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Abstract: Rotating machine vibration signals typically represent a large collection of responses from
various sources in a machine, along with some background noise. This makes it challenging to
precisely utilise the collected vibration signals for machine fault diagnosis. Much of the research in
this area has focused on computing certain features of the original vibration signal in the time domain,
frequency domain, and time–frequency domain, which can sufficiently describe the signal in essence.
Yet, computing useful features from noisy fault signals, including measurement errors, needs expert
prior knowledge and human labour. The past two decades have seen rapid developments in the
application of feature-learning or representation-learning techniques that can automatically learn
representations of time series vibration datasets to address this problem. These include supervised
learning techniques with known data classes and unsupervised learning or clustering techniques
with data classes or class boundaries that are not obtainable. More recent developments in the field
of computer vision have led to a renewed interest in transforming the 1D time series vibration signal
into a 2D image, which can often offer discriminative descriptions of vibration signals. Several
forms of features can be learned from the vibration images, including shape, colour, texture, pixel
intensity, etc. Given its high performance in fault diagnosis, the image representation of vibration
signals is receiving growing attention from researchers. In this paper, we review the works associated
with vibration image representation-based fault detection and diagnosis for rotating machines in
order to chart the progress in this field. We present the first comprehensive survey of this topic by
summarising and categorising existing vibration image representation techniques based on their
characteristics and the processing domain of the vibration signal. In addition, we also analyse the
application of these techniques in rotating machine fault detection and classification. Finally, we
briefly outline future research directions based on the reviewed works.

Keywords: rotating machines; fault diagnosis; vibration signal analysis; vibration image representa-
tions; feature learning; classification algorithms

1. Introduction

Rotating machines are essential for a wide range of processes in manufacturing. Thus,
their health conditions and availabilities have a direct impact on production plans, excel-
lence, and cost. Maintenance is made by fixing, adjusting, or replacing machine elements,
including motors, gearboxes, and bearings to guarantee that a machine remains in a healthy
condition. Two types of maintenance are often used, namely corrective and preventive
maintenance. Corrective maintenance is usually very expensive as it is accomplished
after machine failure. Instead, preventive maintenance is applied to prevent a failure
using time-based maintenance (TBM) or condition-based maintenance (CBM). Various
studies have shown the economic benefits of applying CBM in several applications of
rotating machines [1]. In CBM, maintenance arrangements are made based on the current
health condition of a machine, which can be identified through fault diagnosis techniques.
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Different techniques for machinery fault diagnosis have been developed, including vi-
bration, acoustic emission, electric motor current, and thermography monitoring-based
techniques [2–6]. Vibration-based fault diagnosis techniques have been extensively ap-
plied and have developed well-acknowledged techniques for machinery maintenance
management [7–11].

As presented in Figure 1, the vibration-based fault diagnosis system comprises three
stages: (1) data acquisition, to collect input vibration data; (2) data analysis, including
preprocessing, filtering, feature extraction, and selection; and (3) machine health diagnosis,
to detect and identify faults using a trained classification model.
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Figure 1. The overall system of vibration-based machine fault diagnosis.

The acquired vibration data usually comprise a large collection of responses from
several sources in the machine accompanied by some background noise. This makes it
difficult to use the collected data for machine fault diagnosis directly. Much of the research
in this area has focused on computing certain features of the acquired vibration data in
the time domain, frequency domain, and time–frequency domain, which can sufficiently
describe the signal in essence. Various machine learning methods can be applied to classify
a machine’s health condition based on the computed features. It is supposed that if
the features are carefully formulated, a machine learning method can train a model that
can achieve high classification accuracies of the machine’s health condition. Previous
research proposed various techniques that used multiple statistical features extracted in
the time domain. These include mean, peak-to-peak value, crest factor, root mean square
(RMS), variance, kurtosis, and skewness, as well as other advanced techniques, such as
time synchronous averaging (TSA), autoregressive moving average (ARMA), blind source
separation (BSS), stochastic parameter, and filtering techniques [1,12–20].

Furthermore, various studies have established that frequency domain techniques can
reveal information from the time series vibration signal based on frequency characteristics,
which are difficult to be observed in the time domain. Fast Fourier transform (FFT) is widely
used to transform time domain vibration signals to the frequency domain [21]. Moreover,
various features from the vibration frequency spectrum have been applied to represent the
health conditions of machines. These include high-frequency resonance, high-order spectra,
arithmetic mean, and the RMS of spectral difference techniques [22–27]. Moreover, many
time–frequency domain techniques have been used for the non-stationary vibration signals
that are often produced when machinery faults occur. These include short-time Fourier
transform (STFT), wavelet transform (WT), Hilbert–Huang transform (HHT), empirical
mode decomposition (EMD), local mean decomposition (LMD), etc. [1,28–34].

However, extracting and/or selecting the advantageous features which can sufficiently
describe the current condition of a machine from such huge and noisy time series vibration
datasets is typically a challenging task. The past two decades have seen rapid developments
in applying feature-learning techniques that can automatically learn representations of
time series datasets to address this problem. A great deal of previous research into the
application of feature-learning algorithms for vibration fault diagnosis has focused on deep
learning techniques, which learn representations of data by utilising hierarchical multi-layer
data processing architectures such as deep neural networks (DNNs) and convolutional
neural networks (CNNs) [2,35–37]. Furthermore, a renewed interest in converting the 1D
vibration signal into a 2D image, which usually offers discriminative characteristics of the
vibration signal, has been directed by recent advances in the field of computer vision.
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In addition, several attempts have been made to use thermographic analysis and
visual inspection for machine fault diagnosis. As described in [38], the thermographic
analysis is considered for fault diagnosis given its advantages in being non-invasive and in
having a wide range of analyses. It is usually applied using thermographic images taken
using a thermographic camera sensor, which is an infrared detector that incorporates both
the temperature of the surface and the energy emitted by the targeted object and adapts
them into an image called a thermogram. The applications of infrared thermography in
machine fault diagnosis and different industrial applications have been reviewed in [39,40].

With the advancements in high-resolution cameras, computer hardware, and software,
visual inspection has been used to visually inspect the surface of the components in a
machine. This is performed by capturing 2D images from a 3D scene, which are then
processed to extract features that can be used to classify the health condition of a machine.
In this case, the inspection system defines whether an object or a scene matches a predefined
description. Several studies have tested the efficacy of visual inspection in machine fault
diagnosis [41–45]. Moreover, the application of optical illumination, image acquisition,
image processing, and image analysis in the field of the visual inspection was discussed
in [46].

Due to its high performance in fault diagnosis, the image representation of vibration
signals is receiving increasing attention from researchers in the field of machinery condition
monitoring and diagnosis. In this paper, we review the works associated with vibration
image representation-based fault detection and diagnosis for rotating machines to chart the
progress in this field. It is hoped that this survey will contribute to a deeper understanding
of the techniques used for the image representations of vibration signals and their practice
in rotating machine fault diagnosis. The contributions of this paper are as follows:

1. We summarise the techniques used for the image representations of vibration signals
in three signal analysis domains, as shown in Figure 2. The summary includes ten
techniques in the time domain, three techniques in the frequency domain, and nine
techniques in the time–frequency domain. The latest applications of these techniques
in rotating machine fault diagnosis are also discussed.

2. With regard to the time domain-based techniques, we present and discuss 2D grayscale,
RGBVI, multi-channel fusion, the Gramian transition field, the Markov transition
field, the recurrence plot, dominant neighbourhood structure maps (DNS), the signal
histogram, and probability plot-based vibration image techniques. With regard to
the frequency domain-based techniques, we present and discuss the FFT spectrum
and the bi-spectrum, and with regard to the time–frequency domain-based tech-
niques, we present and discuss STFT, STFT-based Grad-CAM, order maps, WT, HHT,
Wigner–Ville distribution (WVD), variational mode decomposition (VMD), Stockwell
transforms, and multi-domain fusion vibration imaging (MDFVI)-based vibration
image representations.
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Figure 2. An overview of vibration image representation techniques.

