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Abstract: As one of the critical state parameters of the battery management system, the state of
charge (SOC) of lithium batteries can provide an essential reference for battery safety management,
charge/discharge control, and the energy management of electric vehicles (EVs). To analyze the
application of deep learning in electric vehicles’ power battery SOC estimation, this study reviewed
the technical process, common public datasets, and the neural networks used, as well as the structural
characteristics and advantages and disadvantages of lithium battery SOC estimation in deep learning
methods. First, the specific technical processes of the deep learning method for SOC estimation
were analyzed, including data collection, data preprocessing, feature engineering, model training,
and model evaluation. Second, the current commonly and publicly used lithium battery dataset
was summarized. Then, the input variables, data sets, errors, and advantages and disadvantages
of three types of deep learning methods were obtained using the structure of the neural network
used for training as the classification criterion; further, the selection of the deep learning structure
for SOC estimation was discussed. Finally, the challenges and future development directions of
lithium battery SOC estimation using the deep learning method were explained. Over all, this review
provides insights into deep learning for EVs’ Li-ion battery SOC estimation in the future.

Keywords: electric vehicles; review; SOC estimation; deep learning; lithium-ion battery

1. Introduction

With the intensification of global warming and climate anomalies caused by carbon
dioxide emissions [1,2], it has become a worldwide consensus to reduce and control the
production of fossil fuel-based fuel vehicles. Therefore, the accelerated transformation
of vehicle electrification is an important trend in the current development, but a major
obstacle to its wide application is the range limitation [3]. Lithium batteries, as the current
power source of most electric vehicles (EVs) [4], have the advantages of high stability,
high energy density, and a long cycle life [5]. Nowadays, due to the increased demand for
electric vehicles, the requirements for battery performance and energy management have
increased. The battery status is an important parameter of the battery management system
(BMS) [6], and the accuracy of SOC is related to the rationality of energy distribution, the
length of the range, safety, and the optimal charging and discharging of Li-ion batteries
in EVs [7]. Furthermore, the accuracy of SOC estimation can determine the smart degree
of the automated demand response for BMS in EVs because the BMS determines when to
stop the charge or discharge for the safety and health of Li-ion batteries according to the
estimated SOC values.

The State of Charge (SOC) is a more important parameter in the EVs’ Li-ion battery
state parameters, which is equivalent to the amount of fuel in a fuel-burning car, indicating
the remaining power of the battery that allows the computation of other quantities of
EVs [8]. However, the electrochemical reflection in lithium batteries is complex and very
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sensitive to temperature and material fatigue [9], and SOC is not a physical parameter that
can be measured directly by instruments; currently, the value of SOC is usually estimated
by measuring parameters with a strong correlation (e.g., voltage, current, temperature,
capacity, charge, etc.). The specific mathematical Equation (1) for the ratio of the battery
capacity in the current state to the battery capacity at full charge is as follows:

SOC =
Ccurr

Cfull
× 100% (1)

where Ccurr is the real-time battery capacity, and Cfull is the fully charged state. When the
battery is fully charged, the SOC is 100%, and the SOC is 0% when the battery discharge is
completed [3]. In the practical application of BMS in EVs, the mathematical presentation of
SOC depends on the method of SOC estimation.

Currently, there are two main methods for lithium battery SOC estimation: model-
driven and data-driven. The summary diagram of the SOC estimation methods is depicted
in Figure 1. The main model-driven idea is to build models for estimating SOC values
through scientific knowledge of lithium batteries, which are divided into the following
categories: electrochemical model [10–12] and equivalent circuit model [13–17]. The electro-
chemical model involves the research of the internal dynamic condition of Li-ion batteries
for higher SOC estimation performance, but it is less applied for the BMS of EVs because
of its requirement of a high computational cost and complicated mathematical equations,
which are often presented by partial differential equations that requires intensive com-
putations. The equivalent circuit model is represented by electrical components and is
used to monitor the behavior of Li-ion batteries at different times; in addition, it is derived
from empirical knowledge and experimental data, and it is widely applied in the BMS for
on-line SOC estimation because of its capacity to estimate SOC in real time and its low
computational cost. However, its accuracy of SOC estimation is usually limited by the
range of the parameterized model. The data-driven method is used to measure the data
related to lithium batteries, and then the data are used to generate a model. There are two
common types of filtering algorithms [16,18–23] and machine learning, which is mainly
divided into traditional machine learning and deep learning. Fuzzy logic [24,25], support
vector machines [26], and neural networks [27–29] are the current traditional machine
learning methods commonly used for the SOC estimation of the lithium batteries of EVs
in the off-line condition. These methods are not widely used in the BMS of EVs mainly
because of their high computational cost; hence, the data-driven method used in the EVs’
Li-ion SOC estimation problem is computed in the workstation. The filter algorithm is
usually used to estimate SOC combined with an equivalent circuit model and a data-driven
method for higher accuracy of SOC estimation, and it is not usually deployed in the BMS
of EVs due to its large parameters and nonlinear characters. Machine learning is used
to fit the function between the input variables and the SOC values without electrochem-
ical knowledge; therefore, it has higher efficiency in terms of the fitting function, but, at
present, it is usually used in the off-line condition because of its interpretability and high
computational cost. The advantage of model-driven method is that it uses known scientific
knowledge as the basis, which is reliable and explanatory; the disadvantage is that it needs
to understand the knowledge of multiple disciplines, which takes a long time. The advan-
tage of data-driven method is that it does not require much multidisciplinary knowledge
compared with model-driven method and takes a short time; the disadvantage is that the
accuracy of the model depends on the quality and quantity of the data, and many models
are in the state of a black box, which is less interpretable than model-driven method.
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The main research themes of the lithium batteries in EVs’ SOC estimation review are
model-driven [30–33], data-driven [34–36], model and data-driven [37,38], and machine
learning [3,39], but few reviews are focused on deep learning. In recent years, deep learning
has been applied in computer vision, natural language processing, and life sciences [40],
and some important research results have been achieved [41]. In 2017, some scholars tried
to apply deep learning to the lithium battery SOC estimation problem, which has some
advantages over the previous methods in terms of time and accuracy.

