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Abstract: A submerged high-pressure water jet is usually accompanied by severe cavitation phe-
nomenon. An organ pipe nozzle can greatly improve the cavitation performance of the jet, making
use of the self-excited oscillation of the flow. In order to study the effect of organ pipe nozzles of
different nozzle outlet shapes on cavitation behavior of submerged high-pressure jet, in this paper
we build a high-pressure cavitation jet experiment system and carried out a high-speed photography
experiment to study cavitation cloud characteristics of a high-pressure submerged jet. Two organ pipe
nozzles with and without a whistle were compared. The dynamic characteristics of the cavitation
cloud was extracted through the POD method, it was found that the result effectively reflect the
dynamic characteristics of the cavitation jet. The reconstruction coefficients of mode-1 obtained by
the POD can better reflect the periodic time-frequency characteristics of cavitation development.
The effect of the nozzle outlet shape on the cavitation behavior of organ pipe nozzle was analyzed
based on unsteady numerical simulation, and it was found that the jet generated by the nozzle with a
divergent whistle had a larger vorticity in the shear layer near the outlet. Further, stronger small-scale
vortex and much severe cavitation occurred from the nozzle with a divergent whistle.

Keywords: high-pressure jet; high-speed photography; cavitation; nozzle; POD

1. Introduction

Cavitation is a phase transformation phenomenon, in which the liquid pressure is
reduced to the vapor pressure and the liquid phase is transformed into the gas phase, which
is a harmful and unavoidable phenomenon for hydraulic machinery [1,2]. When bubbles
collapse, it generates a shock wave and a micro-jet. If they act on the surface of the turbine
or propeller blade, cavitation damage inevitably occurs. Therefore, cavitation elimination
is an important field of fluid dynamics research [3–5]. However, when the high-energy
impact load generated by the cavitation collapse is properly utilized, the impact generated
by the cavitation effect can be used to improve the efficiency of high-pressure water jet
cleaning, drilling and rock crushing, as well as the surface shot peening process of metal
materials, which can effectively improve the fatigue strength of metal materials [6,7]. The
submerged cavitating water jet is generated by the fluid movement of the cavitating cloud.
The cavitation cloud in the jet process goes through different stages as a fluid movement,
such as growth, shedding and collapse. Due to the destruction of the solid surface, the
cavitation cloud destroys the local energy, further enhancing the cleaning and cutting effect
of the jet near the target surface [8–11].

In order to master the flow characteristics of cavitation jet and the impact mechanism
during cavitation formation and collapse, and improve the impact effect of a high-pressure
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cavitation jet, many researchers have studied the velocity field, pressure distribution and
cavitation shape of a cavitation jet. Yang Y et al. [12–14] captured the unsteady flow
characteristics of a high-pressure cavitation jet at three different angles through high-speed
photography experiments, and extracted its growth, shedding and collapse information
from high-speed images. Ryuta Watanabe et al. [15,16] applied the POD image processing
technology to the high-speed image analysis of a cavitation jet, and analyzed the position
of the cavitation bubble collapse through an algorithm. Peng C et al. [17] analyzed the
time-frequency distribution of cavitation clouds by using the orthogonal decomposition
(POD) method, and concluded that the intensity of the cavitation erosion was determined
by the bubble concentration and rupture strength on the sample surface. Shridhar et al. [18]
used PIV to test the cavitation bubble in the near flow field of a jet. The results showed
that cavitation first appeared in the vortex ring. The formation probability of cavitation
bubble was predicted by the distribution law, intensity and strain of the cavitation gas
core. Nakano et al. [19] observed the evolution of cavitation near the initial submerged jet
nozzle by photography and found that in the early stage, most of the cavitation bubbles
were in the initial vortex and connected with each other into a vortex ring. The cavitation
in the cavitation ring grew rapidly near the nozzle and decreased gradually. Paul McGinn
et al. [20] studied the role of the pressure wave in the flow development and found that the
dynamics of the pressure wave determined the dynamic characteristics of the bubble cloud
under the condition of “choking”. Ruolong Ma et al. [21] proposed a model that provides a
prediction of the resonator pressure fluctuations based on the thickness of the approach
boundary layer, the free stream speed and the acoustic properties of the resonator.