Furthermore, we analyse the literature from four aspects: the targeted rotating ma-
chine’s components, the techniques used to produce the vibration image representations,
the feature learning, and the classification method, as well as the best classification accuracy
achieved. This organisation is expected to be more conducive to the finding of innovations
by researchers for improving the accuracy of the rotating machines’ fault detection and
diagnosis.

3. In addition to comprehensively reviewing the development and application of vibra-
tion image representation in rotating machine fault diagnosis, we also present the
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current commonly and publicly available vibration datasets used for fault diagnosis.
Finally, we discuss possible future research trends and directions.

The remainder of this paper is organised as follows. Section 2 presents a review
of the vibration image representations in the time domain, including descriptions of the
techniques and their applications in fault diagnosis. Section 3 is devoted to descriptions
of the frequency domain-based techniques for vibration image representations. Section 4
offers descriptions of the time–frequency-based techniques. In Section 5, we discuss
the application of vibration image representations in the field of rotating machine fault
diagnosis and the performance of these techniques in the field of rotating machine fault
diagnosis, and we summarise the limitations of the current techniques and possible future
research directions and present the publicly available vibration fault diagnosis datasets.

2. Time Domain-Based Vibration Image Representations

Vibration signals obtained from rotating machines are usually 1D vectors in the time
domain as a gathering of time-indexed data points acquired over historical time. Based
on the type of transducer employed to acquire the signals, the time-indexed data points
represent acceleration, velocity, or proximity. Various techniques have been used to convert
the 1D time series vibration signal into a 2D vibration image representation. The following
subsections discuss these techniques in more detail.

2.1. Time Series Segmentation-Based Techniques

Time series segmentation is a technique of time domain analysis where the targeted
input time series signal is divided into several equal segments. Let x(t) ∈ R1xn be the
originally collected 1D vibration signal vector, where n represents the length of the vibration
signal. To convert x(t) ∈ R1xn into a 2D grayscale vibration image representation of m×m
matrix dimensions I ∈ Rmxm, first, x(t) needs to be segmented into m equal segments,
where m =

√
n. Then, the sequence of segments is used to construct the 2D grayscale image

of the vibration signal using the multiple segments alignment technique such that each
segment is aligned as the column or row of the produced vibration image [36]. Figure 3a
below shows an example of segmenting x(t); then, each segment is associated with a
column of the produced vibration image Ic such that

Ic =

 x(t)1 · · · x(t)((m−1)m)+1
...

. . .
...

x(t)m · · · xmm

 (1)
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Figure 3b presents an example of segmenting x(t); then, each segment is associated
with a row of the produced vibration image Ir such that

Ir =

 x(t)1 · · · x(t)m
...

. . .
...

x(t)((m−1)m)+1 · · · xmm

 (2)

Here, Ic and Ir are the vibration image generated by aligning each segment as a column
and as a row, respectively.

The application of these techniques in machine condition monitoring has been con-
sidered in several studies. For example, Zhang et al. [47] proposed a method for bearing
fault diagnosis using vibration images and a convolutional neural network (CNN). In this
technique, the vibration images were produced by dividing the time series signal into n
equal segments and aligning each segment as the row of the produced vibration image [47].
Kaplan et al. [48] presented a texture analysis-based method for bearing fault diagnosis.
Firstly, in this method, the original vibration signals were converted into grayscale images;
then, local binary pattern (LBP) and texture features were computed. With these features,
several classifiers were employed to perform the classification task, including random
forest (RF), k-nearest neighbour (K-NN), naive Bayes, Bayes net, and artificial intelligence
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networks (ANNs) [48]. Furthermore, Uddin et al. [49] presented an approach for fault de-
tection and classification of induction motors, utilising 2D texture features and a multiclass
support vector machine (MSVM) classifier. In this approach, the raw vibration signals were
converted into grayscale vibration images; then, the dominant neighbourhood structure
(DNS) was employed to obtain the texture features, which were used as inputs into the
MSVM [49]. In [50], the authors proposed a strategy for the fault diagnosis of rolling
bearings using grayscale vibration images under an unbalanced dataset. In this strategy,
the Wasserstein generative adversarial network with gradient penalty (WGAN-GP) was
employed to produce more new data to address the distribution differences as a result of
the data imbalance.

Based on the time series segmentation technique, several other developed techniques
have been used to enhance the produced 2D grayscale vibration image. The key objec-
tive of these techniques is to produce a 2D vibration image with useful discriminative
characteristics. The following subsections present the details of these techniques.

2.1.1. RGB Vibration Image Representation (RGBVI)

In this technique, the generated grayscale image is further processed using the follow-
ing three steps [36]:

1. Convert the grayscale image into a binary image by converting all pixels in the
grayscale image with values greater than 1 into white and all other pixels into black.

2. Generate a label matrix from the connected components in the binary image with
unique values.

3. Convert the created label matrix into an RGB-based colour image with a set of colour
and texture features of the labeled regions.

Moving on now to consider the application of the RBGVI in machine fault diagnosis,
Ahmed et al. [36] employed the produced RGBVIs of bearing vibration signals as inputs into
a CNN architecture to train, validate, and classify bearing health conditions [36]. Figure 4
below shows examples of the generated vibration images from bearing vibration with
the normal condition, including the grayscale image that was generated using the time
series segmentation technique described in Section 2.1 above, the binary image, and the
RGB-based colour image.
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Figure 4. The examples of the generated image from bearing vibration with normal conditions are (a)
the grayscale image, (b) the binary image, and (c) the RGB-based colour image [36].

Figure 5 depicts examples of the generated vibration images using the RGB-based
connected components vibration image technique from bearing vibration with six health
conditions: two normal conditions, including the brand new bearing (NO) and the bearing
in service for some time but in a good condition (NW), and four fault conditions with inner
race fault (IR), outer race fault (OR), rolling element fault (RE), and cage fault (CA) [36].
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Figure 5. Examples of the generated vibration image using RGBVI technique for bearing vibration
with six health conditions [36].

2.1.2. Constructing a 2D Grayscale Image from a Rectified Vibration Signal

Firstly, in this technique, the vibration signal x(t) is rectified to invert the negative
values to positive values [51]. Then, the rectified signal is divided into equal-length
segments where the length of each segment ls is equal to the number of samples in one
revolution of the vibration waveform such that

ls = round
(

60 fs

Shs
, number o f pixels

)
(3)

Here, fs represents the sampling frequency and Shs is the shaft speed. The value of ls
is rounded to the nearest multiple numbers of pixels as required by the designed system.
For example, in [51] the value of ls is rounded to 3 as the authors used a local binary pattern
(LBP) operator that works with 3 × 3 pixels blocks. The LBP of a pixel in an image is
calculated by comparing it with its neighbours such that

LBPP,R = ∑P−1
p=0 s

(
gp − gc

)
2p, s(x) =

{
1, x ≥ 0
0, x < 0

(4)

Here, P is the total number of neighbours, R is the radius of the neighbourhood, gc
represents the gray value of the central pixel, and gp is the value of its neighbours [52]. This
technique is validated on bearing fault datasets with different shaft speeds. Figure 6 below
presents examples of the generated vibration image using this technique from bearing
vibration acceleration signals for 1748 rpm with inner race fault, outer race fault, and ball
fault conditions. With these generated vibration images, a k-NN was employed to perform
the classification task.
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Figure 6. Examples of the generated vibration image using signal rectification and LBP techniques
for (a) bearing inner race fault, (b) bearing outer race fault, and (c) bearing ball fault [51].

