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Abstract: This paper presents a disturbance-observer-based sliding mode control strategy for an
underwater electro-hydrostatic actuator, particularly considering that electro-hydrostatic actuators
(EHAs) significantly suffer from sea pressure disturbance, which makes it hard to achieve high-
precision position control. Therefore, a nonlinear disturbance observer was designed to aim at the
matched and mismatched disturbance caused by sea pressure disturbance. Then, a nonlinearities
model for an underwater EHA was established, and a related non-singular fast terminal sliding mode
(NFTSM) controller was designed by changing the conventional sliding mode surface to further
improve the control accuracy. In addition, the backstepping tool was used to guarantee the robust
stability of the entire three-order hydraulic dynamic system. Finally, a comparative simulation was
conducted with different load forces in AMESim and Simulink, which effectively verified the high
tracking performance of the proposed control strategy.

Keywords: underwater elector hydrostatic actuator; disturbance observer; backstepping control;
sliding-mode control

1. Introduction

The marine hydraulic system plays an important role in today’s ocean equipment,
such as underwater hydraulic manipulators [1], hydraulic steering gear, and electric hy-
draulic excavators [2]. However, with the demand in the improvement of exploration
depth and precision, the drawbacks of traditional hydraulic systems, such as a large vol-
ume, high energy consumption and high leakage, have gradually become an obstacle for
systems working perfectly in an ocean environment. Compared with traditional hydraulic
systems, an electro-hydrostatic actuator (EHA) has a higher integration and lower energy
consumption, which makes it a very suitable hydraulic equipment for working in the
ocean filed. However, most of the current electro-hydrostatic actuators are applied in the
aerospace field. If EHA is applied underwater, it must overcome two difficulties. One is
the structure design adapted to the underwater environment and another is the position
controller design that provides the fundamental function for working.

In the case of structure design, Liu et al. [3] added a pressure compensator to balance
the pressure of the sea, and the dynamic characteristics of the pressure compensator were
established. However, it only considers the matched disturbance due to the assumption
of a static state for the pressure compensator. In the case of position controller design,
the performance of position tracking control is unsatisfactory due to the underwater EHA
system facing not only the nonlinearities of the hydraulic system but also the disturbance
brought about by the underwater environment. We can classify the disturbance of seawater
as matched and mismatched disturbance.
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In order to deal with the matched and mismatched disturbance/uncertainty, there are
several general approaches, such as sign of the error (RISE) control [4], robust control [5–8],
and disturbance-observer-based control (DOBC) [9,10]. The mismatched disturbance is the
main difficulty compared with matched disturbance, which has been considered by some
literature. Firstly, two auxiliary error signals were introduced into the recursive backstep-
ping design framework by Deng et al. [11–13], and the RISE feedbacks were synthesized
to eliminate the matched and mismatched uncertainties simultaneously. However, the
assumption conditions for disturbance are strict, and always demand that the disturbance
is bounded and the second derivative exists. Robust control can suppress the mismatched
disturbance using the high nonlinear gain, which is limited by the actual physical system.
In addition, the disturbance observer can observe and compensate for the matched and
mismatched disturbance/uncertainty. For example, Luo et al. [14] presented an extended
state-observer-based (ESO) to estimate not only the unmeasured system states but also
the modeling uncertainties for a hydraulic servo control system, and then designed active
disturbance rejection adaptive control. Guo [15] used ESO to handle the unknown load
disturbance and uncertain nonlinearity. In addition, neural network algorithms can also be
used to estimate the uncertainty of the system. Seo et al. [16] used a radial basis function
neural network (RBFNN) algorithm to estimate system uncertainty.

In these methods, the disturbance observer has broad application prospects in motor
and hydraulic systems. However, these are always limited to the linear disturbance
observer (LDO), which is unavailable for more general nonlinear systems. Thus, the
nonlinear disturbance observer is of great importance for the disturbance estimation of
nonlinear systems, such as [17–19]. Therefore, the nonlinear disturbance observer was used
in this paper.