To develop the EVs’ Li-ion battery SOC estimation in deep learning and fill the research
gap, this review reveals a contribution with a comprehensive description of EVs’ Li-ion
battery SOC estimation problem in the deep learning method, and the contribution is as
follow: (1) The process of EVs’ Li-ion battery SOC estimation in the deep learning method
is discussed comprehensively; (2) The algorithm, characters, and selection of the deep
learning structure used to estimate the SOC of the Li-ion battery in EVs are explained
thoroughly; (3) The challenge and future development of EVs’ Li-ion battery in the deep
learning method are presented.

This study reviewed the application of deep learning methods in EVs’ Li-ion battery
SOC estimation from four aspects. To obtain the overview of the deep learning method
in the SOC of a Li-ion battery, the first part is the technical process of the deep learning
method to estimate the SOC of a lithium battery; the data of the Li-ion battery in EVs is
the most important part of SOC estimation in the deep learning method, the second part is
about high-quality public lithium battery data sets, and the deep learning neural network
structure can determine the performance of SOC estimation in deep learning method, the
third part is about different neural networks structure of deep learning in EVs’ lithium
battery SOC estimation problem application; to research the characteristics of deep learning
structure which is applied to solve the problem of SOC estimation for Li-ion battery in EVs,
the fourth part is to analyze and evaluate the characteristics of different neural networks as
well as the future development of SOC estimation in the deep learning method.

2. Process of SOC Estimation Using the Deep Learning Method

The flow chart of the SOC estimation technology of a lithium battery based on deep
learning is shown in Figure 2. The main process includes five processes: data collection,
data preprocessing, feature engineering, model training, and model prediction.

Data collection is a time-consuming part of the whole process. To simulate the state
changes of lithium batteries under real driving conditions, the parameter changes caused
by the load of the lithium battery under driving conditions are generally recorded to
form driving cycles, which are loaded on the tested lithium battery. Common drive cycles
include DST (Dynamic Stress Test), US06, FUDS (Federal Urban Driving Schedule) [42], and
BJDST (Bei Jing Dynamic Stress Test) [43]. Since the ambient temperature has a significant
impact on the lithium battery, to simulate the state of the lithium battery at different
temperatures, a thermal chamber is generally used as the temperature variable in the
simulated lithium battery test. The original data measured by the instrument generally
need to be pre-processed, that is, data cleaning, which is because the test process has a
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certain probability of random conditions leading to missing data or the introduction of
noise signals and other situations.
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Feature engineering refers to analyzing or designing features that are strongly corre-
lated with the SOC of lithium batteries based on the measured data to reduce the difficulty
in the next step of model training. Due to the different units of different units, the size of the
value may be different or even vary greatly; in model training, the neural network cannot
recognize the change of the unit and can only perform numerical operations. However,
variables with too large values will reduce the weight of variables with small values, which
is not conducive to finding the relationship between the measured variable and the SOC
of the lithium battery during model training, so the data are generally standardized, that
is, a unified standard is selected to perform the numerical transformation of the data. The
commonly used data normalization is the maximum–minimum normalization process, as
shown in Equation (2):

x∗i =
xi − XMin

XMax − XMin
(2)

where x∗i is the value of a variable after normalization, XMin and XMax are the minimum
and maximum values of the variable. After the maximum–minimum normalization, the
values of different unit variables are transformed between 0 and 1. Then, the standardized
feature data are randomly divided into the training set, validation set, and test set. The
training set is used to train a model related to the lithium battery’s SOC with the feature
data, the validation set is used to verify whether the parameters of the training set are
reasonable to adjust the model parameters, and the test set is used to test the generalization
ability of the trained model and can only be used once. The trained model is trained in
the selected neural network with the training set, and the model trained by the training
set is verified in the validation set to see if the accuracy reaches the highest accuracy, If the
desired accuracy is not achieved, you can choose to adjust the parameters of the neural
network, and then model training. If necessary, the neural network can also be re-selected
for training. If a satisfactory accuracy is achieved, the trained model is tested in the test set
to derive the predicted SOC values. The final step is model evaluation; the predicted SOC
values are compared with the actual SOC values in the test set using the root mean square
error (RMSE), the mean absolute error (MAE), or the mean square error (MSE) to evaluate
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the model accuracy, and the root mean square error, mean error, and mean square error are
shown in Equation (3), 

RMSE =

√
1
N

N
∑

k=1

(
SOCpre − SOCact

)2

MAE = 1
N

N
∑

k=1

∣∣SOCpre − SOCact
∣∣

MSE = 1
N

N
∑

k=1

(
SOCpre − SOCact

)2

(3)

where N is the number of variables, SOCpre is the predicted SOC value through the model
based on the deep learning method, and SOCact is the actual SOC value in the test set. The
smaller the error obtained from the above formula, the higher the model accuracy.