2.2. Multi-Channel-Based Vibration Images Fusion

This method was developed based on three channels that were used to collect vibration
samples [53]. To generate a 3M × N-sized fused vibration image from the three vibration
signals collected using the three channels, the following steps are performed.
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1. The three raw signals are randomly segmented to obtain several scalars s(k, i). Here,
k = 1, 2, 3 is the signal collection channel, and i = 1, 2, 3, . . . , M× N;

2. The scalar products S(k, i) can be computed using the following equation

S(k, i) = s(k, i). s(k, i) (5)

3. The pixel value of the feature images F(m, n) can be calculated using the following
equation

F(m, n) = unit8(255×
S
{

k, (m− k)× N
3+1 )

}
Max S{k} ) (6)

Here, m = 1, 2, . . . , 3M and n = 1, 2, . . . , N.
This method was verified on vibration datasets collected from a wind power test rig

with several complex faults of the bearings and gears and a centrifugal pump test rig with
cavitation, impeller unbalance, and shaft misalignment. In [53], the produced vibration
images were used as inputs into a bottleneck layer optimized CNN (MB-CNN) to further
perform feature learning from the produced vibration images and to classify the type of
fault corresponding to each signal.

Figure 7 shows an example of the composite image with an inner bearing fault pro-
duced from three feature maps using the data described in Section 2.1.1.
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Figure 7. Example of the generated vibration image with inner bearing fault from the data described
in Section 2.1.1: (a) feature map of channel 1 (vertical direction), (b) feature map of channel 2
(horizontal direction), (c) feature map of channel 3 (axial direction), and (d) the composite image.

2.3. Gramian Angular Field (GAF)

To encode the vibration time series to a vibration image using GAF, the following
steps are performed [54,55]:

1. Given the original collected 1D time series vibration x(t) ∈ R1xn where n represents
the length of the vibration signal, first x(t) is rescaled so all values are in the range
[−1, 1] such that

x̃ =
(xi −max(x) + xi −min(x))

max(x)−min(x)
(7)

2. The rescaled time series x̃ is represented in polar coordinates by encoding the value
as the angular cosine and the time stamp as the radius such that{

∅ = arccos(x̃i),−1 ≤ x̃i ≤ 1, x̃i ∈ x̃
r = ti

N , ti ∈ N (8)

Here, ti is the time stamp, and N represents a constant factor to regularise the span of
the polar coordinate system.

3. The angular perspective is exploited in view of the trigonometric sum between each
point to find the time-based correlation inside different time intervals. Thus, the GAF
matrix can be defined using the following equation

GAF =

cos(∅1 +∅1) · · · cos(∅1 +∅n)
...

. . .
...

cos(∅n +∅1) · · · cos(∅n +∅n)

 (9)
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= x̃′. x̃−
√

1− x̃2
′
.
√

1− x̃2 (10)

Figure 8 shows examples of the generated vibration images using the GAF from the
bearing vibration with the six health conditions described in Section 2.1.1 above.
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Figure 8. Examples of the generated vibration image using the GAF technique for bearing vibration
with six health conditions.

To date, several studies have investigated the application of the GAF technique in
machine fault diagnosis. For instance, Garcia et al. [55] investigated several encoding algo-
rithms, including GAF, to produce images from highly complex vibration measurements
of real helicopter flight tests; then, they used these images as inputs into a deep learning
architecture, namely the convolutional auto-encoder (CAE) and CNN [55]. Moreover, Han
et al. [56] conducted several experiments to test the efficacy of GAF-based vibration images
as inputs into capsule networks in bearing fault diagnosis [56].

2.4. Markov Transition Field (MTF)

The MTF technique produces images that contain the transition probabilities of the
inputted time series vibration signal x(t) by performing the following steps [54–57]:

1. Construct a Q×Q Markov transition matrix W by recognising the Q quantile bins of
the input signal x(t) and allocate each element xi in x(t) to its corresponding quantile
qi such that

W =

w11 · · · w1Q
...

. . .
...

wQ1 · · · wQQ

 (11)

Here, wij is the probability of the element qi being transferred to qj and
Q
∑

j=1
wij = 1.

2. The MTF N X N-sized matrix is computed using the following equation

MTF =

wij
∣∣x1 ∈ qi, x1 ∈ qj · · · wij

∣∣x1 ∈ qi, xn ∈ qj
...

. . .
...

wij
∣∣xn ∈ qi, x1 ∈ qj · · · wij

∣∣xn ∈ qi, xn ∈ qj

 (12)

Figure 9 shows examples of the generated vibration images using the MTF from the
bearing vibration with the six health conditions described in Section 2.1.1 above.
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Figure 9. Examples of the generated vibration image using the MTF technique for bearing vibration
with six health conditions.

The application of MTF in machine fault diagnosis has been considered in quite a few
studies [55–57]. In [55], the MTF-based vibration images were used as inputs into the CAE
and CNN to test the classification accuracy of vibration images with normal and anomalous
conditions. In [56], three scenarios of vibration images were produced using GAF, MTF,
and GAF + MTF as inputs into the capsule network for bearing fault diagnosis. In [57],
MTF-based vibration images were used as inputs into a ResNet-based CNN architecture to
train a model for bearing fault diagnosis.

2.5. Recurrence Plot (RP)

The recurrence plot (RP) is a technique that transforms a time series into an image of
recurrences, which visualise the recurrent behaviors in the time domain [55,58–60]. This
image is able to divulge in which elements some routes return to a previously visited state.
The mathematical expression of RP is shown in the following equation,

RPij = θ
(

ε− ‖→x i −
→
x j‖
)

,
→
x ∈ Rm, i, j = 1 . . . N (13)

Here,
→
x i and

→
x j are the subsequentness detected at the positions i and j, respectively;

θ is the Heaviside function, ε is a threshold, and N is the number of states. The recurrence
plot represents a binary image in which dots only specify whether there is a reappearance
of a state or not. Figure 10 presents the plots for nine-time series of bearing vibration signals
with different health conditions from the bearing vibration data described in Section 2.1.1.
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Figure 11 shows examples of the generated vibration image using the RP technique
with a distance threshold for the bearing vibration with six health conditions. Moreover,
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Figure 12 depicts examples of the generated vibration image using the RP technique with a
point threshold for the same bearing vibration.
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for bearing vibration with six health conditions.

A search of the literature revealed a few studies that considered the application of RP
in machine fault diagnosis. For example, in [55] several encoding algorithms, including RP,
were tested to produce images from the vibration signals of real helicopter flight tests; then,
these images were used as inputs into a CAE-based deep architecture for fault diagnosis.
In [60], the RP and quantification techniques were utilised for bearing fault diagnosis
using vibration signals. It was shown that several of the recurrence indicators, such as
determinism, laminarity, entropy, average diagonal line, and trapping time could be used
for bearing fault diagnosis [60].

2.6. DNS Map-Based 2D Vibration Image

This technique generates 2D texture features from the time series vibration signal
using the following steps [49].



Machines 2022, 10, 1113 13 of 36

1. Convert the 1D time series vibration signal to a 2D gray-level image. Firstly, in this
step, the amplitude of each sample of the time series vibration signal is normalised;
then, each sample is assigned the intensity of the corresponding pixel.

2. Produce a dominant neighbourhood structure (DNS) map to extract texture features
from the 2D gray-level image.

Figure 13 shows examples of the generated 2D gray-level images and their correspond-
ing 2D DNS map [49].
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Figure 13. Examples of the generated 2D gray-level images and their corresponding 2D DNS map for
(a) bearing fault, and (b) rotor imbalance fault [49].

This technique is used for the fault classification of induction motors [49]. The DNS
map-based extracted texture features were reduced using PCA, and then, multi-class
support vector machines (MCSVMs) were employed to identify induction motor faults.

2.7. Signal Histogram-Based Vibration Image (HVI)

The histogram-based vibration image is developed to describe the two channels of
vibration signal and the joint relationship between them concurrently [61]. The HVI can be
obtained as follows.