In order to deal with the hydraulic system high-order nonlinearities, design tools for
the nonlinear system were produced, such as feedback linearization and backstepping
control [20,21]. The feedback linearization and backstepping control can be used as a
general design program in the process of sliding and adaptive controller design. There
are many kinds of EHA control algorithms for position control, such as adaptive con-
trol [22] and sliding mode control [23,24]. Cho and Burton [22] pointed out that, when
using a simple adaptive controller (SAC) in an EHA, the position tracking error is signifi-
cantly reduced under the external interference load compared to traditional PID control.
Wang et al. [23] applied a sliding mode controller (SMC) to a high-precision EHA position
control system to study the influence of nonlinear and discontinuous friction forces on
EHA position control. Chen et al. [24] researched terminal sliding mode tracking control
for nonlinear systems, and obtained the terminal sliding mode control model of the SISO
system. Shen et al. [25] proposed an adaptive integral terminal sliding mode controller to
guarantee the robustness of the system.

Compared with the adaptive control, the sliding mode control makes the system enter
the sliding mode motion state and converge to the control target quickly, which provides
an effective method for the robust design of time-delay and uncertain systems. The biggest
disadvantage of sliding mode control is chattering in the output of the system controller. To
solve this problem, this paper used a hyperbolic tangent function instead of a sign function
in exponential reaching law to reduce chattering.

The contributions of this study are summarized as follow:
1: The matched and mismatched uncertainty/disturbances of underwater EHA were

observed, respectively.
2: A novel sliding mode controller with an observer was designed to overcome the

unmatched and matched uncertainties.
The mathematical model of the underwater EHA is established in Section 2. The

design of the disturbance observer and sliding mode controller is established in Section 3.
The Simulink simulation of three controllers is established in Section 4. AMESim/Simulink
simulation is established in Section 5.
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2. Principles and Modeling
2.1. System Principles

The hydraulic derived principle of the underwater EHA is showed in Figure 1, which
consists of a servo motor, hydraulic pump, hydraulic cylinder, pressure compensator, safety
valve, flow matched valve, and pressure/position sensors. The servo motor provides power
for the EHA to drive the hydraulic pump movement, and its motor speed is controlled by
the integrated control unit. The hydraulic pump selected seven plunger pump because
the flow pulsation of seven plunger pumps is small. The hydraulic cylinder is asymmetric
and the pressure compensator is of rolling diaphragm type. The flow matched valve is
connected with the tank and, when the hydraulic cylinder is working, the compensated
hydraulic oil is exchanged with the tank through the flow-matched valve. The other end of
the tank is connected to a pressure compensator to overcome the seawater pressure. At the
same time, a pressure sensor is installed on the oil path in and out of the oil chamber, and a
displacement sensor is installed on the piston rod to measure the position of piston rod.
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2.2. System Modeling

Due to the closed-loop bandwidth of the servo-motor being much larger than the other
parts of the system [26–28], the servo motor dynamics can be regarded as a proportional
static equation:

ω = ku (1)

where k is the input coefficient and u is the voltage control input proportional to the pump
speed ω.

According to the flow continuity equation of the hydraulic pump, the variable speed
pump flow rate model can be presented as

qL = dpω− Ctp pL (2)

where dp is the displacement of the pump, Ctp is the total leakage coefficient of the pump,
qL is the flow of the pump, and pL is the pressure of the hydraulic pump.

For the hydraulic cylinder, the pressure dynamics are established:{
Q1 − Cip(p1 − p2) =

V10+A1xL
βe

.
p1 + A1

.
xL

−Q2 + Cip(p1 − p2) =
V20−A2xL

βe

.
p2 − A2

.
xL

(3)

where A1, A2 are the effective piston areas on each side of the cylinder piston, p1, p2 are
the pressure of the two chambers, respectively, V10, V20 are the initial volumes of the of the
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two chambers, respectively, xL is piston displacement, Q1, Q2 are, respectively, the flow of
the oil inlet and outlet chambers of the hydraulic cylinder, Cip is the leakage coefficient of
the hydraulic cylinder, and βe is the coefficient of viscosity.