3. Li-Ion Battery Dataset

The Li-ion battery data form the most important part of the process of SOC estimation
because high-quality lithium battery data can better understand the relationship between
lithium battery electrochemistry, using conditions, design, etc. Since different types of
lithium batteries have different state attributes, and the life cycle of lithium batteries is
getting longer and longer, for the failure of lithium batteries, the complexity of failure, and
life cycle testing for lithium batteries is also increasing, Therefore, some research institutions
have disclosed the test data of lithium batteries obtained by testing.

NASA was the first organization to make the lithium battery dataset publicly avail-
able [44]. The dataset [45] contains lithium battery state parameters by performing charging
and discharging tests at three different temperatures, i.e., 4 ◦C, 24 ◦C, and 43 ◦C, and record-
ing the impedance as a damage criterion.

The CALCE battery research team at the University of Maryland [46] tested several
common types of lithium batteries with different materials and capacities, which were
measured separately at 10 different temperatures ranging from −40 ◦C to 50 ◦C. The A123
lithium iron phosphate battery dataset, which is often used in the lithium battery SOC
estimation problem, was tested at eight different temperatures ranging from −10 ◦C to
50 ◦C by DST and FUDS drive cycles.

Aiming to optimize the fast charging of lithium batteries, the Toyota Research Center
(TOYOTA) cooperated with the Massachusetts Institute of Technology (MIT) and Stanford
University and tested 124 and 224 phosphoric acids of 1.1 Ah and 3.3 V in a temperature-
controlled convection box at 30 ◦C. The tested batteries were used to rapidly charge lithium
batteries at a rate of 4 C, then discharge at the same rate, and cycle until failure [47,48].

The Panasonic 18650PF Li-ion battery dataset [49] was tested on a brand new 2.9 Ah
Panasonic 18650PF cell by Phillip Kollmeyer at Wisconsin-Madison University using a
25-amp, 18-volt digatron firing circuit universal battery tester channel in an 8-cubic-foot
thermal chamber. The battery, charged after each test at a 1 C rate to 4.2 V, 50 mA cut off,
with battery temperature 12 ◦C or higher, was subjected to five different temperatures and
a series of tests.

Then, a brand new turnigy graphene 5000 mAh 65 C cell [50] and 3 Ah LG HG2 Li-ion
battery [51] were tested at McMaster University by Phillip Kollmeye, both of which were
tested in an 8 cu.ft. thermal chamber with a 75 amp, 5 volt digatron firing circuit universal
battery tester channel with a voltage and current accuracy of 0.1% of full scale.

Zhang et al. [52], from the China University of Science and Technology, conducted
charge and discharge tests on three lithium iron phosphate batteries under constant current
and DST conditions at room temperature. This dataset can be used for lithium battery
SOC estimation, lithium battery performance measurement, and dynamic characteristic
analysis of the pack operation. Wang et al. [53] used the BTS-8000 to perform discharge
tests on four LiFePO4 battery packs and supercapacitors under DST and UDDS conditions
at room temperature, and the data can be used not only for the SOC estimation of a Li-ion
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battery but also for Li-ion battery and supercapacitor performance measurements, model
parameter calibration, and dynamic characterization.

Each dataset comes with a full test process that is not reproduced here. The dataset is
often in “.mat”, “.xlsx”, or “.csv” format, and each dataset includes a “Readme” file that
describes the test parameters, naming principles, notes, and other details about the dataset.
Table 1 provides a review of the publicly accessible higher-quality lithium battery datasets.

Table 1. Publicly Available Lithium Battery Datasets.

Dataset Battery Data Ambient
Temperature

Number of
Battery Refs

NASA-PCoE 2 Ah 18650 Voltage, Current, Temperature 43 ◦C, 4 ◦C, 4 ◦C 34 [45]

CALCE

1.1 Ah, LiCoO2
1.5 Ah, LiCoO2
1.35 Ah, LiCoO2
2.4 Ah, LiFePO4
2.23 Ah, LiFePO4

2.3 Ah, LNMC

Current, Voltage Charge Capacity, Discharge
Capacity, Charge Energy, Discharge Energy, dV/dt

50 ◦C, 45 ◦C, 40 ◦C,
30 ◦C, 25 ◦C, 20 ◦C,

0 ◦C, −5 ◦C, −10 ◦C,
−40 ◦C

144 (1.5 Ah,
LiCoO2) [46]

Toyota–MIT–
Stanford

1.1 Ah, LiFePO4
Temperature, Current, Voltage, Charge, Discharge

Capacity, Per-cycle Measurements of Capacity,
Internal Resistance, and Charge Time

30 ◦C
124 [47]
224 [48]

Panasonic
18650PF

2.9 Ah, NCA
Panasonic 18650PF Voltage, Current, Capacity, Energy, Temperature 25 ◦C, 10 ◦C, 0 ◦C,

−10 ◦C, −20 ◦C 1 [49]

Turnigy
Graphene

5 Ah, Turnigy
Graphene Voltage, Current, Time, Power 40 ◦C, 25 ◦C, 10 ◦C,

0 ◦C,−10 ◦C, −20 ◦C
1 [50]

