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Abstract: In this paper, we study a problem of global optimization using common best proximity point
of a pair of multivalued mappings. First, we introduce a multivalued Banach-type contractive pair of
mappings and establish criteria for the existence of their common best proximity point. Next, we put
forward the concept of multivalued Kannan-type contractive pair and also the concept of weak
∆-property to determine the existence of common best proximity point for such a pair of maps.
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1. Preliminaries

Let (=, ρ) be a complete metric space and let CB(=) denote the class of all nonempty closed and
bounded subsets of the nonempty set =. For A,B ∈ CB(=), the function H : CB(=)× CB(=) →
[0,+∞) defined by

H(A,B) = max{sup
ξ∈B

∆(ξ,A), sup
δ∈A

∆(δ,B)},

where ∆(δ,B) = infξ∈B ρ(δ, ξ), is a metric on CB(=).
For any two non-empty subsetsA,B of the metric space (=, ρ), we shall use the following notations:

AB = {θ ∈ A : ρ(θ, ξ) = ρ(A,B) for some ξ ∈ B},

BA = {ξ ∈ B : ρ(θ, ξ) = ρ(A,B) for some θ ∈ A},

where ρ(A,B) = inf{ρ(θ, ξ) : θ ∈ A, ξ ∈ B}.
For A,B ∈ CB(=), we have

ρ(A,B) ≤ H(A,B).

θ ∈ = is said to be a best proximity point (BPP, in short) of the multivalued map Γ : = → CB(=)
if ∆(θ, Γθ) = ρ(A,B). υ ∈ = is called a fixed point of the multivalued map Γ : = → CB(=) if υ ∈ Γυ.
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Let Ψ, Ω : A → CB(B) be two multivalued maps. An element θ∗ ∈ A is said to be a common best
proximity point (CBPP, in short) of Ψ and Ω if and only if

∆(θ∗, Ψθ∗) = ρ(A,B) = ∆(θ∗, Ωθ∗).

Remark 1.

1. In the metric space (CB(=),H), θ ∈ = is a fixed point of Γ if and only if ∆(θ, Γθ) = 0. In general,
θ ∈ Γξ if and only if ∆(θ, Γξ) = 0 for any θ, ξ ∈ =.

2. For two closed sets A,B, when A∩ B 6= φ, we have ρ(A,B) = 0. In that case, a fixed point and a BPP
are identical.

3. The function ∆ is continuous in the sense that if θn → θ as n → +∞, then ∆(θn,A) → ∆(θ,A) as
n→ +∞ for any A ⊆ =.

4. A CBPP is an element at which the functions θ → ∆(θ, Ψθ) and θ → ∆(θ, Ωθ) achieve a global minimum,
for ∆(θ, Ψθ) ≥ ρ(A,B) and ∆(θ, Ωθ) ≥ ρ(A,B) for all θ ∈ A.

The following lemmas are significant in the present context.

Lemma 1 ([1,2]). Let (=, ρ) be a metric space and A,B ∈ CB(=). Then

1. ∆(θ,B) ≤ ρ(θ, γ) for any γ ∈ B and θ ∈ =;
2. ∆(θ,B) ≤ H(A,B) for any θ ∈ A.

Lemma 2 ([3]). Let A,B ∈ CB(=) and let θ ∈ A. If p > 0, then there exists ξ ∈ B such that

ρ(θ, ξ) ≤ H(A,B) + p.

In general, we may not obtain a point ξ ∈ B such that

ρ(θ, ξ) ≤ H(A,B).

But when B is compact, then such a point ξ exists, i.e., ρ(θ, ξ) ≤ H(A,B).

The notion of P-property was introduced by Sankar Raj [4]. Further, the idea of weak P
property was put forward by Zhang et al. [5] to improve the results of Caballero et al. [6] on
Geraghty-contractions.

Definition 1 ([4]). Let (=, ρ) be a metric space and A,B be two non-empty subsets of = such that AB 6= φ.
The pair (A,B) satisfies the P-property if and only if ρ(θ1, ξ1) = ρ(A,B) = ρ(θ2, ξ2) implies ρ(θ1, θ2) =

ρ(ξ1, ξ2), where θ1, θ2 ∈ AB and ξ1, ξ2 ∈ BA.

Definition 2 ([5]). Let (=, ρ) be a metric space and A,B be two non-empty subsets of = such that AB 6=
φ. The pair (A,B) satisfies the weak P-property if and only if ρ(θ1, ξ1) = ρ(A,B) = ρ(θ2, ξ2) implies
ρ(θ1, θ2) ≤ ρ(ξ1, ξ2), where θ1, θ2 ∈ A and ξ1, ξ2 ∈ B.

The following well known lemma will be used in the sequel.