The cylinder motion dynamics can be modeled as

p1 A1 − p2 A2 − ps(A1 − A2) = m
..
xL + B

.
xL + Ft (4)

where ps is the seawater pressure, m is the total mass of the piston rod and load, B is viscous
damping, and Ft is the external interference force.

The flow equation for seawater pressure compensation can be modeled as [29]

Qc = A0
.
xc +

V0

βe

.
pc (5)

where Qc is the compensation quantity of the flow. The reason for this is that the effective
area of the two chambers of the asymmetric hydraulic cylinder is different, so the amount
of oil in and out is different (Q1 6= Q2) when working. A0 is the effective area of the rolling
diaphragm and V0 is the total capacity of the oil tank and pressure compensator. Since the
volume change in the compensator is far less than V0, V0 + A0xc ≈ V0.

The dynamics of seawater pressure compensation with rolling diaphragm type can be
aggregately modeled as

pc A0 − ps A0 − ksx0 − kxxc = m0
..
xc + B0

.
xc (6)

where ks is the spring stiffness, x0 is the initial displacement of the spring, kx is the total
stiffness of the spring and the rolling diaphragm, pc is the pressure inside the pressure
compensator, m0 is the mass of the pressure compensator, and B0 is the viscous damping of
the pressure compensator.

2.3. System Formulation

The state-space variables are defined as x1 = xL, x2 =
.
xL, x3 = p1. When the piston

extends, which is called working condition 1, the flow satisfies Q1 = QL, Q2 = QL −Qc,
and the pressure in the oil return chamber is equal to the pressure in the compensator
p2 = pc, which are different key assumptions compared with reference [3]. The dynamics
of the whole system can be modeled as

.
x1 = x2

.
x2 =

A1x3 − Bx2

m
+ F1

.
x3 =

βe

V10 + A1x1

[
dpu−

(
Ctp + Cip

)
x3 − A1x2

]
+ F2

where F1 = − 1
m (A2 pc + ps(A1 − A2) + Ft) and F2 = βe

V10+A1x1
Cip pc.

In contrast, defining x3 = p1 when the piston retracts, which is called working
condition 2, Q1 = QL −Qc, Q2 = QL, p1 = pc, and the dynamics of x2 and x3 are given as

.
x2 =

−A2x3 − Bx2

m
+ F1

.
x3 =

βe

V20 − A2x1

[
dpω−

(
Ctp + Cip

)
x3 + A2x2

]
+ F2

where F1 = 1
m (A1 pc − ps(A1 − A2)− Ft) and F2 = βe

V20−A2x1
Cip pc.

Assumption 1. |F1| ≤ F1, |F2| ≤ F2. F1, F2 are the mismatched and matched disturbances and
F1 and F2 are the upper bound of disturbances.

The control goal of the system is to make the position of the underwater EHA accu-
rately track the desired trajectory. Unfortunately, mismatched and matched disturbances
are the main factors that influence the precision performance.
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3. Sliding Mode Control with Disturbance Observed

In order to deal with mismatched and matched disturbances, nonlinear disturbance
was designed. Then, a novel sliding mode controller with an observer was integrated.
Considering that the design principles of the disturbance observer and controller are the
same for the two EHA working conditions, this paper only designed the observer and
controller for working condition 1 in Section 3.