LG
18650HG2 3 Ah, LG HG2 Voltage, Current, Power, Battery Case Temperature 1 [51]

IFP-1865140
10 Ah, LiFePO4

Voltage, Current, Capacity
25 ◦C

3 [52]
IFP-1665130 Voltage, Current, Time 4 [53]

4. Deep Learning Neural Network Structure in SOC Estimation

The SOC estimation of a Li-ion battery in the deep learning method uses deep learning
theory of computer science to build a model that builds the approximate relationship
between input data (voltage, current, temperature, power, capacity, etc.) and output
data (SOC) by available data. According to different neural network structures, it can be
classified as a single, hybrid, or trans structure. Figure 3 depicts a summary of the major
neural network structures utilized in deep learning for lithium battery’s SOC estimation.
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4.1. Single Structure

The single structure uses only a deep learning structure to estimate SOC; in this chapter,
it includes a multi-layer perceptron (MLP) type, convolutional type, and recurrent type.

4.1.1. MLP Type—DNN

Multi-layer perceptron, also known as an artificial neural network, is derived from
a Deep Neural Network (DNN) after the arithmetic power is improved and the training
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parameters are increased; its advantage is that it does not limit the dimensionality of the
input, it is highly adaptable to the data, and theoretically, a 3-layer perceptron can fit any
function nonlinearly, but the disadvantage is easy over-fitting [54] when the network has
massive parameters. Figure 4 shows the structure of a deep neural network with four
hidden layers, each containing eight neurons.
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Ephrem et al. [55] used the DNN to train a model for SOC estimation and tested
the Panasonic 18650 lithium battery under different temperatures and driving cycles [49],
among which seven fully discharged datasets were selected as training datasets, “US06”
and “HWFET” were the validation datasets, the test set was the data set under the changing
temperature of 10–25 ◦C, the inputs were current, voltage, average voltage, and average
current, and it was verified separately at each temperature. After the test set test and
compared with four other methods, the lowest RMS error obtained was 0.78%. SHRIVAS-
TAVA et al. [56] tested the Panasonic 18650 lithium battery, using “DST, FUDS, US06” as
the training dataset and validation dataset and “WLTP” as the test set; the inputs were
voltage, current, and temperature. The model was compared with the SVR (Supper Vector
Regression) method, and the RMS when using the DNN method was significantly smaller
than the SVR. HOW et al. [57] used the INR lithium battery dataset from the CALCE
dataset [46] to train the lithium battery SOC model, with “DST” as the training dataset,
and “FUDS, BJDST, and US06” as the test dataset, with current, temperature, and voltage
as inputs. After training, the model was tested in the “DST” test dataset and compared
with five methods, and the RMS was 3.68%. Kashkooli et al. [58] tested eight commer-
cial 15 Ah lithium battery cells cycled at various constant rates of charge/discharge and
conducted tests at the one-mouth interval for a period of 10 mouths; the measurement
data were divided randomly into three groups in which 70% was used for training, 15%
for cross-validation, and 15% for testing; the test performance based on MSE using DNN
was 0.0247%.

4.1.2. Convolutional Type—TCN

Convolutional type neural networks in the SOC estimation applications of Li-ion
batteries are mainly variants of convolution neural networks (CNNs [59]) in time series
data, which are one-dimensional convolutional neural networks [60] (1D-CNNs) and
temporal convolution networks [61] (TCNs). The primary benefit of a one-dimensional
convolutional neural network is that it can extract and categorize one-dimensional signal
data while using less computer capacity. It has been frequently employed in real-time
monitoring tasks such as defect prediction and categorization in recent years. The SOC
estimation of a Li-ion battery is a regression problem, but models in 1D-CNNs are not as
accurate in terms of regression prediction problems as in classification problems, so they
are typically employed as a feature extraction layer in conjunction with other networks.
The main benefits of time-domain convolutional networks are the expansion of the feature
extraction range by increasing the perceptual field by expanding the causal convolution
and the mitigation of the gradient explosion problem by residual connection [62], which
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allows for the training of models with more parameters and higher accuracy. The schematic
diagram of the convolutional neural network is shown in Figure 5.
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Figure 5. Convolutional Type: (a) 1D-CNN schematic; (b) Dilated causal convolution and residual
connection in TCN.

HANNAN et al. [63] constructed a multi-layer time-domain convolutional layer with
feedforward direction and optimized the learning rate using an optimization algorithm,
using “Cycle 1–Cycle 4, Cycle NN, UDDS, LA92” from the dataset [49] as the training set
and “US06, HWFT” as the test set; the MSE of the test was 0.85% when compared with that
of the four models.

4.1.3. Recurrent Type—LSTM

As shown in Figure 6, recurrent types mainly include the Recurrent Neural Network
(RNN), Long Short-Term Memory [64] (LSTM), and Gated Recurrent Unit [65] (GRU).
Gradient explosion or disappearance occurs in recurrent neural networks as parameters
are increased; then, the creation of LSTM alleviates the problem of gradient explosion in
the recurrent neural network, followed by GRU with fewer parameters than LSTM. At
present, the LSTM is the most used network of recurrent neural networks in the lithium
battery SOC estimation problem, followed by the GRU, and the recurrent neural network
is not used directly [66]. The benefit of a recurrent neural network is that it can utilize the
previous output as the next input, thus exploiting the relationship of the input variables;
but, owing to its one-way operation and historical data calculation, it takes longer to train
than neural networks that can run in parallel.