1. Compute the vibration image center (x, y) for the (xi, yi) vibration sample points,
where i = 1, 2, . . . , N, and N is the total number of vibration sample points such that

x =
1
N ∑i xi (14)

y =
1
N ∑i yi (15)

2. Eliminate the unexpected outliers by drawing a vibration circle with the center of
(x, y) and R as the radius, which can be computed as follows

R = Am subject to : T =
count(Ai ≤ Am)

N
(16)

Here, T is the ratio of the sample points to be retained and is set to 95%, and Ai is the
Euclidian distance between the center and all the vibration sample points.

3. Construct the histogram feature by dividing the vibration circle into N rings. Here,
the k− th bin value of the histogram is set to the number of sample points within the
k− th ring.

4. Normalise the histogram such that

zero(x) =
{

1, x = 0
0, x 6= 0

(17)

hvi(k) = ∑i zero(zi − k) (18)
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Here, zi is the ith sample point located in the zith ring. Figure 14 shows a diagram that
represents the HVI technique.
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Figure 14. The diagram of HVI: (a) distribution of vibration points within rings and (b) histogram of
vibration points [61].

Moreover, the oriented histogram-based vibration image (HOVI) that represents the
distribution of the vibration sample points in various directions is developed in [61]. The
HOVI is based on dividing the phase space θi into p intervals, where θi can be calculated
using the following equation.

θi = arg(xi − x) + (yi − y), θi ∈ [0, 2π] (19)

In HOVI, the bin value of the histogram is computed as follows.

hovi(k) = ∑i Ai zero(zi − k)
∑i zero(zi − k)

(20)

Here, zi can be computed using the following equation

zi =

[
θi
2π
p

]
(21)

So far, very little attention has been paid to the application of HVI and HOVI in
machine fault diagnosis. For instance, to validate the efficacy of HVI and HOVI in machine
fault diagnosis, the authors in [61] conducted several experiments on a dataset with four
types of faults collected from a test rig of a magnetic bearing-rotor system. With the
produced vibration images, a two-layer AdaBoost was employed to perform the fault
diagnosis task. Medina et al. [62] proposed two methods for gearbox vibration signal-based
fault diagnosis using a symbolic dynamics algorithm. The first method, which is called
SDA, extracts the symbols’ histogram directly from a Poincaré plot produced from a time
series vibration signal. The second method, PSDA, extracts the phase-space subdivision-
based symbols’ histogram from a Poincaré plot generated from a peaks sequence obtained
from a time series vibration signal. A vibration signal dataset with 10 classes of faults
acquired from a gearbox was used to validate these methods and the classification task was
performed using an MSVM classifier [62].

2.8. Probability Plot-Based Vibration Image

In this technique, the probability plot of the time series vibration data is performed
according to a theoretical data distribution, such as Normal and Weibull. The resulting
points of the plot would be bordered and arranged in a straight line where any noncon-
formity from this bordered straight line designates a deviation from the distribution. By
using this merit, the different vibration signals with faults can be diagnosed, where the
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further the probability plot results differ from the straight line the better the detection and
the diagnosis of the faults that can be achieved [63].

The highest correlation coefficient is chosen to produce the best features of the vibration
image through the probability plot. The vertical axis of the produced vibration image
includes ordered response values, while the horizontal axis comprises ordered statistic
medians Medi for the given distribution, which can be computed as follows.

Medi = f (Mui) (22)

Here, f is the percent point function for the distribution, and Mui is the uniform order
statistics median, which can be defined using the following equation [49].

Mui = 1−Mui ; f or i = 1
Mui =

(i−0.3175)
(n+0.365) ; f or i = 2, 3, . . . , n− 1

Mui = 0.5(
1
n ) ; f or i = n

(23)

Figure 15 shows examples of the probability plot based-images for bearing vibration signals
with the normal condition and inner race fault from the data described in Section 2.1.1.
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Figure 15. The probability plot for (a) bearing vibration signal with the normal condition and (b)
bearing vibration signal with inner race fault.

The application of the probability plot in machine fault diagnosis has been considered
in several studies [63–68]. In [63], the probability plots constructed from bearing vibration
signals collected under constant and variable speed conditions were used as input images
in the absolute value PCA for bearing fault diagnosis.

3. Frequency Domain-Based Vibration Image Representations

The time series vibration signals are usually produced by several elements of the
rotating machine, such as the bearings, gears, and shaft. In a single motion, each element
generates a sine wave with a single frequency and amplitude, whereas other elements
add more frequencies and amplitudes. These frequencies are not easily seen in the time
domain. The frequency spectrum of the time series signals makes it easy to see this range of
frequencies. Fourier analysis is often used to transform the time domain vibration signals
to the frequency domain [1]. Moreover, several techniques within the frequency domain
were developed to convert the 1D time series vibration signal into a 2D vibration image
representation. The following subsections briefly describe these techniques.
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3.1. The FFT Spectrum Image

In this technique, the fast Fourier transform spectrums of the vibration signals are
used as images [69]. The FFT algorithm calculates the n-point complex discrete Fourier
transform (DFT) of the time series signal x(t). The sampled points of x(t) are divided into
two parts: xeven (x0, x2, x4, . . .), which contains the collected even-numbered sampled
points, and xodd (x1, x3, x5, . . .), which contains the odd-numbered sampled points, each
of which has half of the total sampled points such that

x(t)DFT(k) = DFTN
2
{xeven(m), k}+ Wk

N .DFTN
2
{xodd(m), k}, k = 0, 1, . . . , N − 1 (24)

To obtain the FFT spectrum image, the magnitude of the DFT, i.e., the absolute value
of the DFT is used. Figure 16 shows examples of time series vibration signals and their
corresponding FFT spectrum images for the inner race, outer race, and rolling element fault.
Those readers who are interested in more details on the mathematical formulation of FFT
may be referred to [1,70,71]. Moreover, the application of FFT-based vibration spectrum
images in machine fault diagnosis was studied extensively in [69,71–77].
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Figure 16. Examples of time series vibration signals and their corresponding FFT spectrum images
for (a) inner race fault, (b) outer race fault, and (c) rolling element fault from the bearing vibration
data described in Section 2.1.1.

3.2. The FFT Spectrum Image Based on Segmented Time Series Signal

Firstly, in this technique, the time series signal is divided into time segments using
a window of size W samples [74]. Then, the time segments are stacked in an image Ix(t)
such that

Ix(t) = {xu(w)} (25)

Here, w = 1, 2, . . . , W and u = 1, 2, . . . , U where U is the number of time segments.
Afterwards, the FFT is used to form a spectrum image I f from Ix(t). Finally, the

obtained spectrum image I f is enhanced using a 2D averaging filter and a binary threshold.

3.3. Image Representations Using Bi-Spectrum

In this technique, the bi-spectrum, also called the third-order spectrum, which is the
Fourier transform of the third-order statistics, is employed to transform the 1D time series
vibration signal into a 2D vibration image [78,79]. It often offers additional diagnostic
information to that offered by the power spectrum of the signals containing non-Gaussian
components [1]. The bi-spectrum can be normalised with respect to the power spectrum
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to produce bi-coherence, which is useful in detecting quadratic phase coupling. The
bi-spectrum (Bs) can be expressed mathematically using the following equation.

Bs( f1, f2) = E(X( f1) X( f2)X∗( f1 + f2) (26)

Figure 17 shows examples of the produced vibration images using bi-spectrum counter
maps of time series vibration signals with different conditions, including bearing roller
wearing fault, inner race wearing fault, outer race wearing fault, normal condition, and
centrifugal pump impeller wearing fault condition [80].
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Figure 17. Examples of the generated 2D bi-spectrum counter maps of (a) bearing roller wearing fault,
(b) inner race wearing fault, (c) outer race wearing fault, (d) normal condition, and (e) centrifugal
pump impeller wearing fault condition using the bi-spectrum-based technique in [80].