3.1. Disturbance Observer Design

Define virtual variables ∆1 as follows [30]:

∆1 = F1 − δ1x2

where δ1 > 0.5 is a positive constant.
Define ∆̂1 as the estimation of ∆1:

∆̂1 = F̂1 − δ1x2 (7)

where F̂1 is the estimation of F1.
F̃1 is the observation error of F1 and ∆̃1 is the observation error of ∆1.
Take the derivative of ∆1:

.
∆1 =

.
F1 − δ1

.
x2 =

.
F1 − δ1

(
A1x3 − Bx2

m
+ F1

)
=

.
F1 − δ1

(
A1x3 − Bx2

m
+ δ1x2

)
− δ1∆1 (8)

The estimation law is given as

.
∆̂1 = −δ1

[
A1x3 − Bx2

m
− δ1x2

]
− δ1∆̂1 (9)

From (23) and (24), the following relationship is achieved:

.
∆̃1 =

.
F1 − δ1∆̃1 (10)

Theorem 1. For systems with matched disturbances, design a virtual variable observer (10). Con-
sider the relation (8): the perturbation observation error will eventually converge to a neighborhood
near the zero. ∣∣∣F̃1

∣∣∣ ≤ c1√
2δ1 − 1

where c1 is a positive number close to zero.

Proof of Theorem 1. The following Lyapunov function is established:

V =
1
2

F̃1
2

(11)

Taking the derivative of V,

.
V = F̃1

.
F̃1 = ∆̃1

.
∆̃1

= ∆̃1

[ .
F1 − δ1∆̃1

]
= −δ∆̃1

2 + ∆̃1
.
F1

(12)
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The inequality (∆̃1 −
.
F1)

2
= ∆̃1

2 +
.
F1

2 − 2∆̃1 ·
.
F1 ≥ 0 can render into

∆̃1 ·
.
F1 ≤ 1

2

(
∆̃1

2 +
.
F1

2
)

. Therefore, Equation (12) can be rewritten as

.
V ≤ −δ∆̃1

2 + 1
2

(
∆̃1

2 +
.
F1

2
)

≤ −
(

δ− 1
2

)
∆̃1

2 + 1
2 c1

2

≤ −(2δ− 1) 1
2 ∆̃1

2 + 1
2 c1

2

≤ −(2δ− 1) 1
2 F̃1

2
+ 1

2 c1
2

≤ −(2δ− 1)V + 1
2 c1

2

(13)

The convergence of the observation error F̃1 requires condition
.

V ≤ −(2δ− 1)V +
1
2 c1

2 ≤ 0. Integrate both sides of inequality (13):

ln
−(2δ− 1)V + c2

m
2

−(2δ− 1)V0 +
c2

m
2

≤ −(2δ− 1)t (14)

where V0 is the initial value of V.
Inequality (14) can be simplified as

V ≤ V0e−(2δ−1)t +
c2

m
2(2δ− 1)

(15)

Combined with Equation (11), Inequality (15) can be transformed into

∣∣∣F̃1

∣∣∣ ≤
√

2V0e−(2δ−1)t +
c2

m
2δ− 1

(16)

As time t increases, e−(2δ−1)t will gradually tend to zero. Therefore,
∣∣∣F̃1

∣∣∣ ≤ cm√
2δ−1

is satisfied.
The estimation for F2 is as follows:

F̂2 = ∆̂2 + δ2x3

.
∆̂2 = −δ2

[
βe

V10 + A1x1

[
dpu−

(
Ctp + Cip

)
x3 − A1x2

]
− δ2x3

]
− δ2∆̂2 (17)

�

Theorem 2. For systems with mismatched disturbances, design a virtual variable observer (17).
The perturbation observation error will eventually converge to a neighborhood near the zero.∣∣∣F̃2

∣∣∣ ≤ c2√
2δ2 − 1

.

wherec2 is a positive number close to zero.

Proof of Theorem 2. The proof process of Theorem 2 is the same as Theorem 1. �

3.2. Backstepping Sliding Mode Control (BSMC)

Suppose that the position command is xd.
Step 1:
Define z1 = x1 − xd,

.
z1 = x2 −

.
xd, z2 = x2 −

.
xd + c1z1.

The following Lyapunov function is established:

V1 =
1
2

z2
1 (18)
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.
V1 = z1

.
z1 = z1

(
x2 −

.
xd
)
= −c1z2

1 + z1z2 (19)

z2 = 0, V1 can be positive definite and
.