Ephrem et al. [67] adopted LSTM to train the lithium battery SOC model under fixed
and varying ambient temperatures in the dataset [46]. In the fixed ambient temperature
SOC model, the training dataset included the data under eight mixed drive cycles, and
the two discharge test cases were used as the validation dataset; the test dataset was the
charging test case; in the varying ambient temperature SOC model, the training dataset
with 27 drive cycles included three sets of nine drive cycles recorded at 0 ◦C, 10 ◦C, and
25 ◦C. The test dataset included the data of another mixed-drive cycle. Both models’ input
variables are voltage, current, and temperature. After evaluation, the model achieved the
lowest MAE of 0.573% at 10 ◦C and an MAE of 1.606% with ambient temperature from 10 to
25 ◦C. Cui et al. [68] used LSTM with an encoder–decoder [69] structure in the dataset [43];
the input was “It, Vt, Iavg, Vavg”, and the test result was an RMSE of 0.56% and MAE of
0.46% in US06, which was higher than that using only LSTM and GRU in that paper. Wong
et al. [70] used the undisclosed ‘UNIBO Power-tools Dataset’ as a training dataset and
dataset [51] as a test dataset in the LSTM structure; the input variables were current, voltage,
and temperature, and the MAE was 1.17% at 25 ◦C. Du et al. [71] tested two LR1865SK
Li-ion battery cells at room temperature and used the dataset in [45] as the comparative case
to test the model trained by LSTM; the input variables were current, voltage, temperature,
cycles, energy, power, and time; the MAE was 0.872% at an average level. YANG et al. [72]
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used the LSTM to build a model for lithium battery SOC estimation; the data were obtained
from the A123 18560 lithium battery under three drive cycles, i.e., DST, US06, and FUDS;
the input vectors were current, voltage, and temperature. In addition, the model robustness
was tested in the unknown initial state of the lithium battery, with the Unscented Kalman
Filter [73] (UKF) method for comparison; the test results showed that the RMS of LSTM
was significantly smaller than that of UKF.

Figure 6. Recurrent Type: (a) Recurrent neural network; (b) Long short-term memory neural network;
(c) Gated recurrent unit.

4.1.4. Recurrent Type—GRU

YANG et al. [74] trained the model by using GRU, and the dataset was tested using
three LiNiMnCoO2 batteries with DST and FUDS drive cycles; the input vectors were
the current, voltage, and temperature. Then, the trained model was tested in a dataset of
another material; it obtained 3.5% of max. RMS. The authors of studies [75–77] all used
GRU as the neural network for model training; the dataset was the INR 18650-20R and
A123 18650 lithium battery from the CALCE dataset [46] with inputs of voltage, current,
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and temperature, and the RMS error obtained from the test dataset was not significantly
different. Kuo et al. [78] tested a 18650 Li-ion battery cell and used GRU with an encoder–
decoder structure, in which the input vectors were current, voltage, and temperature;
further, they compared this with LSTM, GRU, and a sequence-to-sequence structure, and
the result showed that the MAE of their proposed neural network was lower than that of
other methods at three different drive cycles and temperatures.

4.2. Hybrid Structure

The main idea of the hybrid neural network in the estimation of the SOC of a lithium
battery is to improve the prediction accuracy of the model by combining the advantages of
various types of neural networks. The current common architecture in the lithium battery
SOC estimation problem is a 1D-CNN as a feature extraction layer to extract deeper features
of the input data, and a recurrent neural network (LSTM or GRU is used more often) as a
model building layer to construct a model between the SOC and the input variables. Some
scholars also added the fully connected layer (FC) before the final output layer to improve
the accuracy of the model. The architecture of 1D-CNN + X + Y in lithium battery SOC
estimation is depicted in Figure 7.
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4.2.1. 1D-CNN + LSTM

SONG et al. [79] used a neural network combination of “1D-CNN + LSTM” to build a
model with inputs of voltage, current, temperature, average voltage, and average current,
for the dataset, and the 1.1 Ah A123 18650 lithium battery was tested at seven different
temperatures with drive cycles of US06, FUDS. The results showed that the error of the
“1D-CNN + LSTM” method was significantly smaller than that of the method that only
used one neural network when tested in the test dataset and compared with the 1D-CNN
and LSTM methods.

4.2.2. 1D-CNN + GRU + FC

HUANG et al. [80] used a “1D-CNN + GRU + FC” neural network architecture
with inputs of voltage, current, and temperature; the dataset was obtained from the BAK
18650 lithium battery at seven different temperatures with drive cycles of DST and FUDS.
Compared with the method of one neural network such as RNN, GRU, and a support
vector machine, it achieved the lowest RMS.

4.2.3. NN + Filter Algorithm

The NN + filter algorithm type uses a neural network and filter algorithm for im-
proving Li-ion SOC estimation performance, Figure 8 is a case of that structure, which is
the combination of LSTM and the adaptive H-infinity filter that can be found in [81] in
more detail.