Lemma 3. If {θn} is a sequence in a complete metric space (=, ρ) such that ρ(θn+1, θn) ≤ λρ(θn, θn−1) for
all n ∈ N, where λ ∈ (0, 1), then {θn} is a Cauchy sequence.

BPPs under different types of contractive conditions have been studied in [7–15]. Moreover, BPPs
for different kinds of multivalued mappings have been studied in [16–19]. Some more relevant works
may be found in [20–24].
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In this paper, we put forward the idea of multivalued Banach-type contractive pair
(MVBCP, in short) and with the help of weak P property, establish conditions under which such
a pair admits a CBPP. Next, we define the notion of weak ∆-property and a multivalued Kannan-type
contractive pair (MVKCP, in short) and prove an existence of CBPP result for that pair.

2. Common Best Proximity Point for MVBCP

In this section, first we define a MVBCP. The corresponding CBPP result follows.

Definition 3. Let (=, ρ) be a metric space and A,B be two non-empty subsets of =. The pair of mappings
Ψ, Ω : A → CB(B) is said to be a MVBCP if there exists τ ∈ [0, 1) such that

H(Ωθ, Ψξ) ≤ τρ(θ, ξ)

for all θ, ξ ∈ =.

Theorem 1. Let (=, ρ) be a complete metric space and A,B be two non-empty closed subsets of = such that
AB 6= φ and that the pair (A,B) satisfies the weak P-property. Let the pair of mappings Ψ, Ω : A → CB(B)
be a MVBCP such that Ψθ and Ωθ are compact for each θ ∈ A, and further Ψθ ⊆ BA and Ωθ ⊆ BA for all
θ ∈ AB . Then Ψ and Ω have a CBPP.

Proof. Fix θ0 ∈ AB and choose ξ0 ∈ Ωθ0 ⊆ BA. By the definition of BA, we choose θ1 ∈ AB such that

ρ(θ1, ξ0) = ρ(A,B). (1)

If ξ0 ∈ Ωθ1 ∩Ψθ1, then we have

ρ(A,B) ≤ ∆(θ1, Ψθ1) ≤ ρ(θ1, ξ0) = ρ(A,B), since ξ0 ∈ Ψθ1,

and
ρ(A,B) ≤ ∆(θ1, Ωθ1) ≤ ρ(θ1, ξ0) = ρ(A,B), since ξ0 ∈ Ωθ1.

Thus ρ(A,B) = ∆(θ1, Ψθ1) = ∆(θ1, Ωθ1), i.e., θ1 is a CBPP of Ψ and Ω. Therefore, assume that
ξ0 /∈ Ωθ1 ∩Ψθ1. Consider the case ξ0 /∈ Ψθ1.

Since Ψθ1 is compact, by Lemma 2 and the definition of MVBCP, there exist ξ1 ∈ Ψθ1 ⊆ BA and
τ ∈ [0, 1) such that

0 < ∆(ξ0, Ψθ1) < ρ(ξ0, ξ1) ≤ H(Ωθ0, Ψθ1) ≤ τρ(θ0, θ1). (2)

Since ξ1 ∈ BA, there exists θ2 ∈ AB such that

ρ(θ2, ξ1) = ρ(A,B). (3)

From (1), (3) and weak P-property, we have that

ρ(θ1, θ2) ≤ ρ(ξ0, ξ1). (4)

From (2) and (4), we have that

ρ(θ1, θ2) ≤ ρ(ξ0, ξ1) ≤ τρ(θ0, θ1). (5)

If ξ1 ∈ Ωθ2 ∩Ψθ2, then like earlier we can show that θ2 is a CBPP of Ω and Ψ. Thus assume that
ξ1 /∈ Ωθ2 ∩Ψθ2. Consider the case ξ1 /∈ Ωθ2. Since Ωθ2 is compact, there exists ξ2 ∈ Ωθ2 such that
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0 < ∆(ξ1, Ωθ2) < ρ(ξ1, ξ2) ≤ H(Ωθ2, Ψθ1)

≤ τρ(θ1, θ2). (6)

Since ξ2 ∈ Ωθ2 ⊆ BA, there exists θ3 ∈ AB such that

ρ(θ3, ξ2) = ρ(A,B). (7)

From (3), (7) and weak P-property, we have that

ρ(θ2, θ3) ≤ ρ(ξ1, ξ2). (8)

Also, from (5) and (6),

ρ(ξ1, ξ2) ≤ τρ(ξ0, ξ1). (9)

Continuing in this way, we obtain two sequences {θn} and {ξn} in AB and BA respectively,
satisfying

(B1) ξ2n ∈ Ωθ2n ⊆ BA and ξ2n+1 ∈ Ψθ2n+1 ⊆ BA,
(B2) ρ(θn+1, ξn) = ρ(A,B),
(B3) ρ(θn, θn+1) ≤ τρ(θn−1, θn) and ρ(ξn, ξn+1) ≤ τρ(ξn−1, ξn),
for each n = 0, 1, 2, . . ..
From (B3) and Lemma 3, we observe that {θn} and {ξn} both are Cauchy sequences.