V1 < 0.
Step 2:
The following Lyapunov function is established:

V2 = V1 +
1
2

z2
2 (20)

.
V2 = −c1z2

1 + z1z2 + z2
( .

x2 −
..
xd + c1

.
z1
)

= −c1z2
1 + z1z2 + z2

(
1
m (A1x3 − Bx2 −mF1)−

..
xd + c1

.
z1

) (21)

Define x3 = 1
A1

(
Bx2 + mF1 −mc1

.
z1 + m

..
xd −mz1 −mc2z2 + mz3

)
, c2 > 0.

z3 =
A1

m
x3 −

B
m

x2 + F1 + c1
.

z1 + z1 + c2z2 −
..
xd (22)

.
V2 = −c1z2

1 − c2z2
2 + z2z3 (23)

Step 3:
The sliding mode surface function is defined as

s = k1z1 + k2z2 + z3 (24)

The following Lyapunov function is established:

V3 = V2 +
1
2

s2 (25)

.
V3 = −c1z2

1 − c2z2
2 + z2z3 + s

(
k1

.
z1 + k2

.
z2 +

.
z3
)

= −c1z2
1 − c2z2

2 + z2z3 + s
[
k1

.
z1 + k2

.
z2

+ A1
m

(
βe

V10+A1x1

(
dpu−

(
Ctp + Cip

)
x3 − A1x2

)
+ F̂2

)
− B

m

(
A1x3−Bx2

m + F̂1

)
+

.
F̂1 + c1

..
z1 +

.
z1 + c2

.
z2 −

...
x d

] (26)

The backstepping sliding mode controller can be designed:

u = 1
dp
[A1x2 +

(
Ctp + Cip

)
x3 +

V10+A1x1
βe

(−F̂2 +
m
A1
( B

m

(
A1x3−Bx2

m + F̂1

)
−k1

.
z1 − k2

.
z2 −

.
F̂1 − c1

..
z1 −

.
z1 − c2

.
z2 +

...
x d − h(s + βsign(s))))]

(27)

Substitute (27) into (26):

.
V3 = −c1z2

1 − c2z2
2 + z2z3 − hs2 − hβ|s| < 0 (28)

Proof of Stability. Define the matrix Q [31]

Q =

hk2
1 + c1 hk1k2 hk1

hk1k2 hk2
2 + c2 hk2 − 1

2
hk1 hk2 − 1

2 h

 (29)

ZTQZ =
[
z1 z2 z3

]hk2
1 + c1 hk1k2 hk1

hk1k2 hk2
2 + c2 hk2 − 1

2
hk1 hk2 − 1

2 h

z1
z2
z3


= c1z2

1 + c2z2
2 − z2z3 + hs2

(30)
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When Q is positive definite, (30) can translate into

.
V3 ≤ −ZTQZ− hβ|s| ≤ 0 (31)

|Q| = c1h(k2 + c2)−
c1 + hk2

1
4

(32)

Therefore, taking the appropriate c1,c2,k1,k2,h can make |Q| > 0 and ensures
that

.
V3 < 0.
According to the LaSalle invariance principle, when

.
V3 ≡ 0, z and s are identically

equal to 0. Therefore, when t→ ∞ , z→ 0 , and s→ 0 , x1 → xd . �

3.3. Backstepping Nonsingular Fast Terminal Sliding Mode Control Based on Hyperbolic Tangent
Function (BNFTSM)

Because of the linear sliding surface of BSMC, the higher-order EHA systems cannot
converge in finite time. Terminal sliding mode control can make higher-order systems
converge in finite time, but it needs to solve the singularity problem. Thus, a backstepping
nonsingular fast terminal sliding mode is used. The linear sliding mode surface is replaced
by a non-singular fast terminal sliding mode surface [32,33], and the hyperbolic tangent
function tanh(s/0.05) is used to replace the sign function sign(s) in the exponential reaching
law to reduce chattering.