The nozzle is the core part of a cavitation jet and plays an important role in the
cavitation performance of the jet. The jet generated by the self-excited oscillating nozzle
has large structure vortex ring and a high-intensity pressure oscillation, which greatly
improves the energy utilization rate of the water jet. An organ pipe nozzle is the most
common oscillating nozzle [22–25]. The basic principle of cavitation is that when the jet
flows through the contracted section, a feedback pressure pulsation is generated in the
resonant cavity. When the feedback pressure and the inlet fluid generate standing waves,
an acoustic harmonic resonance is formed, so as to generate a whirlpool vortex ring in
the continuous jet flow at the nozzle exit, making the jet flow become intermittent vortex
circulation [26]. Keiichi Sato et al. [27] carried out a high-speed photographic study on the
cavitation jet of a contraction expansion nozzle, and also obtained the low-frequency and
high-frequency signals corresponding to the pressure fluctuation of the piston pump and
the shedding of the cavitation group through the statistics of the change in cavity length
over time. Peng G et al. [28–30] used acrylic resin to make a transparent contraction nozzle,
took a high-speed video of the cavitation distribution inside the nozzle and at the exit, and
extracted the gray value of the image to obtain high-frequency and low-frequency signals
respectively. By comparison, it was found that the low-frequency signal was consistent
with the pulsation of the piston pump, while the high-frequency signal corresponded
to the shedding frequency of the cavitation mass. Li G et al. [31] optimized the cavity
of the high-pressure nozzle, and proposed a method to improve the cavity and impact
performance by interaction between the fluid flow and the nozzle cavity, which improved
the gravel efficiency of the jet. Jiang Y et al. [32–34] applied a CFD method with an SST
turbulence model to model the sonic hydrogen jet at supersonic crossflow, the obtained
results indicated that the existence of the divergent ramp decreased the jet interactions and
consequently this improved the mixing rate downstream of the jet.

Although the research on water jet nozzle is relatively mature, there are few studies on
the influence of an organ pipe nozzle with different nozzle outlet shape on the cavitation
behavior of a submerged high-pressure jet. Therefore, a visualized experimental system of
a high-pressure water cavitation jet was built in this paper. The unsteady characteristics
of the cavitation clouds of an organ pipe nozzle with different outlet shapes were studied
based on high-speed photography. The dynamic characteristics of the cavitation bubble
cloud were extracted by the proper orthogonal decomposition method, and the influence of
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nozzle outlet shapes on the cavitation performance of the organ pipe was analyzed based
on an unsteady numerical simulation.

2. Experimental Methods
2.1. High-Pressure Cavitation Jet Experimental System

Figure 1 shows the high-pressure cavitation jet experiment system, which was men-
tioned in our former works [12]. An Italian AR high-pressure plunger pump was used to
provide pressure for the jet flow. The maximum working pressure of the selected plunger
pump was 50 MPa, the rated speed was 1450 r/min, and its flow rate was 15 L/min.
The experiment used clear water as the medium, and the experiment temperature was
25 ◦C. The plunger pump was powered by a frequency conversion motor and controlled
by a frequency converter to control the speed of the pump. The pressure in the pipeline
upstream of the nozzle was controlled by the change of speed.
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photographs of the test stand.

In the experiment and numerical study of this paper, organ pipe nozzles with different
outlet shapes are mainly involved. The main geometric parameters of organ pipe nozzles
include: the resonant cavity length L1, throat tube length L2, resonant cavity diameter D
and throat tube diameter d, as well as the outlet shape. The geometry of the nozzle is shown
in Figure 2. The design parameters are shown in Table 1.
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Table 1. The design parameters of the nozzles.

