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Abstract: Let (Ω,F , µ) be a complete probability space, E a separable Banach space and E′ the
topological dual vector space of E. We present some compactness results in L1

E′ [E], the Banach space
of weak*-scalarly integrable E′-valued functions. As well we extend the classical theorem of Komlós
to the bounded sequences in L1

E′ [E].
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1. Introduction

In their 2001 paper, Benabdellah and Castaing [1] established that the Ülger–Diestel–Ruess–
Shachermayer characterization for weak compactness in L1

E(µ) can be extended to L1
E′ [E]. In addition,

they gave several results on weak compactness and conditionally weak compactness in L1
E′ [E].

These results are not standard and rely on a Talagrand decomposition type theorems for bounded
sequences in L1

E′ [E]. Moreover, this paper paved the way for many researchers to exploit and establish
further interesting results in this space (see [2–4]).

In this paper, we aim to present some compactness results in L1
E′ [E] and a Komlós theorem in

L1
E′ [E]. More precisely, we will give in the first part a decomposition theorem for a bounded sequence

in L1
E′ [E] (Theorem 2 (i)) and a Komlós-type result for the weak* convergence in E′ (Theorem 2 (ii)).

This will allow us to state a criterion for the σ(L1
E′ [E] , L∞

E (µ)) compactness in L1
E′ [E] (Theorem 3).

In the second part we give a result on weak compactness in L1
E′ [E] (Theorem 4 (jj)) in terms of a Komlós

theorem for the weak convergence in E′ (Theorem 4 (j)). Corollary 1 provides a compactness criterion
in L1

E′ [E], which generalizes Proposition 5.1 in [1]. In this paper, we have established a Komlós theorem
in L1

E′ [E] and used it to give some weak convergence results. Other works have followed a similar
approch in different function spaces, such as the space of Bochner integrable functions and the space
of Pettis integrable functions (see [5–7]).

2. Notations and Preliminaries

Throughout this paper the triple (Ω,F , µ) is a complete probability space, E is a separable Banach
space and E′ is its topological dual. The weak topology σ(E′, E′′) (resp. the weak* topology σ(E′, E))
on E′ will be referred to by the symbol “w” (resp. w*). A mapping f : Ω → E′ is w*-measurable,
if for any x ∈ E, the function 〈 f , x〉 : ω 7→ 〈 f (ω), x〉 is F -measurable. Two w*-measurable mappings f
and g are said to be equivalent (shortly f ≡ g(w∗)) iff 〈 f , x〉 = 〈g, x〉 µ-a.e ∀x ∈ E. Let L1

E(µ) denotes
the set of all (equivalence classes of) Bochner integrable E-valued functions [8], recall that (see [9])
the dual of L1

E(µ) is the (quotient) space L∞
E′ [E] of w*-measurable bounded functions from Ω into

E′. Now, according to [4], the set L1
E′(Ω,F , µ, [E]), in short L1

E′ [E], denotes the (quotient) space of
all w*-measurable mappings f : Ω → E′, such that ω 7→ 〈 f (ω), x〉 is integrable ∀x ∈ E and ‖ f (.)‖E′

belongs to L1
R(µ), and the mapping

Axioms 2020, 9, 112; doi:10.3390/axioms9030112 www.mdpi.com/journal/axioms

http://www.mdpi.com/journal/axioms
http://www.mdpi.com
http://www.mdpi.com/2075-1680/9/3/112?type=check_update&version=1
http://dx.doi.org/10.3390/axioms9030112
http://www.mdpi.com/journal/axioms


Axioms 2020, 9, 112 2 of 8

N1( f ) =
∫

Ω
‖ f ‖ dµ, f ∈ L1

E′ [E]

defines a norm in L1
E′ [E]. Furthermore, the set L∞

E (µ) of all (equivalence classes of) µ-measurable
essentially bounded functions with value in E is included in the topological dual of L1

E′ [E] and the
mapping f 7→ N1( f ) is lower semicontinuous on L1

E′ [E] for the topology σ(L1
E′ [E] , L∞

E (µ)).
In addition, recall that (L1

E′ [E] , N1) is a Banach space ([1], Proposition 3.4) and that a subset K of
L1

E′ [E] is uniformly integrable (briefly UI) if the set {‖ f ‖; f ∈ K} is UI in L1
R(µ) ([1], Definition 4.2).

