Then for every pure states x, y and z in A/J:

(δ2Φ)(x, y, z) = t3x(κ(yz)− κ(y)κ(z))− (κ((xy)z)− κ(xy)κ(z))+

t3(κ(x(yz))− κ(x)κ(yz))− (κ(xy)− κ(x)κ(y))z

= t3κ(x)κ(yz)− t3κ(x)(κ(y)κ(z))− κ((xy)z) + κ(xy)κ(z)

+t3κ(x(yz))− t3κ(x)κ(yz)− κ(xy)κ(z) + (κ(x)κ(y))κ(z) = 0 (17)

consequently, Φ ∈ B2
T (A/J, J), where t3 = t3(x, y, z). Thus by the T -linearity a homomorphism h in

HomT (A/J, J) exists possessing the property

Φ(x, y) = xh(y)− h(xy)− h(x)y (18)

for each x and y in A/J.
Let now p = κ + h ∈ HomT (A/J, J), consequently, πp = πκ = id|A/J , since π(J) = 0.

This implies that p(xy)− p(x)p(y) = 0 for each x and y in A/J, since κ(xy)− κ(x)κ(y) = Φ(x, y) =
xh(y)− h(xy) + h(x)y and h(x)h(y) ∈ J2 = 0. Since p(1A/J)− 1A ∈ J, then (p(1)− 1)2 = 1− p(1).
Therefore, p is the algebra homomorphism. This implies that D = Im(p) is the subalgebra in A such
that A = D⊕ J.

Let now k > 2 and this theorem is proven for 1, . . . , k − 1. Put A1 = A/J2, then J/J2 is the
two-sided ideal in A1 and A1/(J/J2) is isomorphic with A/J, also (J/J2)2 = 0. Thus J(A1) = J/J2

and A1 satisfies conditions (8)–(10) of this theorem and is G-graded, since A and J are G-graded and
T ⊂ Z(G) due to condition (4) in Definition 1 in [27] and conditions (1)–(3) in Definition 3 in [26].

From the proof for k = 2 we get that a subalgebra D1 in A1 exists such that A1 = D1 ⊕ J/J2.
Consider a subalgebra E in D such that E ∩ J = J2 and D1 = E/J2. Then E/J is isomorphic with
E/(E ∩ J) ≈ (E + J)/J = A/J. Moreover, (J2)k−1 = Jk+k−2 ⊆ Jk = 0, hence J(E) = J2. Thus the
algebra E fulfills conditions (8)–(10) of this theorem and is G-graded and J(E)k−1 = 0.

By the induction supposition a subalgebra F in E exists such that E = F ⊕ J2; consequently,
F + J = E + J = A and F ∩ J = F ∩ E ∩ J = F ∩ J2 = 0. Thus A = F⊕ J.
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Theorem 3. Suppose that conditions of Theorem 2 are satisfied and condition (8) takes the form
Dim(A/J(A)) = 0. Then for any two G-graded subalgebras B and C in A such that A = B ⊕ J(A)

and A = C⊕ J(A) an element v ∈ J(A) exists for which (1− v)C = B(1− v) such that (1− v) has a right
inverse and a left inverse.

Proof. Let q : A → B and r : A → C be the canonical projections induced by the decompositions
A = B ⊕ J and A = C ⊕ J, where J = J(A). Then pπ = q and sπ = r, where π : A → A/J is
the quotient homomorphism, p : A/J → A and s : A/J → C are homomorphisms as in the proof
of Theorem 2, since q and r are homomorphisms of algebras. We put w(x) = p(x)− s(x) for each
x ∈ A/J, w : A/J → J. Then we deduce that

π(wπ) = π(pπ)− π(sπ) = πq− πr = π(idA − r)− π(idA − q) = 0, (19)

since Im(idA − q) = Im(idA − r) = J = ker(π). Therefore, Im(w) = Im(wπ) ⊆ J, hence w ∈
HomT (A/J, J). Then we infer that

w(xy) = p(xy)− s(xy) =
p(x)(p(y)− s(y)) + (p(x)− s(x))s(y) = xw(y) + w(x)y

(20)

consequently, w is the derivation of the algebra A/J with values in the two-sided A-module A/J
(see also the proof of Theorem 2). Since Dim(A/J) = 0, then w is the inner derivation by Theorem 1
in [26]. Thus an element v ∈ J exists for which w(x) = xv− vx for each x ∈ A/J. This implies that
p(x)(1− v) = (1− v)s(x) for each x ∈ A/J. The element (1− v) has a right inverse and a left inverse,
since Jk = 0 implies vk

l = 0 and vk
r = 0, where v1

l = v, v1
r = v, vm+1

l = vvm
l and vm+1

r = vm
r v for each

positive integer m. Therefore,

B(1− v) = p(A/J)(1− v) = (1− v)s(A/J) = (1− v)C (21)