L1 (mm) L2 (mm) d (mm) L3 (mm) θ (◦)

5 4 1 4 60

2.2. Experimental Methods of High-Speed Photography

The Ispeed high-speed camera produced by Olympus, Japan, was used to photograph
the cavitation cloud of a submerged jet. The high-speed camera system is mainly composed
of a high-speed camera, LED light source, mobile display panel, power supply and memory
card. During the shooting process, the lens was directed at the axis of the nozzle, and
the LED light source was placed on the other side of the nozzle to illuminate the lens.
Frosted glass was used between the light source and the nozzle to prevent the lens from
over-exposing. After adjusting the position of the camera and nozzle, we first placed a ruler
with a graduated scale in the plane perpendicular to the lens axis and across the nozzle
axis, and recorded it for calibrating the size of the jet cavitation. The maximum acquisition
frequency of the high-speed camera was 150,000 Hz, and the highest resolution of the
a picture was 1280 × 1024 pixels. The acquisition frequency set in the experiment was
20,000 Hz, and the acquisition time was 1 s for each working condition. After the shooting,
the corresponding photos were exported by Ispeed high-speed camera’s matching software
and read into MATLAB for image processing.

2.3. POD of Cavitation Cloud Images

The proper orthogonal decomposition (POD) was first proposed by D.D. Kasambi [35],
and then was widely used in the analysis of multivariable and nonlinear phenomena. The
POD is a statistical technique for obtaining time-independent orthogonal basis functions
(POD modes) for a field function u(x,t) that can optimally reduce a given field function
u(x,t). For the eigenfunction ϕ, the average projection of u(x,t) on ψ should be the maximum,
and its expression is:

maxϕ
〈|(u, ϕ)|2〉
||ϕ||2

(1)

The problem is transformed into the maximum solution of 〈|(u, ϕ)|2〉 under the con-
straint of ||ϕ||2 = 1 by using the variation method:

J[ϕ] = 〈||(u, ϕ)||2〉 − λ(||ϕ||2 − 1) (2)

For all variables ϕ + δψ should satisfy:

d
dδ

J [ϕ + δψ]|δ=0 = 0 (3)

This condition can be simplified into the integral form equation:∫ 1

0
〈u(x)u ∗

(
x′
)
〉ϕ
(
x′
)
dx′ = λϕ(x) (4)

In order to obtain the optimal basis of the eigenfunction from Equation (4), the average
autocorrelation function is adopted:

R
(
x, x′

)
= 〈u(x)u ∗

(
x′
)
〉 (5)

Since the average autocorrelation function is non-negative, the sequence of eigenvalues
is as follows:

λj ≥ λj+1 ≥ 0 (6)



Machines 2022, 10, 4 5 of 17

Finally, the field quantity in u(x,t) can be reconstructed from the decomposition mode
based on the characteristic function ϕj:

u(x) =
∞

∑
j=1

aj ϕj(x) (7)

aj is the reconstruction coefficient, when the flow field analyzed is a velocity field,
the eigenvalue represents twice the average turbulent kinetic energy in each mode, and
the first-order mode represents the most violent structure in the flow. In this paper, POD
method was used to decompose the modulus of the high-speed photography image of a
submerged high pressure water cavitation jet, and the evolution law of cavitation cloud in
the jet flow field was analyzed. For the high-speed photographic image of a cavitation jet,
u(x) represents the gray value of the cavitation cloud image, while λj represents the weight
of the corresponding modes in the reconstruction process.

3. Numerical Calculation Method
3.1. Governing Equation
3.1.1. Multiphase Flow Model

A cavitation jet belongs to a gas-liquid two-phase flow, and Euler’s model or La-
grange’s model can be selected according to needs when calculating its flow field. In
this paper, the mixture model was used to calculate the mixture phase flow field, and its
governing equation is as follows [36,37]:

∂

∂t
(ρm) +∇ ·

(
ρm
→
v m

)
= 0 (8)

∂
∂t

(
ρm
→
v m

)
+∇ ·

(
ρm
→
v m
→
v m

)
= −∇p +∇ ·

[
µm

(
∇→v m +

→
v

T
m

)]
+ρm

→
g +

→
F +∇ ·

(
n
∑

k=1
αkρk

→
v dr,k

→
v dr,k

) (9)

where
→
v m is the average mass velocity, ρm is the density of the mixed phase:

ρm =
n

∑
k=1

αkρk (10)

µm is the viscosity of the mixed phase, which is defined as follows:

µm =
n

∑
k=1

αkµk (11)

where n is the number of phases,
→
F is the volume force, and

→
v dr,k represents the slip

velocity of sub-phase k.