YANG et al. [82] tried to combine the advantages of both LSTM and UKF. They used
LSTM and an offline training neural network to obtain a pre-trained model with the data
obtained; then, the real-time data obtained were inputted into UKF and the pre-trained
model, whose data input occurred after normalization. The UKF filters out the noise
and improves the model performance. After this, combinations of LSTM and filtering
class algorithms appear as “LSTM + CKF (Cubature Kalman Filter)” [83], “LSTM + EKF
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(Extended Kalman Filter)” [84], and “LSTM + AHIF (Adaptive H-infinity Filter) [81],
through the test dataset, and their model performance was better than the models only
trained by LSTM.
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4.3. Trans Structure

Trans structure is mainly used to transfer the knowledge of source data to target data
and in this chapter includes the section on transfer learning and transformers.

4.3.1. Transfer Learning

As depicted in Figure 9, the knowledge is utilized from the learning task trained by
source data and that of the target data, which can improve the robustness of the model to
achieve higher performance. Some researchers applied transfer learning to enhance the
performance of SOC estimation.
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Bian et al. [85] added a fully connected layer after bidirectional LSTM on this basis
with inputs of voltage, current, and temperature; the datasets were three different lithium
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battery datasets, A123 18650, INR 18650-20R from the CALCE dataset [46] as the target
dataset, and the Panasonic lithium battery dataset [49] as the pre-trained dataset. Then,
they used transfer learning to transfer features from the model trained with the pre-trained
dataset to the model trained with the target dataset. Compared with the method of one
neural network such as RNN, LSTM, and GRU, the model of the transfer learning method
achieved the lowest RMS.

Liu et al. [86] applied TCN to two different types of lithium battery data and migrated
the trained model for lithium battery SOC estimation as a pre-trained model to another
battery dataset by transfer learning [87]. The training dataset of the pre-trained model was
“US06, HWFET, UDDS, LA92, Cycle NN”, corresponding to 25 ◦C, 10 ◦C, and 0 ◦C in the
dataset [49], and the test set was “Cycle 1–Cycle 4”; the input vectors were current, voltage,
and temperature. The model trained under 25 ◦C was migrated to the new lithium battery
SOC model as a pre-trained model by transfer learning, the training dataset of the new
lithium battery SOC model included the data measured under two mixed driving cycles in
the dataset [50], the test dataset was “US06, HWFET, UDDS, LA92” in the dataset [50], and
its RMS range was 0.36–1.02%.

4.3.2. Transformer

Transformer [88] is based on the encoder–decoder structure and attention mechanism,
which is multi-head attention. It can enhance the connection and relation of data, and
hence the transformer is applied in the natural language process, image detection, and
segmentation, etc. In recent years, some scholars tried to use the structure based on the
transformer for SOC estimation. The diagram of the transformer is shown in Figure 10.
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Figure 10. Structure of the transformer.

Hannan et al. [89] used the structure based on the encoder of the transformer [88] to
estimate SOC, and the dataset was used in [51]; the input variables were current, voltage,
and temperature, and compared with different methods including DNN, LSTM, GRU,
and other deep learning methods, the test performance was 1.19% for RMSE and 0.65%
for MAE.

Shen et al. [90] used two encoders and one decoder of the transformer, in which the
input variables were the current–temperature and voltage–temperature sequences; the
dataset was obtained from [46], in which the ‘DST’ and ‘FUDS’ were used as the training
dataset, and the ‘US06′ was used as test dataset. Further, they added a closed loop to
improve the performance of SOC estimation; then, compared with LSTM and LSTM + UKF,



Machines 2022, 10, 912 13 of 21

the test results showed that the RMSE of their proposed method was lower than that of
other methods.

5. Evaluation and Future Development

For further analysis and evaluation, Table 2 summarizes the literature, lithium bat-
tery datasets, input variables, and errors using various neural network models of deep
learning to solve the problem of lithium battery SOC estimation. (I: current, V: voltage, T:
temperature, t: time, Iavg: average current, Vavg: average voltage, MAX: maximum error)
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Table 2. Summary table of lithium battery SOC in deep learning methods.

Neural Network Refs Dataset Input Variables Error

Single Structure

DNN

[55] [49] V(t), T(t), Iavg(t), Vavg(t)
MAE: 0.61%, RMSE: 0.78%,

MAX (25 ◦C): 2.38%
[56] Undisclosed V(t), I(t), T(t) RMSE: 2.0527, MAE: 0.00421
[57] [46] V(t), I(t), T(t) RMSE: 3.68%, MAE: 0.13%
[58] Undisclosed V(t), I(t), T(t), Time, Condition MSE: 0.0247%

TCN [63] [49] V(k), I(k), T(k)

(25 ◦C) RMSE: 0.85, MAE:
0.70, MAX (25 ◦C): 2.96

(−20~25 ◦C) RMSE: 2.00,
MAE: 1.55, MAX (25 ◦C):

7.63

LSTM

[66] Undisclosed
V(t), V(t− 1), V(t− 2),

I(t), I(t− 1), I(t− 2),
SOC(t), SOC(t− 1), SOC(t− 2)

RMSE: 0.4127~0.7012
RMSE: 0.4127~0.5476

[67] [49] V(k), I(k), T(k) RMSE: 0.7%, MAE: 0.6%,
MAX (25 ◦C): 2.6%

[68] [46] V, T, Iavg, Vavg
RMSE: 0.45~1.89%, MAE:

0.37~1.48%

[70] [51], Undisclosed V(k), I(k), T(k) RMSE: 1.57~2.89%, MAE:
1.17~2.22%

[71] [45], Undisclosed V(t), I(t), T(t),
Cycles, Energy, Power, Time

RMSE: 0.731~1.860%, MAE:
0.608~1.165%

[72] Undisclosed RMSE: 1.07~1.39%, MAE:
0.94~2.45%

GRU

[74] Undisclosed V(k), I(k), T(k) RMSE < 3.5%, MAE < 2.5%

[75] [46] V(k), I(k), T(k) RMSE: 0.65%, MAE: 0.46%;
RMSE: 0.75%, MAE: 0.52%

[76] [46] V(t), I(t), T(t) RMSE: 0.84~1.08%

[77] [46] V(k), I(k), T(k) RMSE: 0.55~2.45%, MAE:
0.42~1.77%

[78] Undisclosed V(t), I(t), T(t) RMSE < 1.5%, MAE < 0.6%

Hybrid Structure

1D-CNN
+ LSTM [79] Undisclosed V(t), I(t), T(t), Iavg(t), Vavg(t)

RMSE: 0.54~1.38%, MAE:
0.33~0.87%

1D-CNN
+ GRU +

FC
[80] Undisclosed V(t), I(t), T(t) RMSE: 0.0098~0.0211, MAE:

0.0078~0.0168

LSTM +
UKF [82] Undisclosed V(t), I(t), T(t) RMSE: 0.93%, MAE: 0.82%

LSTM +
CKF [83] Undisclosed V(k− 1), I(k), T(k), SOC(k) MAE < 2%

LSTM +
EKF [84] [46,49] V, I, T, dV RMSE: 0.48%

LSTM +
AHIF [81] Undisclosed V(k), I(k), T(k), SOH RMSE: 0.22~1.09%, MAX:

0.89~2%, MAE: 0.21~1.18%

Trans Structure

Transfer
learning

[85] [46,49] V(t), I(t), T(t)

RMSE: 0.49~1.57%, MAE:
0.39~1.32%RMSE:
0.49~1.57%, MAE:

0.39~1.32%

[86] [49,50] V(k), I(k), T(k) (25 ◦C) RMSE: 0.36~1.02%,
MAE: 0.26~0.61%
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Table 2. Cont.

Neural Network Refs Dataset Input Variables Error

Transformer
[89] [51] V(k), I(k), T(k) RMSE: 0.9056%, MAE:

0.4459%

[90] [46] I(t)− T(t), V(t)− T(t) (50 ◦C) RMSE: 0.54%, MAE:
0.49%

As a data-driven method to solve the SOC estimation problem of lithium batteries,
deep learning methods have the advantages of high accuracy and a short modeling time and
do not require a lot of complex interdisciplinary knowledge. Specific to each network, due to
different characteristics, various advantages and disadvantages in practical applications are
also different. Therefore, Table 3 summarizes the advantages and disadvantages of various
neural networks for deep learning methods to solve the problem of lithium battery SOC
estimation. DNN can handle the Li-ion battery data without thinking about the dimensions
of input variables, but it is easy to increase the problem of overfitting and local optimum
in SOC estimation when it uses several MLP layers. 1D-CNN can effectively extract the
data features of Li-ion battery data, but it has lower precision of SOC estimation than other
neural network structures when it is only used in the 1D-CNN structure. TCN is designed
for time series data by using the convolutional neural network structure, but its robustness
of SOC estimation is lower than that of others. LSTM can process long-term Li-ion battery
data for SOC estimation and it alleviates the problem of gradient disappearance and
explosion, but it has several calculation parameters for SOC estimation and it needs large
storage capacity to process Li-ion battery data; therefore, it has a long training time. GRU
has fewer calculation parameters of SOC estimation than LSTM and it can also alleviate
the gradient disappearance and explosion problem, but it still needs a long training time.
1D-CNN + X + Y combines the advantages of different neural networks to estimate SOC
and it can further improve the precision of SOC estimation with appropriate parameters
of the neural network, but it has a relatively complex model structure compared with the
single structure of the neural network. The NN + filter algorithm can merge the benefit of a
neural network and filter algorithm to improve SOC estimation performance, but it needs
a large capacity to store Li-ion battery data and a long time to further process parameters,
which requires more time than only using a neural network structure to estimate SOC.
Transfer learning for SOC estimation can transfer knowledge about different types of Li-ion
battery data to target data, but it is difficult to determine which part of knowledge to
transfer to the target data. The transformer can provide the connection between Li-ion
battery features, but it needs a large amount of data and computing power due to its high
calculation complexity.

It is a multi-factor-determined problem that chooses an appropriate deep learning
structure for SOC estimation, which depends on the data, results of precision, consumption
costs (time), etc. The amount and quality of available data are the first factors to be
considered; in other words, SOC estimation using a deep learning method that is data-
driven will have a good performance in a data system with a large quantity and high
quality. The training time and precision of SOC estimation need to be jointly considered for
the selection of the deep learning structure because in most cases indicated, the training
time is positively correlated with SOC estimation accuracy, but its precision will not
increase significantly with the training time when it is beyond a certain threshold. From
the perspective of data, without thinking about the factor of training time, if the amount of
data is not rich, the recurrent structure and transfer learning can be preferred; the reason
is that Li-ion battery data include the time series sequence, and the recurrent structure
can effectively process the history input data; when the amount of data is rich, the hybrid
structure and transformer can be well applied in the SOC estimation problem. From the
perspective of the training time and SOC estimation performance, under the condition
of the same amount of data, the hybrid structure can be adopted for SOC estimation
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because its precision is higher than that of the single structure but its training time is longer.
Therefore, the selection of a deep learning structure is based on the quality and quantity of
available data as well as the desired result in the reality of SOC estimation.