The sliding mode surface function is defined as

s =
∫ t

0
z3dt + α1

∣∣∣∣∫ t

0
z3dt

∣∣∣∣k1

sign
(∫ t

0
z3dt

)
+ α2|z3|k2 sign(z3) (33)

In the BNFTSM sliding stage, when the system error variable is far away from the
equilibrium point, the higher-order term of

∣∣∣∫ t
0 z3dt

∣∣∣ plays a major role. Otherwise, the
higher-order term of z3 plays a major role. The combination of the two can make the system
error variable converge quickly to the equilibrium point along the sliding surface (S = 0) in
a finite time ts [32]. The proof of finite time ts is presented in [32].

Substitute (33) into (25):
.

V3 = −c1z2
1 − c2z2

2 + z2z3 + s
.
s

= −c1z2
1 − c2z2

2 + z2z3 + s
[

z3 + α1k1

∣∣∣∫ t
0 z3dt

∣∣∣k1−1
z3

+α2k2|z3|k2−1
(

A1
m

(
βe

V10+A1x1

(
dpu−

(
Ctp + Cip

)
x3 − A1x2

)
+ F̂2

)
− B

m

(
A1x3−Bx2

m + F̂1

)
+

.
F̂1 + c1

..
z1 +

.
z1 + c2

.
z2 −

...
x d

)
]

(34)

The backstepping nonsingular fast terminal sliding mode controller can be designed:

u = 1
dp

[
A1x2 +

(
Ctp + Cip

)
x3 +

V10+A1x1
βe(

−F̂2 +
m
A1

(
B
m

(
A1x3−Bx2

m + F̂1

)
− k1

.
z1 − k2

.
z2 −

.
F̂1 − c1

..
z1

− .
z1 − c2

.
z2 +

...
x d − 1

α2k2

(
|z3|2−k2 + α1k1

∣∣∣∫ t
0 z3dt

∣∣∣k1−1
|z3|2−k2 + h

(
s + βtanh

( s
0.05
))))

)]

(35)

Substitute (35) into (34):

.
V3 = −c1z2

1 − c2z2
2 + z2z3 − hs2 − hβstanh

( s
0.05

)
< 0 (36)

Lemma 1. For∀x ∈ R, ε > 0, the following inequality is true:

xtanh
( x

ε

)
=
∣∣∣xtanh

( x
ε

)
|= |x||tanh

( x
ε

)∣∣∣ > 0 (37)



Machines 2022, 10, 1115 9 of 14

The explanation is as follows:

xtanh
( x

ε

)
= x

e
x
ε − e−

x
ε

e
x
ε + e−

x
ε
=

1
e2 x

ε + 1
x
(

e2 x
ε − 1

)
(38)

This is due to the following inequality:{
e

2x
ε − 1 > 0, x > 0

e
2x
ε − 1 < 0, x < 0

x
(

e
2x
ε − 1

)
> 0 (39)

Equation (40) can be translated as

xtanh
( x

ε

)
=

1
e2 x

ε + 1
x
(

e2 x
ε − 1

)
> 0 (40)

Proof of Stability. Define the matrix Q:

Q =

hk2
1 + c1 hk1k2 hk1

hk1k2 hk2
2 + c2 hk2 − 1

2
hk1 hk2 − 1

2 h

 (41)

ZTQZ =
[
z1 z2 z3

]hk2
1 + c1 hk1k2 hk1

hk1k2 hk2
2 + c2 hk2 − 1

2
hk1 hk2 − 1

2 h

z1
z2
z3

 = c1z2
1 + c2z2

2 − z2z3 + hs2 (42)

When Q is positive definite, (30) can translate into

.
V3 ≤ −ZTQZ− hβtanh

( s
0.05

)
≤ 0 (43)

|Q| = c1h(k2 + c2)−
c1 + hk2

1
4

(44)

Therefore, taking the appropriate c1, c2, k1, k2, h can make |Q| > 0 and ensures
that

.
V3 < 0.
According to the LaSalle invariance principle, when

.
V3 ≡ 0, z and s are identically

equal to 0. Therefore, when t→ ts , z→ 0 , and s→ 0 , x1 → xd . �

4. Simulation Results
4.1. Configuration of Simulations

The performance of the proposed method was first evaluated using Simulink, in
which, the hydraulic system model was established with the S-function-based equation
of state space in Section 2.3. In addition, the control algorithm was also programmed
with S-function-based Equations (27) and (35). Furthermore, the AMESim model of the
hydraulic system was established in Simcenter AMESim, shown in Figure 2, which allows
the designer to integrate hydraulic system models with a control system in order to assess
the actuator performance at large.
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Figure 2. AMESim model.