Many studies have begun to examine the application of frequency domain-based
vibration images in machine fault diagnosis. For example, Li et al. [69] presented a method
for bearing fault diagnosis using spectrum images of vibration signals obtained by per-
forming the FFT technique. Then, the obtained vibration images were processed using
2DPCA to reduce the dimensions. Finally, a minimum distance technique was employed
to perform the classification task [69]. Liang et al. [72] proposed a method for bearing
fault diagnosis using the CNN. In this technique, the time series vibration signals were
converted into 2D frequency spectrums using FFT and then used as inputs into the CNN to
train a classification model for bearing fault diagnosis [72]. In [73], a vibration spectrum
imaging-based technique for bearing fault classification was proposed. Firstly, in this
technique, the original vibration signals were time-segmented. Then, the spectral contents
of each time segment were computed and normalised to form a spectral image using FFT.
Then, an image enhancement process was performed to enhance the obtained spectral
images. Finally, an ANN was employed to train a model for bearing fault classification. In
the same vein, Youcef et al. presented a method that used spectral images as inputs into a
CNN classifier to train a model for bearing fault classification [74].

Furthermore, Huang et al. proposed a technique for fan fault diagnosis using vibration
spectral image, PCA, and an ANN [75]. Similarly, Qiu et al. presented a method for bearing
fault diagnosis using adjusted vibration spectrums, 2DPCA, and NNC [76]. In [80], the
authors proposed a technique for rotating machine fault diagnosis using bi-spectrum-
based vibration images; feature extraction, using speeded-up robust features (SURF);
dimensionality reduction based on t-distributed stochastic neighbour embedding (t-SNE);
and fault identification based on the probabilistic neural network (PNN).
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4. Time–Frequency Domain-Based Vibration Image Representations

The time-frequency domain analysis has been utilised for non-stationary vibration
waveforms, which are very common when machinery faults happen. Several techniques
within the time-frequency domain were used to produce 2D vibration image representations
from the 1D time series vibration signals. The following subsections briefly describe these
techniques.

4.1. Short-Time Fourier Transform (STFT)

The short-time Fourier transform (STFT) is a form of the Fourier transform which lets
one examine a non-stationary vibration signal in the time-frequency domain [81]. The STFT
of a time series vibration signal x(t) can be computed using the following equation.

STFTx(t)(t, w) =
∫ +∞

−∞
x(t)w(t− τ)exp(−jwt)dτ (27)

Here, w(τ) is a window function and τ is a time variable. In STFT, the signal is
decomposed into shorter equal segments via a time-localised window function such as
the Gaussian and Hamming window, and it then accomplishes the DFT on each segment
individually. The time-frequency spectrum is the collection of the DFTs of the whole
segments. The spectrogram or sonogram is often used to estimate the frequency content
of the STFT-based signal. It is a graphical image of the signal that estimates the energy
distribution of the signal within the time-frequency domain. The spectrogram can be
mathematically represented by the magnitude squared of STFT such that

Spectx(n)(n, w) =
∣∣∣ STFTx(n)(n, w)2

∣∣∣ (28)

Figure 18 presents examples of the generated vibration images using STFT from the
bearing vibration signals with six health conditions, as described in Section 2.1.1 above.
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Numerous studies employed the STFT-based images as inputs into a classifier to perform
the fault diagnosis task [82–88], while other studies have attempted to produce features based on
the STFT images of the original vibration signals for fault diagnosis. The following subsections
highlight two of these techniques.

4.1.1. The Grad-CAM Activation Maps for STFT-Based Images

The use of the gradient-weight class activation mapping (Grad-CAM) algorithm, along
with the STFT-based 2D images, was proposed by Liefstingh et al. in [89] to recognise elements
of the input spectrogram that contribute to each class attribution of the input signals of bearings.
The Grad-CAM utilises the gradient information flowing in the last convolutional layer of the
CNN [90]. By using a trained neural network, the Grad-CAM highlights which areas of an input
image are of importance for classification [91]. For example, Figure 19 presents examples of the
generated Grad-CAM activation maps using a pre-trained network, namely squeezenet [92], for
the STFT-based vibration images produced from the bearing vibration signals with six health
conditions in Figure 18.
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Figure 19. Examples of the generated Grad-CAM activation maps for the STFT-based vibration
images produced from the bearing vibration signals with six health conditions in Figure 18.

4.1.2. Order Maps

As described by Tayyab et al. [93], order maps can be computed using the following
three steps:

1. Tachometer signal processing and rpm extraction.
2. Synchronous resampling in the order domain.
3. STFT of resampled signal in the order domain.

Figure 20 shows examples of the order maps of two bearing vibration signals with
normal and inner race fault conditions under variable speeds (25–75 rpm). In [93], this
technique is used for rolling element bearing diagnosis under variable speeds and loads.
The order maps show the different patterns for different types of faults. Therefore, they are
used as inputs into a CNN for fault diagnosis.
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4.2. Wavelet Transform (WT)

The WT is an alternative technique to the STFT for the analysis of non-stationary
signals. It is adaptable to a wide range of frequencies and time-based resolutions. Unlike
the window used by STFT, the WT utilises wavelet families with fixed shapes, such as Haar,
Symlets, and Daubechies. The main wavelet function ψ(t) can be computed as follows.

ψs,τ(t) =
1√

s
ψ

(
t− τ

s

)
, (29)

Here, s is the scaling parameter, t is the time, and τ represents the transformation
parameter. In the original wavelet, s = 1 and τ = 0. There are three key transforms
in wavelets, namely continuous wavelet transform (CWT), discrete wavelet transform
(DWT), and wavelet packet transform (WPT) [94–99]. Of these, the CWT was used by many
researchers to generate vibration image representations.

The CWT can be computed using the following equation

W(x(t)(s, τ) =
1√

s

∫
x(t)ψ∗(

t− τ

s
)dt (30)

Here, ψ∗ represents the complex conjugate of ψ(t), which can be shifted using the
translation parameter τ and scaled using the scale parameter s. The computed coefficients
define the correlation between the waveform and the wavelet utilised at the performed
translations and scales. These coefficients are usually presented in a scalogram, which
characterises the percentage of the energy for each coefficient. Figure 21 shows examples of
the produced scalograms using CWT with complex-valued Gaussian wavelets from the
bearing vibration signals with six health conditions that were described in Section 2.1.1
above. The wavelet coefficients find the differences in the vibration waveform of the six
vibration signal conditions.
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The application of the WT and the scalograms in machine condition monitoring has
been considered in various studies. For example, Shi et al. [100] presented a technique
for bearing fault diagnosis using CWT and a residual dilated pyramid network, and a
full convolutional denoising autoencoder (RDPN-FCDAE). Firstly, in this technique, the
CWT is employed to convert the time series vibration signals into vibration images. Then,
the produced vibration images were used as inputs into the RDPN-FCDAE for feature
learning and fault classification. In [101], a method for bearing fault diagnosis using CWT,
DCNN, and random forest (RF) ensemble learning is proposed. In this method, the CWT is
used to produce vibration images from the original vibration signals; then, a CNN with
LeNet-5 is employed to extract multi-level features that are sensitive to the detection of
bearing faults from the vibration images. With these extracted features, the ensemble of
multiple RF classifiers is used to perform the classification task. Similarly, Tang et al. [102]
proposed a method for the hydraulic axial piston pump using CWT and CNN. In [103], the
authors presented an approach for bearing fault diagnosis using multi-branch DNN. This
approach used two vibration image representations, namely the time domain grayscale
and the scalogram of the original vibration signals. Then, the two image representations
were combined and used as inputs for a multi-branch DNN (MB-DNN) to perform the
tasks of learning the features of the vibration images and classifying the health condition
of bearings.