A subset K of L1
R(µ) is UI if

lim
t→∞

sup
f∈K

∫
{| f |≥t}

| f | dµ = 0.

Note that every UI subset of L1
E′ [E] is N1-bounded.

Finally let us recall the notion of the K-convergence [5]. Let ( fn)n∈N a sequence from Ω to E′ and F
be a subset of E′′. We say that ( fn)n∈N is σ(E′, F)-K converge almost everywhere on Ω to a function f if
for every subsequence ( f ′n)n∈N of ( fn)n∈N there exists a null set N ∈ F , such that for every ω ∈ Ω\N

∀ x ∈ F, 〈x,
1
n

n

∑
i=1

f ′i (ω)〉 → 〈x, f (ω)〉.

A well-known theorem of Komlós is as follows:

Theorem 1 ([10]). Every bounded sequence in L1
R(µ) has a subsequence which K-converges a.e. to a real

integrable function.

For some K-convergence results in infinite dimension we can see [11–15], and for more details
and results on L1

E′ [E], we refer to [1–4,9].

3. Main Results

We begin by recalling the following result ([16], Lemma 4.1) which is important for the
development of the work.

Lemma 1. Let ( fn)n∈N be a bounded sequence in L1
E(µ). Then, there exists a subsequence (gn)n∈N of ( fn)n∈N,

such that for every subsequence (hn)n∈N of (gn)n∈N

(a) The sequence (1{‖hn‖<n}hn)n∈N is uniformly integrable;
(b) The sequence (hn − 1{‖hn‖<n}hn)n∈N converges a.e to 0 in E.

Let ( fn)n∈N be a bounded sequence in L1
E′ [E], as the sequence (‖ fn‖)n∈N is bounded in L1

R(µ),
by Lemma 1 there exists a subsequence (‖gn‖)n∈N of (‖ fn‖)n∈N, such that (1{‖hn‖<n}‖hn‖)n∈N is UI
and (‖hn‖ − 1{‖hn‖<n}‖hn‖)n∈N converges a.e to 0 in R for each subsequence (‖hn‖)n∈N. Then, we can
see that the sequences (gn)n∈N and (hn)n∈N have the required properties of the next lemma.

Lemma 2. Let ( fn)n∈N be a bounded sequence in L1
E′ [E]. Then there exists a subsequence (gn)n∈N of ( fn)n∈N,

such that for every subsequence (hn)n∈N of (gn)n∈N

(a’) The sequence (1{‖hn‖<n}hn)n∈N is uniformly integrable;
(b’) The sequence (hn − 1{‖hn‖<n}hn)n∈N converges a.e to 0 in E′.

The following simple result is useful.

Lemma 3. Every bounded set in L∞
E′ [E] is sequentially relatively compact for the topology σ(L∞

E′ [E] , L∞
E (µ)).
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Proof. Let H be a bounded set in L∞
E′ [E] = (L1

E(µ))
′, by the Banach–Alaoglu theorem H is relatively

compact for the topology σ(L∞
E′ [E] , L1

E(µ)). As L1
E(µ) is separable because E it is, H is sequentially

relatively compact for the topology σ(L∞
E′ [E] , L1

E(µ)), and since L∞
E (µ) is a subspace of L1

E(µ),
we deduce that H is σ(L∞

E′ [E] , L∞
E (µ))-sequentially relatively compact.

Lemma 4. Let ( fn)n∈N be a sequence of L1
E′ [E] which converges σ(L1

E′ [E] , L∞
E (µ)) to a function f ∈ L1

E′ [E].
Then, there exists an integer m such that

N1( f ) ≤ 2 inf
n≥m

N1( fn).