3.1.2. Cavitation Model

When the mixture model is used to calculate the cavitation multiphase flow, the gas
phase volume fraction transport equation is expressed as follows:

∂

∂t
(αρv) +∇ ·

(
αρv
→
v v

)
= Re − Rc (12)

where Re and Rc are evaporation and condensation rates, and their values can be calculated
according to the cavitation model.
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Currently, the commonly used cavitation model is mainly derived from the Rayleigh-
Plesset equation. The cavitation model used in this paper is the Zwart-Gerber-Belamri
model, and the mass transfer expression of the model is as follows [38]:

While P ≤ Pv,

Re = Fvap
3αnuc(1− αv)ρv

RB

√
2
3

Pv − P
ρl

(13)

While P > Pv,

Rc = Fcond
3αvρv

RB

√
2
3

P− Pv

ρl
(14)

RB is the cavity radius, αnuc is the volume fraction of the gas core in the liquid,
Fvap is the evaporation coefficient, and Fcond is the condensation coefficient. The default
parameters of Fluent are set as RB = 10−6 m, αnuc= 5 × 10−4, Fvap = 50, Fcond = 0.01.
Considering the impact of turbulence on cavitation, the pressure threshold of cavitation
occurrence is expressed as follows:

Pv = Psat +
1
2

cρlkl (15)

where ρl and kl represent liquid density and liquid turbulent kinetic energy respectively,
and coefficient c adopts the recommended value of Fluent 0.39.

3.1.3. Turbulence Model

The expression of turbulent kinetic energy dissipation term of DES model used in this
paper is [39]:

Yk = ρβ∗kωFDES (16)

FDES = tan h
[
(Cd1rd)

Cd2
]

(17)

rd =
νt + ν

k2y2

√
0.5
(

S2 + Ω2
) (18)

where, Cd1 = 20, Cd2 = 3, S is the strain tensor, Ω is the vorticity tensor, and k = 0.41.

3.2. Meshing

Figure 3 shows the calculation domain of the submerged jet. The water flow must
be fully developed in the pipe before reaching the nozzle, so the pipe at the nozzle inlet
extends 260 mm upstream. According to the requirements of the literature, the diameter of
the calculation domain should be greater than 100 times the diameter of the nozzle throat.
In this paper, a cylinder with a diameter of 200 mm and a length of 500 mm was used as
the submerged water calculation domain, and the size of the calculation domain met the
above requirements.

The calculation area was divided into structured grids by ANSYS ICEM, and the shear
layer near the jet core area and the nozzle outlet was densified. The calculation domain
grid is shown in Figure 4. In order to ensure the calculation effect and reduce the amount of
calculation, the distance between the grid node and the nozzle outlet was determined as the
center to the downstream section and a smooth transition boundary gradually increased.
The total number of grids in the final calculation area exceeded 19 million, and the grid
size at the shear layer at the nozzle outlet was controlled at about 0.01 mm.
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4. Results and Discussion
4.1. Analysis of POD Results