4.3. Hilbert–Huang Transform (HHT)

The HHT computes the instantaneous frequency of a time series signal x(t), which
reveals the intra-wave frequency modulations [104]. It can be defined by the complex
conjugate y(t) of the targeted time series signal x(t) such that

y(t) =
P
π

∫ +∞

−∞

x(τ)
t− τ

dτ (31)
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Here, P represents the principal value of the singular integral. The instantaneous
frequency w(t) is the time derivative of the instantaneous phase ϕ(t) such that

ϕ(t) = arctan
(

y(t)
x(t)

)
(32)

w(t) =
dϕ(t)

dt
(33)

Two simple ways to perform the HHT are: (1) by transforming the time series x(t)
into the frequency domain using FFT, shifting the phase angle of all the signal components,
and then transforming back to the time domain; (2) by decomposing the time series signal
into intrinsic mode functions (IMFs) using the empirical mode decomposition (EMD) or
variational mode decomposition (VMD) techniques and then performing the HT [105–107].
Figures 22 and 23 show examples of the produced Hilbert spectrums using HHT with EMD
and VMD, respectively, from the bearing vibration signals with the six health conditions
that were described in Section 2.1.1 above.
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4.4. Wigner–Ville Distribution (WVD)

The WVD is achieved by simplifying the relationship between the power spectrum
and the autocorrelation function for a non-stationary, time-variant process [108,109]. It
has been used in signal visualisation, detection, and estimation. The WVD can be defined
mathematically using the following equation

W(t, f ) = Fτ→ f

{
z
(

t +
τ

2

)
z∗
(

t− τ

2

)}
(34)

Here, z is the analytic signal of x(t) and can be computed as follows

z(t) = x(t) + jx̂(t) (35)

where x̂(t) is the Hilbert transform of x(t). The WVD requires sharpening as it often
contains some interference. One may use a lowpass windows filter to sharpen the distribu-
tion. Figure 24 presents examples of the computed smoothed pseudo WVD of the bearing
vibration signals with the six different health conditions.
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4.5. Variational Mode Decomposition (VMD)

The basic idea of VMD is to decompose the input signal into a discrete number of
sub-modes, which have particular sparsity properties [106,110,111]. The bandwidth of each
mode is selected to be the sparsity prior in the spectral domain. As described in [106], the
bandwidth of a mode can be assessed using the following steps:

1. Compute the analytic signal using HHT.
2. Shift the mode’s frequency spectrum to the baseband.
3. Estimate the bandwidth using the H1 Gaussian smoothness of the demodulated

signal.

The solution can be described as a constrained variation problem such that

min
{uk}, {wk}

{
∑k ||∂t[(δ(t) +

j
πt

)× uk(t)e−jwkt||2
2

}
subject to ∑k uk = f (36)

Here, uk is the set of all modes, wk is the set of their corresponding center pulsation, ∂t
is the first-order partial derivative, and δ(t) is the average pulse function. Next, there is the
augmented Lagrangian L such that

L({uk}, {wk} := α ∑k ||∂t[(δ(t) +
j

πt )× uk(t)]e−jwkt||2
2
+

‖ f (t)−∑k uk(t)‖
2
2
+ 〈λ(t), f (t)−∑k uk(t)〉

(37)

Here, α is the secondary penalty factor and λ(t) represents the Lagrangian multiplica-
tion operator. As described in [106,112–114], Equation (37) can be solved using an alternate
direction method of multipliers (ADMM). Those readers who are interested in more details
of the mathematical formulation of VMD may be referred to [106,112]. Several studies have
assessed the efficacy of VMD in machine fault diagnosis [113–116].
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4.6. Stockwell Transform (ST)

The Stockwell transform (ST) is a time-frequency domain decomposition transform [117].
It is like a fusion between the Gabor transform and the WT [118]. Figure 25 presents examples
of the ST-based computed images of the bearing vibration signals with the six different health
conditions that were described in Section 2.1.1 above. In [118], the authors considered the
application of ST in bearing fault diagnosis where the discrete orthonormal ST (DOST) is
employed to form 2D images with identical patterns from the original vibration signals. Then, a
CNN is used to perform the feature learning and classification tasks.
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4.7. Multi-Domain Fusion Vibration Imaging (MDFVI)

In this technique, the features of the vibration images are considered in three domains
of analysis, namely the time domain, frequency domain, and time-frequency domain, to
generalise the feature space of the vibration-based health condition. In [119], each type of
feature information from the three considered domains, i.e., the time, frequency, and time-
frequency domains, is first converted into a 2D image, directly from the vibration signal,
using FFT and envelop analysis, respectively. Then, the produced 2D images are converted
into grayscale images that are combined to produce the MDFVI images. Finally, the MDFVI
images are employed as inputs into a multitask learning (MTL)-based CNN architecture
to perform the fault identification task. Dong et al. [120] proposed multi-stream CNNs
for rotating machinery fault diagnosis. In this technique, four input types, including time
domain, frequency domain, STFT-based time-frequency, and WT-based time–frequency
inputs. Then, transfer learning-based CNN with VGG16, ResNet18, and ResNet34 was
used to train models for machinery fault diagnosis.
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5. Conclusions

Computer vision is one of the artificial intelligence applications that can observe and
extract useful information from images and videos. Techniques that are able to observe,
extract, and produce features from images and videos represent the basis of various inno-
vations in digital healthcare and autonomous and smart manufacturing. These include
image and video processing, object detection and segmentation, and image classification.
In the field of machine fault diagnosis, an increased interest in converting the 1D vibration
signal into a 2D image, which often offers discriminative features of the vibration signal,
has emerged from recent advances in the field of computer vision.

In this review, we have attempted to bring together various techniques that produce
vibration image representations from the time series vibration signals in one place. Different
methods have been proposed to produce vibration image representations by encoding
the time series vibration signals enabling the use of techniques from computer vision for
machine fault diagnosis. A considerable amount of literature has been published on 2D
vibration image representations produced in the time domain, frequency domain, and time-
frequency domain for machine fault diagnosis. These techniques can be used individually
or in combination to convert the 1D vibration signal into a 2D vibration image. Table 1
summarises some of the studies that used vibration image representations produced in
the time domain. As can be seen in Table 1, with different vibration datasets, most of
the listed techniques achieve high classification accuracies (above 99%), while HVI and
HOVI with two-layer AdaBoost achieved low classification accuracies of 79.5% and 84.4%,
respectively, when used individually. In combination with SDA and PSDA, HOVI can
achieve a classification accuracy of 99% and above.

Table 1. Summary of the time domain vibration image representation techniques that are used in
different studies of machine fault diagnosis.

Ref VIR
Technique

Feature Learning and
Classification Method RM Component Dataset Best Test

Accuracies (%)

[36] RGBVI CNN Bearing

f = 12 kHz and 48 kHz
classes = 10

loads = 3
CWRU BDC Link

https://engineering.case.edu/
bearingdatacenter/download-data-
file (accessed on 18 November 2022)

100
99.9

[47] Grayscale
image CNN Bearing

f = 12 kHz
classes = 10

loads = 3
CWRU BDC Link

https://engineering.case.edu/
bearingdatacenter/download-data-
file (accessed on 18 November 2022)

99.95
98.17

[48] Grayscale
image + LBP

RF, k-NN, naive Bayes,
Bayes net, ANN Bearing f = 24 kHz

classes = 3 100

[49] Grayscale
image + DNS SVM Motor faults classes = 88 100

[50] Grayscale
image WGAN-GP + SECNN Bearing

f = 12 kHz
classes = 10

loads = 3
CWRU BDC Link

https://engineering.case.edu/
bearingdatacenter/download-data-
file (accessed on 18 November 2022)

99.6

https://engineering.case.edu/bearingdatacenter/download-data-file
https://engineering.case.edu/bearingdatacenter/download-data-file
https://engineering.case.edu/bearingdatacenter/download-data-file
https://engineering.case.edu/bearingdatacenter/download-data-file
https://engineering.case.edu/bearingdatacenter/download-data-file
https://engineering.case.edu/bearingdatacenter/download-data-file
https://engineering.case.edu/bearingdatacenter/download-data-file
https://engineering.case.edu/bearingdatacenter/download-data-file
https://engineering.case.edu/bearingdatacenter/download-data-file
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Table 1. Cont.