Proof. As the mapping N1 is lower semicontinuous on L1
E′ [E] for the topology σ(L1

E′ [E] , L∞
E (µ)),

we have N1( f ) ≤ lim
n

inf N1( fn). If lim
n

inf N1( fn) = 0, then the result is obvious. Now, if

lim
n

inf N1( fn) > 0, we have

N1( f ) < 2 lim
n

inf N1( fn) = sup
m≥1

2 inf
n≥m

N1( fn).

Hence there exists m ∈ N∗, satisfying the inequality.

Now we are able to state our first main result of this paper.

Theorem 2. Let ( fn)n∈N be a bounded sequence in L1
E′ [E]. Then, there exists a function f in L1

E′ [E] and a
subsequence (gn)n∈N of ( fn)n∈N such that for every subsequence (hn)n∈N of (gn)n∈N the following holds

(i) (1{‖hn‖<n}h)n∈N converges σ(L1
E′ [E] , L∞

E (µ)) to f in L1
E′ [E] and (hn − 1{‖hn‖<n}h)n∈N converges a.e.

to 0 in E′;

(ii) ( 1
n

n
∑

i=1
hi)n∈N w*-converges a.e. to f .

Proof. (i) We have ‖1{‖ fn‖<k} fn‖L∞
E′ [E]
≤ k for all (k, n) ∈ (N∗)2. For k = 1, there exists by Lemma 3 a

subsequence ( f 1
n)n∈N of ( fn)n∈N, such that the sequence (1{‖ f 1

n‖<1} f 1
n)n∈N converges σ(L∞

E′ [E] , L∞
E (µ))

to v1 ∈ L∞
E′ [E] and there exists for all k ≥ 1 a subsequence ( f k+1

n )n∈N of ( f k
n)n∈N, such that the sequence

(1{‖ f k+1
n ‖<k+1} f k+1

n )n∈N converges σ(L∞
E′ [E] , L∞

E (µ)) to vk+1 in L∞
E′ [E]. Let f ′n = f n

n (n ≥ 1), then, for

every k ≥ 1, the sequence (1{‖ f ′n‖<k} f ′n)n∈N converges σ(L∞
E′ [E] , L∞

E (µ)) to vk in L∞
E′ [E].

Claim: (vk)k∈N converges to a function f in L1
E′ [E].

Put v0 = 0, as (L1
E′ [E] , N1) is a Banach space, it is enough to prove that the series ∑

k≥1
N1(vk− vk−1)

converges. For every k ≥ 1, the sequence (1{‖ f ′n‖<k} f ′n− 1{‖ f ′n‖<k−1} f ′n)n∈N converges σ(L∞
E′ [E] , L∞

E (µ))

to (vk − vk−1) in L∞
E′ [E] and, therefore, also in L1

E′ [E] for the topology σ(L1
E′ [E] , L∞

E (µ)). By Lemma 4,
there exists mk ∈ N∗, such that

N1(vk − vk−1) ≤ 2 inf
n≥mk

N1(1{‖ f ′n‖<k} f ′n − 1{‖ f ′n‖<k−1} f ′n).

Let N ∈ N∗ and n ≥ max(m1, .., mN). Then we have
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N

∑
k=1

N1(vk − vk−1) ≤ 2
N

∑
k=1

N1(1{‖ f ′n‖<k} f ′n − 1{‖ f ′n‖<k−1} f ′n)

= 2
N

∑
k=1

∫
‖1{‖ f ′n‖<k} f ′n − 1{‖ f ′n‖<k−1} f ′n)‖ dµ

≤ 2
∫
‖ f ′n‖ dµ

≤ 2 sup
p≥1

N1( f ′p) < +∞

and therefore
+∞
∑

k=1
N1(vk − vk−1) < +∞. This proves the Claim.