In order to test the effect of the POD on extracting the characteristics of the cavitating
jet, a group of images of the cavitation flow field of a high-pressure water submerged jet
were selected for analysis. The nozzle used in the experiment was an organ pipe nozzle
with a divergent whistle, and the experimental pressure was 18 MPa. Figure 5 shows the
cavitation development image within 1200 µs, and the field of view is 48 mm from the
nozzle outlet to the downstream section. It can be seen from the image that the development
of the cavitation cloud is periodic. At 0 µs, within a certain distance from the nozzle outlet
to the downstream section, the cavitation cloud is basically continuously distributed, and
the width of the cavitation cloud at the nozzle outlet is small. In the process of downstream
movement, it gradually widens under the action of the flow field diffusion. There is a
fracture in the cavitation cloud at x = 30 mm, which is the shedding phenomenon of the
cavitation jet. After the shedding, the cavitation cloud in the downstream section begins
to collapse, while the cavitation cloud in the upstream section continues to grow until
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the next shedding occurs. At 200 µs, the cavitation cloud expands near the nozzle outlet,
and the growth process of the next development cycle begins. At 600 µs, the width of the
cavitation cloud at the nozzle outlet reaches the peak, and then decreases and disappears
completely at 950 µs. In this process, the growth and collapse process of the downstream
cavitation cloud is consistent with the development trend near the nozzle outlet, and also
reaches the maximum size at 600 µs. During the experiment, the shooting frequency of
high-speed photography was 20,000 fps, so it can be concluded that the development cycle
of the cavitation group growth, shedding and collapse of the nozzle under a pressure of
18 MPa is about 1000 Hz, but the stability of the cycle cannot be determined according to
the image of a single cycle.
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change of the gray level of the cavitation images at each position in the analyzed time 

period. It can be seen from the M1 image that the state corresponding to the first-order 

mode is the growth stage of the cavitation. At this time, spherical cavitation groups are 

generated at the exit of the nozzle, while the cavitation from the outlet of the nozzle to the 

downstream 20 mm segment is in the growth stage. M2 and M1 have the same frequency 

and the two modes appear alternately. Combined with the M2 modal diagram, it can be 

seen that under this mode, the cavitation cloud falls off and the nozzle outlet segment 

begins to collapse. The subsequent modes of M3 have a relatively low percentage of en-

ergy, which corresponds to the expansion and contraction of the boundary layer and the 

fluctuation caused by the turbulence in the evolution cycle of the cavitation cluster. 

  

Figure 5. Cavitation cloud image of organ pipe nozzle with divergent whistle.

A total of 5000 high-speed photographic images of a continuous cavitation jet were
selected for the POD. Figure 6 shows the zeroth- to seventh-order modes of the POD in the
jet cavitation region, where the M0 corresponding to ϕ1 represents the average change of
the gray level of the cavitation images at each position in the analyzed time period. It can be
seen from the M1 image that the state corresponding to the first-order mode is the growth
stage of the cavitation. At this time, spherical cavitation groups are generated at the exit of
the nozzle, while the cavitation from the outlet of the nozzle to the downstream 20 mm
segment is in the growth stage. M2 and M1 have the same frequency and the two modes
appear alternately. Combined with the M2 modal diagram, it can be seen that under this
mode, the cavitation cloud falls off and the nozzle outlet segment begins to collapse. The
subsequent modes of M3 have a relatively low percentage of energy, which corresponds
to the expansion and contraction of the boundary layer and the fluctuation caused by the
turbulence in the evolution cycle of the cavitation cluster.
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Figure 6. Spatial distribution of mode_0 to mode_7 of cavitation bubbles. 

Figure 7 shows the time-domain and frequent-domain curves of the first-order to 

fourth-order modes. It can be seen from the figure that the time-domain waveforms of the 

first-order and second-order modes are consistent, with relatively stable periodic charac-

teristics. Comparing with the corresponding frequent-domain diagram, it can be found 

that the frequency domain distribution of this mode is relatively concentrated at 1154 Hz, 

with an obvious peak value. According to Figure 6, the evolution period of the jet cavita-

tion development, shedding and collapse is about 1000 μs under this condition, which is 

consistent with the first-order modal period. It can be seen that the reconstruction coeffi-

cient corresponding to the first-order mode obtained by the POD can better reflect the 

periodic time-frequency characteristics of cavitation development. 

Figure 6. Spatial distribution of mode_0 to mode_7 of cavitation bubbles.