Ref VIR
Technique

Feature Learning and
Classification Method RM Component Dataset Best Test

Accuracies (%)

[51] Rectified
signal + LBP k-NN Bearing

f = 12 kHz
classes = 4
loads = 4

CWRU BDC Link
https://engineering.case.edu/

bearingdatacenter/download-data-
file (accessed on 18 November 2022)

100

[53] Multi-sensor
data fusion MB-CNN Bearing and Gear - 99.47

[55]
GAF
MTF
RP

CNN

Flight test
helicopters
Vibration

measurements

f = 1.024 kHz
classes = 2

Airbus SAS 2018
Link

https://www.research-collection.
ethz.ch/handle/20.500.11850/415151

(accessed on 18 November 2022)

[56] GAF
MTF Capsule networks

f = 12 kHz
f = 48 kHz
classes = 4

CWRU BDC Link
https://engineering.case.edu/

bearingdatacenter/download-data-
file (accessed on 18 November 2022)

99.81
99.51

[57] MTF ResNet CNN

f = 12 kHz
classes = 10

CWRU BDC Link
https://engineering.case.edu/

bearingdatacenter/download-data-
file (accessed on 18 November 2022)

98.5

[61] HVI
HOVI Two-layer AdaBoost AMB–rotor system f = 25 kHz

classes = 4
79.5
84.4

[62]
HOVI
SDA

PSDA
MSVM Gearbox

f = 50 kHz
classes = 10

loads = 3

99.2
99.78

[63] Probability
plot

Absolute value
principal component

analysis (AVPCA)
Bearing f = 17.06 kHz

classes = 3 98.22

VIR = vibration image representations; ML = machine learning; RM = rotating machine, CWRU BDC = Case
Western Reserve University Bearing Data Center; k-NN = k-nearest neighbour classifier; MB-CNN = multi-sensor
data fusion and bottleneck layer optimized convolutional neural network; RF = random forest; ANN = artificial
neural network; WGAN-GP = Wasserstein generative adversarial network with gradient penalty; SECNN =
self-attentive CNN.

Table 2 presents a summary of some studies that used vibration image representations
produced in the frequency domain. The FFT spectrum achieved high classification accuracy
in different case studies. In addition, Table 3 shows a summary of some studies that used
vibration image representations produced in the time–frequency domain. It has been
demonstrated by these studies that 2D vibration image representations in the frequency
domain and time–frequency domain are valuable and able to achieve high classification
accuracies in different scenarios of machine fault diagnosis. The following conclusions and
insights for future research can be drawn from the present review:

1. The most obvious finding to emerge from the analysis in Tables 1–3 is that most of the
listed techniques were able to achieve high classification accuracies.

2. The machine fault diagnosis accuracies are likely to be related to how well the vi-
bration image representations are produced using the various techniques described
in this review and to how efficiently they are capable of divulging diverse forms of
features for each machine health condition.

https://engineering.case.edu/bearingdatacenter/download-data-file
https://engineering.case.edu/bearingdatacenter/download-data-file
https://engineering.case.edu/bearingdatacenter/download-data-file
https://www.research-collection.ethz.ch/handle/20.500.11850/415151
https://www.research-collection.ethz.ch/handle/20.500.11850/415151
https://engineering.case.edu/bearingdatacenter/download-data-file
https://engineering.case.edu/bearingdatacenter/download-data-file
https://engineering.case.edu/bearingdatacenter/download-data-file
https://engineering.case.edu/bearingdatacenter/download-data-file
https://engineering.case.edu/bearingdatacenter/download-data-file
https://engineering.case.edu/bearingdatacenter/download-data-file
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3. The multi-domain fusion of information features from different domains can gen-
eralise the feature space of the vibration-based health condition, which makes it a
promising technique to be used for producing vibration images from time series
signals.

4. The CNN deep learning architecture has been utilised in most of the studies, given its
robust performance in image classification.

5. Researchers have successfully employed various feature-learning and classification
algorithms for fault classification using the produced vibration images. Of these, the
deep learning techniques of the CNN-based pre-trained nets for transfer learning,
such as ResNet, DenseNet, and LeNet-5, are promising in vibration image-based fault
diagnosis. The CNNs have been used extensively with the produced vibration images
for their reliability and validity in image classification. They are mainly beneficial
for finding patterns in the produced vibration images for detection and classification
tasks.

6. For further improvement in the performance of CNNs in vibration-based fault diagno-
sis, future research into the regularization parameters, improvement of the activation
functions, development of new loss functions, and construction of new CNN-based
network structures will be helpful.

7. Based on the successful application of some CNN-based pre-trained nets such as
DenseNet future research might explore the use of recent developments in deep
network architectures, such as RegNet [121], EfficientNet [122], and MobileNet [123].

8. In most of these studies, the classification accuracy was considered and improved.
However, other evaluation measures for the classification model need to be considered,
such as recall, precision, F1 score, and ROC graphs.

Table 2. Summary of the frequency domain vibration image representation techniques that are used
in different studies of machine fault diagnosis.

Ref VIR Technique ML Technique RM
Component Dataset Best Test

Accuracies (%)

[69] The FFT
spectrum image

Minimum distance
criterion based on the

Eigen images
Bearing

classes = 4
loads = 4

CWRU BDC Link
https://engineering.case.edu/

bearingdatacenter/download-data-
file (accessed on 18 November 2022)

100

[72] The FFT
spectrum image CNN Bearing

f = 12 kHz
classes = 12

CWRU BDC Link
https://engineering.case.edu/

bearingdatacenter/download-data-
file

(accessed on 18 November 2022)

99.5

[73]

The FFT
spectrum image
based on
segmented time
series signal

ANN Bearing

f = 12 kHz
classes = 4

CWRU BDC Link
https://engineering.case.edu/

bearingdatacenter/download-data-
file

(accessed on 18 November 2022)

100

https://engineering.case.edu/bearingdatacenter/download-data-file
https://engineering.case.edu/bearingdatacenter/download-data-file
https://engineering.case.edu/bearingdatacenter/download-data-file
https://engineering.case.edu/bearingdatacenter/download-data-file
https://engineering.case.edu/bearingdatacenter/download-data-file
https://engineering.case.edu/bearingdatacenter/download-data-file
https://engineering.case.edu/bearingdatacenter/download-data-file
https://engineering.case.edu/bearingdatacenter/download-data-file
https://engineering.case.edu/bearingdatacenter/download-data-file
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Table 2. Cont.

Ref VIR Technique ML Technique RM
Component Dataset Best Test

Accuracies (%)

[74]

The FFT
spectrum image

based on a
segmented time

series signal

CNN Bearing

f = 25.6 kHz
classes = 5

Unit of research in advanced materials
(URMA)

f = 48 kHz
classes = 10

CWRU BDC Link
https://engineering.case.edu/

bearingdatacenter/download-data-
file (accessed on 18 November 2022)

100

99.68

[75] The FFT
spectrum image ANN Fan f = 1.6 kHz

classes = 4 99.01

[76] Adjusted FFT
Spectrum Image 2DPCA + NNC Bearing

f = 12 kHz
classes = 4
loads = 4

CWRU BDC Link
https://engineering.case.edu/

bearingdatacenter/download-data-
file (accessed on 18 November 2022)

100

[80]

Image
representations

using
bi-spectrum

Probabilistic neural
network PNN

Axial piston
hydraulic pump

and
Self-priming

centrifugal pumps

f = 10.239 kHz
classes = 5

f = 1 kHz
classes = 3

98.33

98.71

Table 3. Summary of the time-frequency domain vibration image representation techniques that are
used in different studies of machine fault diagnosis.