Now applying Lemma 2 to ( f ′n)n∈N we get a subsequence ( f ′′n )n∈N of ( f ′n)n∈N such that for every
subsequence (hn)n∈N of ( f ′′n )n∈N

(1{‖hn‖<n}hn)n∈N is UI, (1)

(hn − 1{‖hn‖<n}hn)n∈N converges a.e. to 0 in E′. (2)

It remains to show that (1{‖hn‖<n}hn)n∈N converges σ(L1
E′ [E] , L∞

E (µ)) to f in L1
E′ [E]. Let us

consider ζ ∈ L∞
E (µ) with norm ≤ 1 and ε > 0. By (1) and the convergence of (vk)k∈N to f in L1

E′ [E],
there exists n0 ∈ N, such that

sup
n

∫
{‖1{‖hn‖<n}hn‖≥n0}

‖1{‖hn‖<n}hn‖dµ = sup
n

N1(1{‖hn‖<n}hn − 1{‖hn‖<n0}hn) ≤
ε

3

and

N1(vn0 − f ) ≤ ε

3
.

As (1{‖hn‖<n0}hn)n∈N converges σ(L1
E′ [E] , L∞

E (µ)) to vn0 in L1
E′ [E], there exists n1 ≥ n0 such that

n ≥ n1 ⇒
〈

ζ, 1{‖hn‖<n0}hn − vn0

〉
≤ ε

3
.

Then, for n ≥ n1 we have〈
ζ, 1{‖hn‖<n}hn − f

〉
≤
〈

ζ, 1{‖hn‖<n}hn − 1{‖hn‖<n0}hn

〉
+
〈

ζ, 1{‖hn‖<n0}hn − vn0

〉
+ 〈ζ, vn0 − f 〉

≤ N1(1{‖hn‖<n}hn − 1{‖hn‖<n0}hn)

+
〈

ζ, 1{‖hn‖<n0}hn − vn0

〉
+ N1(vn0 − f )

≤ ε.

(ii) It is sufficient to show that there is a subsequence (gn)n∈N of ( f ′′n )n∈N, such that ( 1
n

n
∑

i=1
hi)n∈N

w*-converges a.e. to f for every subsequence (hn)n∈N of (gn)n∈N. With E being separable, let D =

(xj)j∈N∗ , a norm-dense sequence in E. The sequences (‖ f ′′n (.)‖)n∈N and (〈 f ′′n , xj〉)n∈N j = 1, 2, .... are
bounded in L1

R(µ), so we apply Komlós’ theorem to suitably chosen sequences and a diagonal method
to get functions ϕ0,ϕ1,ϕ2,...,ϕj, ... in L1

R(µ) and a subsequence (gn)n∈N of ( f ′′n )n∈N, such that for every
subsequence (hn)n∈N of (gn)n∈N
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1
n

n

∑
i=1
‖hi(ω)‖ → ϕ0(ω) a.e., (3)

∀ j ∈ N∗, 1
n

n

∑
i=1
〈hi(ω), xj〉 → ϕj(ω) a.e. (4)

Let (hn)n∈N be a fixed subsequence of (gn)n∈N. By (2) and the decomposition 1{‖hn‖<n}hn =

hn − (hn − 1{‖hn‖<n}hn) we get

∀ j ∈ N∗, 1
n

n

∑
i=1
〈1{‖hi‖<i}hi(ω), xj〉 → ϕj(ω) a.e. (5)

As (〈1{‖hn‖<n}hn, xj〉)n∈N is UI for each j ∈ N∗, it follows by (5) and the Lebesgue–Vitali’s theorem
that for each A ∈ F

∀ j ∈ N∗, 1
n

n

∑
i=1

∫
A
〈1{‖hi‖<i}hi, xj〉 dµ→

∫
A

ϕj dµ. (6)

On the other hand, by (i)

∀l ∈ L∞
E (µ),

1
n

n

∑
i=1

∫
A
〈1{‖hi‖<i}hi, l〉 dµ→

∫
Ω
〈 f , l〉 dµ, (7)

so in particular for each A ∈ F and xj ∈ D we have

1
n

n

∑
i=1

∫
A
〈1{‖hi‖<i}hi, xj〉 dµ→

∫
A
〈 f , xj〉 dµ, (8)

then by (6) and (8) we get

∀ j ∈ N∗, ϕj(ω) = 〈 f (ω), xj〉 a.e. (9)

and therefore by (4)

∀ j ∈ N∗, 〈 1
n

n

∑
i=1

hi(ω), xj〉 → 〈 f (ω), xj〉 a.e. (10)

Finally, by (3), ( 1
n

n
∑

i=1
hi(.))n∈N is pointwise bounded a.e.; this, along with the density of D, yields

∀ x ∈ E, 〈 1
n

n

∑
i=1

hi(ω), x〉 → 〈 f (ω), x〉 a.e.