Remark 1. Definition 1 is natural. For example, if J is a commutative associative unital ring and S is a
subgroup in C(G), then T1 := J [S] is a commutative associative unital ring such that S1 ⊆ G1∩ T1e.

3. Conclusions

The results of this article can be used for further studies of nonassociative algebras, their structure,
cohomologies, algebraic geometry, PDEs, their applications in the sciences, etc. They also can serve
for investigations of extensions of nonassociative algebras, decompositions of algebras and modules,
and their morphisms. In particular, they can be applied to cohomologies of PDEs and solutions of
PDEs with boundary conditions which can have a practical importance [13,30].

Other applications are in mathematical coding theory, information flows analysis and their
technological implementations [31–34]. Indeed, frequently codes are based on binary systems and
algebras. On the other hand, metagroup relations are weaker than relations in groups. This means
that a code complexity can increase by using nonassociative algebras with metagroup relations in
comparison with group algebras or Lie algebras.

Besides applications of cohomologies outlined in the introduction they also can be used in
mathematical physics and quantum field theory [15].

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.
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Appendix A. Metagroups

Let G be a set with a single-valued binary operation (multiplication) G2 3 (a, b) 7→ ab ∈ G defined
on G satisfying the conditions:

for each a and b in G there is a unique x∈ G with ax = b (A1)

and a unique y ∈ G exists satisfying ya = b (A2)

which are denoted by
x = a \ b = Divl(a, b) and y = b/a = Divr(a, b) correspondingly,
there exists a neutral (i.e., unit) element eG = e ∈ G:

eg = ge = g for each g ∈ G. (A3)

The set of all elements h ∈ G commuting and associating with G:

Com(G) := {a ∈ G : ∀b ∈ G, ab = ba}, (A4)

Nl(G) := {a ∈ G : ∀b ∈ G, ∀c ∈ G, (ab)c = a(bc)}, (A5)

Nm(G) := {a ∈ G : ∀b ∈ G, ∀c ∈ G, (ba)c = b(ac)}, (A6)

Nr(G) := {a ∈ G : ∀b ∈ G, ∀c ∈ G, (bc)a = b(ca)}, (A7)

N(G) := Nl(G) ∩ Nm(G) ∩ Nr(G); (A8)

C(G) := Com(G) ∩ N(G) (A9)

is called the center C(G) of G.
We call G a metagroup if a set G possesses a single-valued binary operation and satisfies

conditions (A1)–(A3) and
(ab)c = t3(a, b, c)a(bc) (A10)

for each a, b and c in G, where t3(a, b, c) ∈ Ψ, Ψ ⊂ C(G); where t3 shortens a notation t3,G, where Ψ

denotes a (proper or improper) subgroup of C(G).
Then G will be called a central metagroup if in addition to (A10) it satisfies the condition:

ab = t2(a, b)ba (A11)

for each a and b in G, where t2(a, b) ∈ Ψ.
From conditions (1)–(3) in Definition 3 in [26] it follows that for each a and b in the metagroup

algebra A = T [G] and x in a (smashly G-graded) two-sided A-module M there may exist a
T -homomorphism P1(a, b, x) : M′ → M′′ of right T -modules M′ := a(bM) and M′′ := (ab)M such
that [P1(a, b, x)]a(bx) = (ab)x for chosen a, b and x. Similar homomorphisms P2(a, x, b) and P3(x, a, b)
may exist on a(Mb) and M(ab), respectively. Generally these homomorphisms P1(a, b, x), P2(a, x, b)
and P3(x, a, b) depend nontrivially on all variables a, b and x (see also Remark 1 in [26]). So they cannot
be realized by identities of Jordan-type or Lie-type or UJLA-type (see also the introduction).
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