Ref VIR Technique ML Technique RM
Component Dataset Best Test

Accuracies (%)

[82]
The STFT
spectrogram
image

CNN-AE Rotary system
classes = 5
loads = 4

f = 12 kHz
99.8

[83]
The STFT
spectrogram
image

CNN based
on a capsule network

with an inception block
(ICN)

Bearing

f = 48 kHz
loads = 3

CWRU BDC Link
https://engineering.case.edu/

bearingdatacenter/download-data-file
(accessed on 18 November 2022)

and
f = 64 kHz
loads = 3

Paderborn University, Faculty of
Mechanical Engineering

https://mb.uni-paderborn.de/en/kat/
main-research/datacenter/bearing-
datacenter/data-sets-and-download

(accessed on 18 November 2022)

97.15

https://engineering.case.edu/bearingdatacenter/download-data-file
https://engineering.case.edu/bearingdatacenter/download-data-file
https://engineering.case.edu/bearingdatacenter/download-data-file
https://engineering.case.edu/bearingdatacenter/download-data-file
https://engineering.case.edu/bearingdatacenter/download-data-file
https://engineering.case.edu/bearingdatacenter/download-data-file
https://engineering.case.edu/bearingdatacenter/download-data-file
https://engineering.case.edu/bearingdatacenter/download-data-file
https://mb.uni-paderborn.de/en/kat/main-research/datacenter/bearing-datacenter/data-sets-and-download
https://mb.uni-paderborn.de/en/kat/main-research/datacenter/bearing-datacenter/data-sets-and-download
https://mb.uni-paderborn.de/en/kat/main-research/datacenter/bearing-datacenter/data-sets-and-download
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Table 3. Cont.

Ref VIR Technique ML Technique RM
Component Dataset Best Test

Accuracies (%)

[84]
The STFT
spectrogram
image

CNN using the scaled
exponential linear unit

(SELU) and hierarchical
regularization

Bearing

f = 12 kHz
classes = 10

CWRU BDC Link
https://engineering.case.edu/

bearingdatacenter/download-data-file
(accessed on 18 November 2022)

and
f = 12.8 kHz
Classes = 4

Yanshan University, Qinhuangdao,
Hebei 066004, P. R. China. Bearings
dataset collected from a mechanical

vibration
simulator

100

97.81

[85]
The STFT
spectrogram
image

Image classification
transformer (ICT) Bearing

f = 12 kHz
classes = 4
loads = 4

CWRU BDC Link
https://engineering.case.edu/

bearingdatacenter/download-data-file
(accessed on 18 November 2022)

98.3

[86]
The STFT
spectrogram
image

CNN Bearing

f = 97.6 and 48.8 kHz
classes = 3
MFPT Link

https:
//www.mfpt.org/fault-data-sets/
(accessed on 18 November 2022)

94.99

[87]
The STFT
spectrogram
image

DCNN High-speed milling
machine

f = 50 kHz
milling cutters = 3

[88]
The STFT
spectrogram
image

2DCNN
Bearing

and
Tool wear

f = 12 kHz
classes = 4

CWRU BDC Link
https://engineering.case.edu/

bearingdatacenter/download-data-file
(accessed on 18 November 2022)

and
f = 100 kHz
classes = 2

100

100

[89]

The Grad-CAM
activation maps
for STFT-based

images

CNN Bearing

f = 12 kHz
classes = 12

CWRU BDC Link
https://engineering.case.edu/

bearingdatacenter/download-data-file
(accessed on 18 November 2022)

and
f = 100 kHz
classes = 7

96.9

88

[91]

The Grad-CAM
activation maps
for STFT-based

images

CNN
NN

ANFIS
Bearing

f = 12 kHz
classes = 4

CWRU BDC Link
https://engineering.case.edu/

bearingdatacenter/download-data-file
(accessed on 18 November 2022)

100
100
96.9

[93] Order maps CNN Locomotive rolling
element bearings

f = 25.6 kHz
classes = 3

and
f = 20 kHz
classes = 5

98.4

98.6

[100] CWT RDPN-FCDAE Bearing f = 20 kHz
classes = 9 98.28

https://engineering.case.edu/bearingdatacenter/download-data-file
https://engineering.case.edu/bearingdatacenter/download-data-file
https://engineering.case.edu/bearingdatacenter/download-data-file
https://engineering.case.edu/bearingdatacenter/download-data-file
https://www.mfpt.org/fault-data-sets/
https://www.mfpt.org/fault-data-sets/
https://engineering.case.edu/bearingdatacenter/download-data-file
https://engineering.case.edu/bearingdatacenter/download-data-file
https://engineering.case.edu/bearingdatacenter/download-data-file
https://engineering.case.edu/bearingdatacenter/download-data-file
https://engineering.case.edu/bearingdatacenter/download-data-file
https://engineering.case.edu/bearingdatacenter/download-data-file
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Table 3. Cont.

Ref VIR Technique ML Technique RM
Component Dataset Best Test

Accuracies (%)

[101] CWT CNN with LeNet-5 and
RF Bearing

f = 12 kHz
classes = 10

CWRU BDC Link
https://engineering.case.edu/

bearingdatacenter/download-data-file
(accessed on 18 November 2022)

and
f = 20 kHz
classes = 4

Tongji University

99.73

97.38

[102] CWT CNN Hydraulic axial
piston pump

f = 24.5 kHz
classes = 5 98.44

[103] Grayscale image
+ Scalogram DNN Bearing

f = 12 kHz
classes = 10

CWRU BDC Link
https://engineering.case.edu/

bearingdatacenter/download-data-file
(accessed on 18 November 2022)

100

[107]
STFT
WT

HHT
CNN Bearing

f = 97.6
classes = 3
MFPT Link

https:
//www.mfpt.org/fault-data-sets/
(accessed on 18 November 2022)

91.7
99.9
91.7

[109] WVD ANN Bearing - -

[113] VMD DenseNet Bearing

f = 200 kHz
classes = 5

University of Ottawa Link
https://data.mendeley.com/datasets/

v43hmbwxpm/2 (accessed on 18
November 2022)

92.0

[114] VMD ResNet 101 Motor

f = 51.2 kHz
classes = 6

the Federal University of Rio de Janeiro
Link

https://www02.smt.ufrj.br/~offshore/
mfs/page_01.html#SEC2 (accessed on

18 November 2022)

94.0

[115] VMD CNN Planetary Gear
f = 12.8 kHz
classes = 4

Spectra Quest Company
98.75

[116] VMD DNN Rail serviced
vehicle

f = 12.8 kHz
classes = 4 99.75

[118] DOST CNN Bearing

f = 12 kHz
classes = 6

CWRU BDC Link
https://engineering.case.edu/

bearingdatacenter/download-data-file
(accessed on 18 November 2022)

99.8

[119]

MDFVI
Multi-domain

fusion of
grayscale from
raw data, FFT,
and envelop

analysis

MTL-CNN Bearing

f = 65.536 kHz
classes = 4

and
f = 12 kHz
classes = 4

CWRU BDC Link
https://engineering.case.edu/

bearingdatacenter/download-data-file
(accessed on 18 November 2022)

100

100

Finally, in most of the introduced studies within these tables, links to their publicly
available vibration datasets are provided.

https://engineering.case.edu/bearingdatacenter/download-data-file
https://engineering.case.edu/bearingdatacenter/download-data-file
https://engineering.case.edu/bearingdatacenter/download-data-file
https://engineering.case.edu/bearingdatacenter/download-data-file
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https://www.mfpt.org/fault-data-sets/
https://data.mendeley.com/datasets/v43hmbwxpm/2
https://data.mendeley.com/datasets/v43hmbwxpm/2
https://www02.smt.ufrj.br/~offshore/mfs/page_01.html#SEC2
https://www02.smt.ufrj.br/~offshore/mfs/page_01.html#SEC2
https://engineering.case.edu/bearingdatacenter/download-data-file
https://engineering.case.edu/bearingdatacenter/download-data-file
https://engineering.case.edu/bearingdatacenter/download-data-file
https://engineering.case.edu/bearingdatacenter/download-data-file
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