So the proof is complete.

An immediate application of Theorem 1, we have the following criteria for σ(L1
E′ [E] , L∞

E (µ))

compactness in L1
E′ [E], which generalizes Lemma 3.

Theorem 3. Every uniformly integrable set in L1
E′ [E] is sequentially relatively compact for the topology

σ(L1
E′ [E] , L∞

E (µ)).

Proof. Let H be an UI set in L1
E′ [E] and ( fn)n∈N a sequence in H. As ( fn)n∈N is bounded, by Theorem 1

(i) there is a function f in L1
E′ [E] and a subsequence (hn)n∈N of ( fn)n∈N, such that (1{‖hn‖<n}hn)n∈N

converges σ(L1
E′ [E] , L∞

E (µ)) to f in L1
E′ [E] and (1{‖hn‖≥n}hn)n∈N converges a.e. to 0 in E′. As (hn)n∈N is

UI, (1{‖hn‖≥n}hn)n∈N converges strongly to 0 in L1
E′ [E] and hence (hn)n∈N converges σ(L1

E′ [E] , L∞
E (µ))

to f in L1
E′ [E]. Then H is σ(L1

E′ [E] , L∞
E (µ))-sequentially relatively compact.
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It is well known that the Komlós type results can be used to develop weak compactness criteria in
L1

E(µ). Using this argument, we now provide some weak compactness results in L1
E′ [E].

Lemma 5. Let ( fn)n∈N be a uniformly integrable sequence in L1
E′ [E]. Assume that ( fn)n∈N is w-K-converge

a.e. to a function f , then ( fn)n∈N converges weakly to f in L1
E′ [E].

Proof. By a general criterion for weak convergence sequence in Banach space ([17], Corollary 2) it is
enough to prove that for every subsequence ( f ′n)n∈N of ( fn)n∈N there exist gn ∈ co

{
f ′i : i ≥ n

}
which

weakly converges to f in L1
E′ [E]. Let ( f ′n)n∈N be a subsequence of ( fn)n∈N, by the hypothesis

1
n

n

∑
i=1

f ′i (ω)→ f (ω) weakly in E′ a.e.

so the sequence (gn)n∈N defined by gn = 1
n+1

2n
∑

i=n
f ′i ∈ co

{
f ′i : i ≥ n

}
and

gn =
2n

n + 1
1

2n

2n

∑
i=1

f ′i −
n− 1
n + 1

1
n− 1

n−1

∑
i=1

f ′i

w-converges a.e. to f . On the other hand (gn)n∈N is UI in L1
E′ [E], hence by ([1], Theorem 4.5) it

converges weakly to f in L1
E′ [E].

The next result is a different version of Theorem 1, which deals with the weak convergence.
Recall that Rwc(E′) denoted the set of nonempty closed convex subsets of E′, such that their
intersection with any closed ball is weakly compact.

Theorem 4. Let ( fn)n∈N be a bounded sequence in L1
E′ [E]. Suppose that there exist a Rwc(E′)-valued

multifunction Γ, such that fn(ω) ∈ Γ(ω) for a.e. ω ∈ Ω and for all n ∈ N. Then, there exists a function
f in L1

E′ [E] and a subsequence (gn)n∈N of ( fn)n∈N, such that for every subsequence (hn)n∈N of (gn)n∈N the
following holds:

(j) ( 1
n

n
∑

i=1
hi)n∈N w-converges a.e. to f ;

(jj) (1{‖hn‖<n}hn)n∈N converges σ(L1
E′ [E] , (L1

E′ [E])
′) (weakly) to f in L1

E′ [E] and (hn − 1{‖hn‖<n}hn)n∈N
converges a.e. to 0 in E′.