Since A and B are closed subsets of a complete metric space, we conclude that A and B both
are complete subspaces.

Hence, there exists θ ∈ A and ξ ∈ B such that θn → θ and ξn → ξ as n→ +∞.
We claim that Ωθn converges to Ωθ. Indeed, if m > n, then

H(Ωθn, Ωθ) ≤ H(Ωθn, Ψθm) +H(Ψθm, Ωθ)

≤ τ[ρ(θn, θm) + ρ(θm, θ)]

→ 0 as n→ +∞.

Similarly, we can show that Ψθn converges to Ψθ.
From (B2) we have that

ρ(θn+1, ξn) = ρ(A,B)

for each n = 0, 1, 2, . . ..
This implies

lim
n→+∞

ρ(θn+1, ξn) = ρ(θ, ξ) = ρ(A,B). (10)

Again, we claim that ξ ∈ Ωθ ∩Ψθ. Since ξ2n ∈ Ωθ2n, we have

lim
n→+∞

∆(ξ2n, Ωθ) ≤ lim
n→+∞

H(Ωθ2n, Ωθ) = 0, (since Ωθn converges to Ωθ)

=⇒ ∆(ξ, Ωθ) = 0.

Hence ξ ∈ Ωθ.
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Also since ξ2n+1 ∈ Ψθ2n+1, we have

lim
n→+∞

∆(ξ2n+1, Ψθ) ≤ lim
n→+∞

H(Ψθ2n+1, Ψθ) = 0, (since Ψθn converges to Ψθ)

=⇒ ∆(ξ, Ψθ) = 0.

Hence ξ ∈ Ψθ. Therefore,

ξ ∈ Ωθ ∩Ψθ. (11)

Finally, using (10) and (11) we have that

ρ(A,B) ≤ ∆(θ, Ψθ) ≤ ρ(θ, ξ) = ρ(A,B)
=⇒ ∆(θ, Ψθ) = ρ(A,B),

and

ρ(A,B) ≤ ∆(θ, Ωθ) ≤ ρ(θ, ξ) = ρ(A,B)
=⇒ ∆(θ, Ωθ) = ρ(A,B),

Hence θ is a CBPP of Ω and Ψ.

Next, we present an example in which the pair (A,B) satisfies only the weak P-property but not
the P-property.

Example 1. Consider= = R2 with the Euclidean metric ρ. LetA = {(−5, 0), (0, 1), (5, 0)} and B = {(θ, ξ) :
ξ = 2 +

√
2− θ2, θ ∈ [−

√
2,
√

2]}. Then ρ(A,B) =
√

3 and AB = {(0, 1)}, BA = {(
√

2, 2), (−
√

2, 2)}.
Define a pair of multivalued maps Ω, Ψ : A → CB(B) in the following manner:

Ω(−5, 0) = {(0, 2 +
√

2)}, Ω(0, 1) = {(−
√

2, 2), (0, 2 +
√

2)}, Ω(5, 0) = {(−1, 3), (1, 3)},

and
Ψ(−5, 0) = {(−

√
2, 2), (−1, 3)}, Ψ(0, 1) = {(

√
2, 2)}, Ψ(5, 0) = {(

√
2, 2), (1, 3)}.

By routine calculations, it is easy to check that the condition

H(Ωθ, Ψξ) ≤ τρ(θ, ξ)

is satisfied for all θ, ξ ∈ = and for τ = 19
20 ∈ [0, 1).

Thus the pair Ψ, Ω is a MVBCP.
Finally, we observe that

ρ((0, 1), (
√

2, 2)) = ρ((0, 1), (−
√

2, 2)) =
√

3 = ρ(A,B),

but
ρ((0, 1), (0, 1)) = 0 < ρ((

√
2, 2), (−

√
2, 2)) = 2

√
2.

Thus, (A,B) satisfies weak P-property, but not the P-property. Therefore, all conditions of Theorem 1
are satisfied and since ∆((0, 1), Ψ(0, 1)) = ∆((0, 1), Ω(0, 1)) =

√
3 = ρ(A,B), we conclude that (0, 1) is a

CBPP of Ψ and Ω.