Figure 7 shows the time-domain and frequent-domain curves of the first-order to
fourth-order modes. It can be seen from the figure that the time-domain waveforms
of the first-order and second-order modes are consistent, with relatively stable periodic
characteristics. Comparing with the corresponding frequent-domain diagram, it can be
found that the frequency domain distribution of this mode is relatively concentrated at
1154 Hz, with an obvious peak value. According to Figure 6, the evolution period of the
jet cavitation development, shedding and collapse is about 1000 µs under this condition,
which is consistent with the first-order modal period. It can be seen that the reconstruction
coefficient corresponding to the first-order mode obtained by the POD can better reflect the
periodic time-frequency characteristics of cavitation development.
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4.2. Cavitation Cloud Characteristics

According to existing studies, the exit shape of the cavitation nozzle has a great
influence on its cavitation performance. In this paper, a comparative study was conducted
on organ pipe nozzles without a whistle and with divergent whistle nozzles. High-speed
photography was taken for the two nozzles under a pressure of 20 Mpa, and their cavitation
cloud morphology is shown in Figure 8. For the nozzle without a whistle, there is a long
and thin columnar cavity near the outlet, which expands and contracts periodically with the
passage of time, indicating that the growth of the cavitation has a fast and slow alternating
process, and the period and intensity of the characteristics of the expansion region are
related to the self-excited oscillation characteristics of the organ nozzle. When the outlet
segment shrinks to the minimum size, shedding occurs at about 25 mm downstream of
the nozzle, and then the downstream cavitation group gradually diffuses into discrete
cavitation groups and collapses and disappears, with the main collapse location between
60 mm and 80 mm downstream of the nozzle outlet. The vortex shedding and merging
phenomenon at the outlet of the organ tube are enhanced when the divergent whistle
is added to the organ pipe nozzle, and the vortex shedding phenomenon is aggravated.
The development period of the cavitation cloud is slightly longer than that of the nozzle
without a whistle, but the length of the cavity expansion segment is far longer, and the
boundary of the cavity is always surrounded by discrete cavitation. At this time, the falling
cavitation cloud has not completely collapsed 120 mm downstream of the nozzle. It can be
seen that the divergent nozzle structure has a significant effect on enhancing the cavitation
performance of the high-pressure water submerged jet nozzle.

According to the above analysis, the time-domain characteristics of the reconstruction
coefficients corresponding to the first-order modes correspond to the evolution process of
periodic growth, shedding and collapse of the cavitation cloud. Therefore, the shedding
period of jet cavities can be reflected by the time-frequency characteristics of the first-order
reconstruction coefficients. Figure 9 shows the time and frequency-domain plots of the
cavitation cloud by nozzles with different outlet shapes. According to the distribution in
the time domain, the waveform of the organ pipe nozzle without a whistle has a certain
periodicity, but the amplitude and periodicity of fluctuation are not strong, while the time
domain waveform of the cavitation generated by the organ pipe nozzle with a whistle
presents a regular periodic fluctuation. According to the frequency domain diagram, in
the case without a whistle, the frequency waveform distribution is scattered, the main
frequency is about 1000 Hz, and there are multiple peaks. In the case with a divergent
whistle, the frequency distribution is concentrated between 1000 Hz and 1250 Hz, and
the dominant frequency position is obvious, located at 1143 Hz. It can be seen that the
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whistle of a cavitation nozzle has a significant influence on the growth cycle and spatial
distribution of the cavitation. The optimization of this parameter is of great significance to
the design of cavitation nozzles.Machines 2021, 9, x FOR PEER REVIEW 11 of 18 
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Figure 8. Cavitation cloud morphology of two nozzles. (a) Organ pipe nozzle without whistle. (b)
Organ pipe nozzle with divergent whistle.
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Figure 9. Time- and frequency-domain plots of cavitation cloud by nozzles with different outlet
shapes. (a) Time-domain plot. (b) Frequency-domain plot.

