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Abstract: Let E be any metrizable nuclear locally convex space and Ê the Pontryagin dual group of E.
Then the topological group Ê has the tubby torus (that is, the countably infinite product of copies of
the circle group) as a quotient group if and only if E does not have the weak topology. This extends
results in the literature related to the Banach–Mazur separable quotient problem.
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1. Introduction and Preliminaries

The Separable Quotient problem for Banach spaces has its roots in the 1930s and is due to
Stefan Banach and Stanisław Mazur. While a positive answer is known for various classes of Banach
spaces [1], such as reflexive Banach spaces, weakly compactly generated Banach spaces, and more
generally Banach-like spaces [2], the general problem remains unsolved.

Problem 1. (Separable quotient problem for Banach spaces) Does every infinite-dimensional Banach space
have a quotient Banach space which is separable and infinite-dimensional?

The following problem stated in [3] is also unsolved, but a negative answer to it would give a
negative answer to Problem 1.

Problem 2. Does every infinite-dimensional Banach space have a quotient topological group which is
homeomorphic to the countably infinite product, Rω, of copies of R?

This suggests another question which we have not seen mentioned in the literature. We state the
problem and answer it.

Question 1. Does every infinite-dimensional Banach space have a quotient topological space which is
homeomorphic to Rω?

Question 1 has a positive answer, although it uses very powerful machinery due to Toruńczyk. It is
known [4] that every infinite-dimensional Fréchet space F (that is, a complete metrizable locally convex
space) is homeomorphic to an infinite-dimensional Hilbert space H. So an infinite-dimensional Banach
space B (indeed an infinite-dimensional Fréchet space) is homeomorphic to an infinite-dimensional
Hilbert space H, which obviously has the infinite-dimensional separable Hilbert space `2 as a quotient.
Further, by the separable case of Toruńczyk’s theorem which is known as the Kadec–Anderson
theorem, the separable Fréchet space Rω is homeomorphic to `2, from which the positive answer to
Question 1 follows.
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Noting that Problem 2 remains open, it is natural to ask if every infinite-dimensional
Banach space has a quotient topological group which is a separable metrizable topological group
which is infinite-dimensional as a topological space. This was answered in the positive by
the following theorem.

Theorem 1. [5] Every locally convex space E, which has a subspace which is an infinite-dimensional Fréchet
space, has the tubby torus, Tω , as a quotient group, where T is the compact circle group. In particular, this is the
case if E is an infinite-dimensional Banach space.

We should mention the following result.

Theorem 2. [6] If E is any infinite-dimensional Fréchet space which is not a Banach space, then E has the
locally convex space Rω as a quotient vector space.

Corollary 1. If E is any infinite-dimensional Fréchet space which is not a Banach space, then E has the tubby
torus Tω as a quotient group.

One might suspect that every infinite-dimensional locally convex space has the tubby torus as
a quotient group. This is shown to be false in [5] for the free locally convex space ϕ on a countably
infinite discrete space. Indeed in [7] it is shown that if X is a countably infinite kω-space, then the free
topological vector space on X, which is a connected infinite-dimensional (in the topological sense)
topological group, does not have the tubby torus as a quotient group or even any infinite-dimensional
(in the topological sense) metrizable quotient group.

It was recently proved that free topological groups on infinite connected compact spaces also
have the tubby torus as a quotient group.

Theorem 3. [7] Let FG(X) and AG(X) be the Graev free topological group and the Graev free abelian topological
group, respectively, on an infinite connected compact Hausdorff space. Then the connected topological groups
FG(X) and AG(X) have the tubby torus Tω as a quotient group.

It follows from Theorem 2.5 of [3] that every non-metrizable connected locally compact abelian
group has the tubby torus as a quotient group. But as a connected locally compact abelian group
G is isomorphic as a topological group to the product Rn × K, for some non-negative integer n and
compact abelian group K, and Rn and all compact metrizable groups are separable, we see that if G is
non-separable then it is non-metrizable. So we obtain the following result as a consequence.

Theorem 4. Every non-separable connected locally compact abelian group has the tubby torus as a
quotient group.

As mentioned earlier, Problem 1 has been aswered for dual-like groups. In particular there is the
following powerful and beautiful theorem.

Theorem 5. [8] If B is the Banach space dual of any infinite-dimensional Banach space, then B has a separable
infinite-dimensional quotient Banach space.

Corollary 2. If B is the Banach space dual of any infinite-dimensional Banach space, then B has the tubby torus
as a quotient group.