Table 3. Evaluation of SOC estimation for lithium batteries in deep learning methods.

Neural Network Advantage Disadvantage

Single

DNN Unlimited data input dimensions Prone to overfitting and local optimum
problems

1D-CNN Extraction of time series data features Lower precision when this is the only
method used

TCN Handling of time series data Lower robustness

LSTM
Longer historical time series data can be linked,
can alleviate the problem of gradient
disappearance and gradient explosion

Many calculation parameters, large
capacity storage, and long training time

GRU Fewer computing parameters Long training time

Hybrid 1D-CNN + X + Y + . . . Combining the advantages of multiple neural
networks Relatively complex model

NN + Filter Algorithm Merge the advantages of neural network and
filter algorithm

Large capacity storage, long process
time, and complex structure

Trans
Transferlearning Transfer feature of source data to target data

Hard to know which part can be used
as knowledge for transfer in the target
learning task.

Transformer Achieve the data feature connection
Higher calculation complexity,
computing power requirements, and
data demand

Although deep learning can handle a large amount of data and the effect is good,
objectively speaking, three main problems need to be solved before using deep learning
methods to solve the problem of lithium battery SOC estimation before it can be widely
used in practice:

1. Data: Due to the different battery types, battery parameters, and battery manufac-
turers for different electric vehicles, the SOC of the lithium battery that provides
power cannot be generalized by a model. The failure and life cycle testing of lithium
batteries take a long time and have a significant time cost. Generally, scientific re-
search institutions or colleges and universities conduct battery parameter tests, so
the quantity and quality of data obtained are limited. At present, models trained by
deep learning can only achieve high accuracy under certain operating conditions or
certain temperatures. For a general model, the amount of data is far from enough,
and to maximize the utilization ratio of Li-ion cell data, there are some methods
that can be used: (1) Time series data augmentation: the Li-ion data can be further
augmented because they are the time series data, and several methods can be found
in the paper [91], and in the state of charge for the Li-ion battery estimation problem,
adding noise is the simple and effective method, which can be found in the paper [89].
(2) Creation of new variables based on original data, which can be created by some
variables such as the derivation of voltage, current, and temperature based on voltage,
current, and temperature; in addition, variables should be created according to the
science of Li-ions. (3) Transfer of the model from the different Li-ion datasets: to
improve the precision of SOC estimation, the model can be frozen or fine-tuned in a
neural network layer to accomplish the target learning tasks; furthermore, when the
amount of data is sufficient, the pre-trained models such as GPT-3 and BERT can be
applied to the Li-ion SOC estimation problem.

2. Computing power: Most electric vehicles generally have an in-vehicle computing
platform with high-cost performance and low computing power and power consump-
tion as the “brain” of the electronic and electrical equipment due to cost or power
consumption reasons. To speed up the training, most of the deep learning is currently
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based on special processing units, such as graphic processing units and tensor pro-
cessing units. For accelerated operations, however, these special computing units are
designed without considering power consumption and cannot be directly used for
onboard computing power platforms for electric vehicles. In addition, at present, all
lithium battery SOC estimation based on deep learning is to test the battery separately
under simulated driving conditions and to conduct offline training according to the
obtained data. On-board training is carried out on the data measured by the sensors
in the environment.

3. Interpretability: Previously, there was no recognized scientific explanation for ma-
chine learning in computer science; nowadays, it is only used as a black box. This
feature results in a lack of stability and interpretability compared with traditional
methods. There is no fixed solution to the situation that does not meet expectations,
so it sometimes takes a long time.

6. Conclusions

We reviewed the lithium battery SOC estimation methods based on the deep learning
method and the commonly used lithium battery SOC datasets in recent years, studied four
types of neural networks including the single, hybrid, and trans structure, analyzed the
advantages and disadvantages of various neural networks, and then listed some methods
to improve the data utilization rate and future development.

EVs’ lithium battery SOC estimation in the deep learning method is part of the inter-
section of computer science, data science, and battery chemistry. At present, both deep
learning and battery fields still have many complex problems that are difficult to solve
or understand. From the perspective of efficiency, deep learning methods are superior to
methods such as mathematical models, but they do not have a deeper understanding of
the changes in the battery state parameters. From the question itself, there are two aspects
worth paying attention to:

1. High-quality data: Some public lithium battery data sets may not meet the actual
needs due to reasons such as models or unexpected situations. From the actual needs,
it may be necessary to re-test the lithium battery. In the next step, the SOC test of the
lithium battery should be considered. Establishing a set of accepted testing methods
or standards, which may be an efficient way to generate high-quality data at scale,
can avoid duplication of testing, reduce testing time, and improve data quality.

2. Computer science: Most of the existing deep learning-based lithium battery SOC
estimation research uses neural networks that have made breakthroughs in the field
of computer science as a method to migrate to this problem. In the future, we can
focus on breakthrough research results in the field of computer science, which can
be studied by referring to relevant theories and algorithms; the relevant science of
battery chemistry can be used as a priori knowledge to construct the characteristics
related to the state parameters of lithium batteries.

With the expansion of computer science, together with the advanced devices for data
storage (such as cloud storage) and high-quality data, we envision deep learning to be a
promising technique to model real-time battery management in the future.
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