Proof. (j) As ( fn)n∈N is bounded in L1
E′ [E], by Theorem 1 (ii) there is f in L1

E′ [E] and a subsequence
(gn)n∈N of ( fn)n∈N, such that

(gn)n∈N w*-K-converges a.e. to f . (11)

Applying Komlós theorem to (‖gn(.)‖)n∈N and by extracting a subsequence if necessary, we may
suppose that there exists a real integrable function ϕ, such that

(‖gn(.)‖)n∈N K-converges a.e. to ϕ. (12)

Let (hn)n∈N be a fixed subsequence of (gn)n∈N and set Sn := 1
n

n
∑

i=1
hi. There exists by (12) N ∈ F

with µ(N ) = 0, such that for all ω ∈ Ω\N

‖Sn(ω)‖ ≤ 1
n

n

∑
i=1
‖hi(ω)‖ → ϕ(ω),

hence (Sn(ω))n∈N is bounded and Sn(ω) ∈ K(ω) where
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K(ω) = Γ(ω) ∩ (sup
n
‖Sn(ω)‖)BE′

is convex weakly compact in E′ since Γ isRwc(E′)-valued. By (11) there existsN ′ ∈ F with µ(N ′) = 0,
such that for all ω ∈ Ω\N ′, (Sn(ω))n∈N w*-converges to f (ω). Hence, for all ω ∈ Ω\(N ∪N ′), every
w-convergent subsequence of (Sn(ω))n∈N converges to f (ω). As (Sn(ω))n∈N is w-relatively compact
in E′, we conclude that (Sn(ω))n∈N w-converges to f (ω).

(jj) Applying Lemma 2 to the bounded sequence (gn)n∈N, yields the existence of a subsequence
(g′n)n∈N of (gn)n∈N, such that

(1{‖hn‖<n}hn)n∈N is UI, (13)

and

(hn − 1{‖hn‖<n}hn)n∈N converge a.e. to 0 in E′ (14)

for every further subsequence (hn)n∈N of (g′n)n∈N. Let (hn)n∈N be a fixed subsequence of (g′n)n∈N,
we will show that (1{‖hn‖<n}hn)n∈N converges weakly to f in L1

E′ [E]. By (j), the sequence (hn)n∈N
w-K-converges a.e. to f , and by (14), and the decomposition 1{‖hn‖<n}hn = hn − (hn − 1{‖hn‖<n}hn) we
can see that (1{‖hn‖<n}hn)n∈N also w-K-converges a.e. to f . Now, as (1{‖hn‖<n}hn)n∈N is UI, by Lemma
4, (1{‖hn‖<n}hn)n∈N converges weakly to f in L1

E′ [E]. Finally, take (g′n)n∈N instead of (gn)n∈N in (j),
then (g′n)n∈N and f satisfy (j) and (jj).

We finish this work with the following result (compare with Proposition 5.1 in [1]).

Corollary 1. Suppose that Γ is aRwc(E′)-valued multifunction on Ω and H is a UI set in L1
E′ [E], such that

f (ω) ∈ Γ(ω) for a.e. ω ∈ Ω and for all f ∈ H, then H is relatively weakly compact in L1
E′ [E].

Proof. By Eberlein–Smulian’s theorem, the conclusion to be derived is equivalent with H being
sequentially relatively weakly compact. Let ( fn)n∈N be a bounded sequence in H. Since fn(ω) ∈ Γ(ω)

for a.e. ω ∈ Ω and for all n ∈ N, by Theorem 3 (jj) there is a function f in L1
E′ [E] and a subsequence

(hn)n∈N of ( fn)n∈N, such that (1{‖hn‖<n}hn)n∈N converges weakly to f in L1
E′ [E], and (1{‖hn‖≥n}hn)n∈N

converges a.e. to 0 in E′. On the other hand, since (hn)n∈N is UI, (1{‖hn‖≥n}hn)n∈N converges strongly
to 0 in L1

E′ [E], and then (hn)n∈N converges weakly to f in L1
E′ [E]. Hence, H is sequentially relatively

weakly compact in L1
E′ [E].
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