Recall that if G is a (Hausdorff) abelian topological group, then we denote by Ĝ the group of all
continuous homomorphisms of G into the circle group T, where Ĝ has the compact-open topology.
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There is a natural homomorphism α : G → ̂̂G. The Pontryagin–van Kampen duality theorem is stated
below and a discussion and proof appear in [9,10].

Theorem 6. [9,10] If G is any locally compact abelian group then the map α is an isomorphism of topological

groups of G onto ̂̂G. Also, if H is a closed subgroup of the locally compact abelian group G, then Ĥ is a quotient
group of Ĝ, and if A is a quotient group of G, then Â is isomorphic as a topological group to a closed subgroup of

Ĝ. Further, the map α restricted to H is an isomorphism of topological groups of H onto the subgroup α(H) of ̂̂G.

The following is less well-known.
Let E be a locally convex space. As E is a topological group, the topological group Ê consisting of

all continuous group homomorphisms of E into T with the compact-open topology is a topological

group, as is ̂̂E. As mentioned above, there is a natural homomorphism of E into ̂̂E.

Theorem 7. [11] Proposition 15.2. Let E be a complete metrizable locally convex space (that is a Fréchet space).

Then α is an isomorphism of topological groups of E onto ̂̂E.

We note that Theorem 7 does not tell us whether, for example α restricted to a closed subgroup

H of E is an isomorphism of topological groups of H onto the subgroup α(H) of ̂̂E. In fact this is not
always true. §11 of [12] gives an example of a closed subgroup H of a Fréchet space E such that α

restricted to H is not an isomorphism of topological groups of H onto its image in ̂̂E. To see how badly
things can go “wrong”, we note Theorem 6.1 of [11]: Let E be a metrizable locally convex space. If E is
not a nuclear space, then it has a discrete subgroup H such that there are no non-trivial continuous
homomorphisms from span(H)/H into T, where span(H) denotes the linear span in E of H.

Theorem 5 leads us then to the natural question:

Problem 3. If E is any infinite-dimensional Fréchet space which does not have the weak topology and Ê is its
dual topological group, does Ê have the tubby torus as a quotient group? In particular, is this the case for E a
Banach space or a Schwartz space?

This question is open, however a positive answer is given for nuclear spaces in the next section.

2. The Main Result

Definition 1. A topological group G is said to be reflexive if the natural mapping α from G to ̂̂G is an
isomorphism of topological groups. The topological group G is said to be strongly reflexive if every closed
subgroup and every Hausdorff quotient group of G is reflexive.

Theorem 8. [12] (Theorem 20.35) Every complete metrizable nuclear locally convex space is strongly reflexive.

Proposition 1. [11] (Proposition 17.1(c)) Let H be a closed subgroup of a strongly reflexive topological group
G. Then Ĥ is isomorphic as a topological group to a quotient group of Ĝ.

Theorem 9. Let E be a metrizable nuclear locally convex space. Then Ê has the tubby torus Tω as a quotient
group if and only if E does not have the weak topology.

Proof. By Theorem 2 of [13], if H is a dense subgroup of the metrizable topogical group G, then Ĝ
is isomorphic as a topological group to Ĥ. So the dual group Ê of E is isomorphic as a topological
group to the dual group of the completion of E. So there is no loss of generality in assuming that E is
complete. Further, the completion of a metrizable nuclear locally convex space is a metrizable nuclear
locally convex space by Theorems 20.34 and 20.20 of [12].
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The theorem in [14] says that a locally convex space E has the weak topology if and only if every
discrete subgroup of E is finitely generated. However, its proof there gives rather more. Namely,
the locally convex space E does not have the weak topology if and only if E contains a discrete free
abelian subgroup S which is not finitely generated.

So if the metrizable nuclear locally convex space E does not have the weak topology, then it has a
subgroup S isomorphic as a topological group to a restricted direct product of Zi, i = 1, 2, . . . , n, . . . ,
where each Zi is isomorphic as a topological group to the discrete Z of integers. Noting §3 of [15],
we see that the dual group of this restricted direct product of Zi is the tubby torus Tω, and it then
follows from Theorem 8 and Proposition 1 that Ê has the tubby torus as a quotient group, as required.

On the other hand if the complete metrizable locally convex space E has the weak topology, then it
is isomorphic as a locally convex space to Rω . So its dual group Ê is isomorphic as a topological group
to the locally convex space ϕ. However, as mentioned earlier, it is proved in [5] (and generalized in [7]),
that ϕ does not have the tubby torus as a quotient group, which completes the proof.
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