3. Common Best Proximity Point for MVKCP

In this section, we define the concepts of weak ∆-property and a MVKCP. Combining these two
concepts, we establish a CBPP result.
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Definition 4. Consider the metric space (CB(=),H) and let A,B be two non-empty subsets in CB(=) such
thatAB 6= φ. The pair (A,B) is said to have the weak ∆-property if and only if ∆(θ,U ) = ρ(A,B) = ∆(ξ,V))
implies ρ(θ, ξ) ≤ H(U ,V), for all θ, ξ ∈ AB and U ,V ⊆ BA.

Definition 5. Let (=, ρ) be a metric space and A,B be two non-empty subsets of =. The pair of mappings
Ψ, Ω : A → CB(B) (Ψ and Ω may be identical) is said to be a multivalued Kannan-type contractive pair
(MVKCP, in short) if there exists λ ∈ [0, 1) such that

H(Ωθ, Ψξ) ≤ λ

2
[∆(θ, Ωθ) + ∆(ξ, Ψξ)− 2ρ(A,B)] (12)

for all θ, ξ ∈ =.

Remark 2. If Ψ, Ω is an MVKCP, the condition (12) is satisfied when Ψ = Ω as well.

Definition 6 ([25]). Let (=, ρ) be a metric space and R be a self-map on =. R is said to be a Kannan mapping
if there exists 0 ≤ λ < 1

2 such that

ρ(Rθ, Rξ) ≤ λ{ρ(θ, Rθ) + ρ(ξ, Rξ)},

for all θ, ξ ∈ =.

Remark 3. If (=, ρ) is a complete metric space, then a Kannan mapping on = possesses a unique fixed point.

Now we present the main result of this section.

Theorem 2. Let (=, ρ) be a complete metric space and A,B be two non-empty closed subsets of = such that
AB 6= φ and that the pair (A,B) satisfies the weak ∆-property. Let the pair of mappings Ψ, Ω : A → CB(B)
be a MVKCP such that Ψθ ⊆ BA and Ωθ ⊆ BA for all θ ∈ AB. Then Ψ and Ω have a CBPP.

Proof. Define the map Γ : Ω(AB)→ AB by

Γ(S) = {θ ∈ AB : ∆(θ, S) = ρ(A,B)}, (13)

for all S ∈ AB. The map Γ is well defined, for if Γ(S) = θ1 and Γ(S) = θ2, then ∆(θ1, S) = ρ(A,B) and
∆(θ2, S) = ρ(A,B). By weak ∆-property, we have ρ(θ1, θ2) ≤ H(S, S) = 0, i.e., θ1 = θ2.

From (13), we have ∆(Γ(Ωθ), Ωθ) = ρ(A,B) and ∆(Γ(Ωξ), Ωξ) = ρ(A,B) for any θ, ξ ∈ AB.
Again, using the weak ∆-property, we have

ρ(Γ(Ωθ), Γ(Ωξ)) ≤ H(Ωθ, Ωξ)

≤ λ

2
[∆(θ, Ωθ) + ∆(ξ, Ωξ)− 2ρ(A,B)]

≤ λ

2
[ρ(θ, Γ(Ωθ)) + ∆(Γ(Ωθ), Ωθ) + ρ(ξ, Γ(Ωξ)) + ∆(Γ(Ωξ), Ωξ)− 2ρ(A,B)]

=
λ

2
[ρ(θ, Γ(Ωθ)) + ρ(ξ, Γ(Ωξ))− 2ρ(A,B)],

for any θ, ξ ∈ AB and λ ∈ [0, 1).
It means that the composition map ΓoΩ : AB → AB is a Kannan map from AB to itself, which is a

complete metric space.
Thus, ΓoΩ has a unique fixed point θ1, i.e., ΓoΩ(θ1) = θ1 ∈ AB , which implies

that ∆(θ1, Ω(θ1)) = ρ(A,B).
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Similarly, we can define Π : Ψ(AB) → AB and obtain a unique fixed point θ2 of ΠoΨ and
consequently ∆(θ2, Ψ(θ2)) = ρ(A,B).

Using the weak ∆-property, we have that

ρ(θ1, θ2) ≤ H(Ωθ1, Ψθ2)

≤ λ

2
[∆(θ1, Ωθ1) + ∆(θ2, Ψθ2)− 2ρ(A,B)]

= 0,

which implies that θ1 = θ2 = θ (say).
Therefore, ∆(θ, Ω(θ)) = ∆(θ, Ψ(θ)) = ρ(A,B). Thus θ is a CBPP of Ω and Ψ.

4. Conclusions

The concepts of MVBCP, MVKCP and weak ∆-property have been introduced in this paper. Using
weak P-property, a CBPP result has been proved for a MVBCP and using the weak ∆-property, a similar
result has been established for a MVKCP. The current study is interesting because the proof of our
main theorem in Section 2 provides us with a scheme on how to find a CBPP for two multivalued maps.
An application of the same has also been discussed in Example 1.
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