Figures 10 and 11 respectively show the time-domain and frequency-domain distri-
bution of the first-order modes of the two nozzle cavitation jet images under different
pressures. The main frequency position at different pressures is shown in Table 2. Accord-
ing to the time-domain waveform, it’s period becomes longer and the periodicity is more
obvious with the increase of pressure. As can be seen from the frequency domain, when
the pressure is 2 MPa, the main frequency of the nozzle without a whistle and that of the
divergent whistle nozzle are not particularly obvious, and the waveform distribution is
scattered. When the pressure rises to 6 MPa, the main frequency of the divergent whistle
nozzle becomes more pronounced than that of the nozzle without a whistle, with the main
frequency position at around 1800 Hz. When the pressure rises to 10 MPa, the amplitude of
the two nozzles is greatest and the frequency domain peak becomes concentrated. When
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the pressure is further increased, the frequency domain peaks of the two nozzles are more
concentrated, while the nozzles without a whistle have multiple peaks, the frequency
distribution of the divergent whistle nozzle is basically around the main frequency, and the
main frequency position is around 1100 Hz, indicating that the development of the cavity
has a significant periodic process of growth, shedding and collapse.

Table 2. The main frequency position at different pressures.

Pressure (MPa) 2 6 10 14 18 20

Frequency without whistle (Hz) 4000 2250 1500 1250 1100 1000

Frequency with divergent whistle (Hz) 2600 1800 1400 1300 1200 1100
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(a)  (b)  

Figure 10. Time-domain distribution for mode_1 of the cavitating jet images. (a) Cavitating jet by 

nozzle without whistle. (b) Cavitating jet by nozzle with divergent whistle. 
Figure 10. Time-domain distribution for mode_1 of the cavitating jet images. (a) Cavitating jet by
nozzle without whistle. (b) Cavitating jet by nozzle with divergent whistle.
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4.3. Numerical Calculation of Vorticity Field

In order to directly reflect the influence of different outlet shapes on the jet flow field.
Figure 12 shows the three-dimensional shape of vorticity near the outlet of two nozzles.
It can be seen from the comparison that the jet vorticity of two nozzles is significantly
different. Near the nozzle outlet, the vorticity iso-surface of the nozzle without a whistle
is a relatively smooth cylindrical structure and there are relatively weak fluctuations on
the surface, corresponding to the transition process of the outflow. The divergent whistle
nozzle jet has a complete turbulent structure at the outlet. The vortex scale near the outlet is
small, and the small-scale vortex continuously entrains the surrounding fluid and merges
with it to form a larger-scale vortex in the process of moving downstream. On the whole,
by comparing the vorticity of the two nozzle jets, it can be seen that the vorticity of the
nozzle jet without a whistle is a large-scale vortex, which mainly occurs after the instability
of the jet core area, while the vorticity of the divergent nozzle includes a variety of forms
and scales, in which the small-scale vortex is formed by shearing and shedding in the
whistle. Larger-scale vortices are generated in the entrainment process of mainstream and
ambient fluids.

In order to further reveal the interaction between the vortex and the cavitation in
the cavitation jet, the vorticity transport equation was introduced for the analysis, and its
expression is as follows:

D
→
ω

Dt
=
(→

ω · ∇
)→

v −→ω
(
∇ ·→v

)
+
∇ρm ×∇p

ρ2
m

+ (vm + vt)∇2→ω (19)

where, the left side of the equation represents the change rate of the vorticity tensor with
time, and the right side of the equation is composed of four terms in total, among which
the first term represents the vortex extension caused by the velocity gradient; the second
term is the vortex expansion caused by volume expansion and contraction, representing
the effect of the compressibility of the fluid on vorticity; the third term is the baroclinic
term caused by pressure and density gradients; the fourth term represents the vorticity
change caused by viscous dissipation.Machines 2021, 9, x FOR PEER REVIEW 14 of 18 
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Figure 13a shows the volume fraction distribution of the jet cavitation of two kinds of
organ pipe nozzles. By observing the cavitation morphology at the nozzle outlet, it can be
found that the organ pipe nozzle without a whistle has a smooth tubular cavitation layer
near the throat outlet, in which the cavitation begins to diffuse at the position x = 5 mm
downstream of the throat outlet, and then the diameter of the cavitation cloud increases
rapidly and presents a vortex structure. The cavitation generated by the nozzle with a
divergent nozzle begins to diffuse at the outlet of the throat tube. Although the diffusion at
the outlet is slow, the thickness of the cavitation layer is obviously larger than that of the
nozzle without whistle. The shape and position of the cavitation at the throat of each nozzle
are almost the same, which are caused by the separation vortex formed by the sudden
change of the size of the resonant cavity and the throat inlet, and the cavitation volume
fraction gradually decreases from the throat inlet to the downstream section. The part that
does not completely disappear when reaching the outlet of the throat forms the tubular
vacuole layer described above.
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fraction. (b) Vorticity extension term. (c) Vorticity expansion term. (d) Vorticity baroclinic term.

According to the distribution of items in the vorticity transport equation, the region
with a higher distribution of baroclinic terms corresponds to the region with a higher
volume fraction of cavitation, and the expansion term of vorticity corresponds to the
shedding of cavitation, while the main generation of vorticity in the cavitation jet is reflected
in the extension term of vorticity. It can be found from Figure 13b that the area with a high
vortex extension term mainly starts at the nozzle outlet about 10 mm downstream. This is
because although the jet velocity at the nozzle outlet is high and there is a large velocity
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gradient in the shear layer, the thickness of the shear layer here is thin and the diameter of
the core jet is small. On the whole, the vorticity extension term is not directly related to
the spatial distribution of the volume fraction, but the size of the extension term reflects
the speed of the local vortex growth, while for the cavitation jet, the vortex distribution
is closely related to the development of cavitation. By comparing the distribution of the
vorticity extension term values of the two nozzles near the nozzle outlet, it can be found that
the nozzle without a whistle has a relatively smooth tubular distribution at the outlet, and
the vorticity increment at this position mainly comes from the inner wall boundary layer of
the nozzle. The increment of vorticity at the nozzle outlet of the nozzle with a divergent
whistle is significantly higher than that of the nozzle without a whistle. In addition to
the vorticity transmitted by convection inside the nozzle, the vorticity also increases at
the periphery of the shear layer, indicating that the divergent whistle can promote the
generation of vorticity near the nozzle outlet.

5. Conclusions

In this paper, a visualized experimental system of a high-pressure water cavitation jet
was built. The unsteady characteristics of cavitation clouds of an organ pipe nozzle with
different outlet shapes were studied based on high-speed photography. The dynamic char-
acteristics of the cavitation cloud were extracted by the proper orthogonal decomposition
method (POD), and the influence of nozzle outlet shapes on the cavitation performance
of the organ pipe was analyzed based on an unsteady numerical simulation. From the
analysis of the results, the following conclusions can be drawn:

(1) The proper orthogonal decomposition method (POD) can effectively reflect the dy-
namic characteristics of the cavitation jet. The reconstruction coefficients of mode-1
obtained by the POD can better reflect the periodic time-frequency characteristics of
cavitation development.

(2) The shape of the nozzle outlet has a great influence on the dynamic characteristics
of cavitation. When the nozzle outlet has a divergent segment, the periodic oscil-
lation characteristics are more obvious, the frequency domain distribution is more
concentrated, and the cavitation near the nozzle outlet is more intense.

(3) The jet generated by the nozzle with a divergent whistle has a larger vorticity in the
shear layer near the outlet. Further, a stronger small-scale vortex and more severe
cavitation occurs from the nozzle with a divergent whistle.

(4) The region with a higher distribution of baroclinic terms corresponds to the region
with a higher volume fraction of cavitation. The expansion term of vorticity corre-
sponds to the shedding of cavitation, while the main generation of vorticity in the
cavitation jet is reflected in the extension term of vorticity.

More experimental and numerical studies will be required in the future, such as using
particle image velocimetry (PIV) to visualize the flow field characteristics of the jet and
reveal the interference of the vortex with the jet, or study how flares affect the oscillation
mechanism and improve the nozzle design theory.
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