The three controllers, PID, BSMC, and BNFTSM, were, respectively, simulated under
the conditions of 5 MPa water pressure and different load forces. The control gains were
adjustedto obtain the best tracking performance in both methods. The controller parameters
were designed as

PID: The control parameters were obtained by pole zero assignment. kp is 10,000, ki is
200, and kd is 0.

BSMC: According to Equation (32), |Q| had to be greater than 0. In addition, the
control parameters could not be too large, which could make the controller used in practice.
The values of k1, k2, c1, and c2 were usually set between 0 and 100. Thus, k1 is 10, k2 is 10,
c1 is 60, c2 is 60, h is 10, and β is 1.5.

BNFTSM: The first part was the same as with BSMC, and k1 and k2 must satisfy the
following inequality: {

1 < k2 < 2
k1 > 1

Thus, α1 is 10, α2 is 5, k1 is 1.8, k2 is 1.2, c1 is 200, c2 is 300, h is 10, and β is 1.5.
The loads forces were designed as

Case1 Ft = 4000NCase2 Ft = 4000 sin(t)N

The hydraulic system model parameters used in the Simulink and AMESim are listed
in Table 1.

Table 1. Model parameters used in the Simulink.

Parameter Value Parameter Value

m 100 kg m0 1 kg
B 2000 N/(m/s) B0 1270 N/(m/s)

V10 1.852× 10−4 m3 kx 3100 N/m
V20 5.937× 10−4 m3 Ctp 3× 10−11

dp 1× 10−6 Cip 5× 10−11

βe 7.5× 108 ps 5× 106 Pa

4.2. Comparative Analysis

The tracking performance of the controllers are shown in Figures 3–5 based on the
Simulink model. The control effect of BNFTSM is better than PID and BSMC under different
load forces, and can suppress the sudden increase error compared with BSMC. When the
load is 4000N and 4000 sin(t)N, the maximum tracking error for BNFTSM can be controlled
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at 3× 10−4 m; that is, the control accuracy is less than or equal to 0.12%. The nonlinear
observer can accurately compensate for the mismatched and matched disturbance as shown
in Figure 6, which depicts the observer errors for those disturbances. The observer accuracy
for mismatched disturbance is approximately 0.18FS%, in which, the full scale is 1× 10−2.
The observer accuracy for matched disturbance is 0.2%Fs, in which, the full scale is 1× 1010.

Machines 2022, 10, x FOR PEER REVIEW 11 of 14 
 

 

The nonlinear observer can accurately compensate for the mismatched and matched 

disturbance as shown in Figure 6, which depicts the observer errors for those 

disturbances. The observer accuracy for mismatched disturbance is approximately 

0.18FS%, in which, the full scale is 1 × 10−2 . The observer accuracy for matched 

disturbance is 0.2%Fs, in which, the full scale is 1 × 1010. 

   

Figure 3. Tracking error curves of three controllers without load force. 

   

Figure 4. Tracking error curves of three controllers under 4000N constant load force. 

   

Figure 5. Tracking error curves of three controllers under variable load force of 4000sin (𝑡)N. 

 

Figure 6. Observation error of 𝐹1 and 𝐹2. 

Figure 3. Tracking error curves of three controllers without load force.

Machines 2022, 10, x FOR PEER REVIEW 11 of 14 
 

 

The nonlinear observer can accurately compensate for the mismatched and matched 

disturbance as shown in Figure 6, which depicts the observer errors for those 

disturbances. The observer accuracy for mismatched disturbance is approximately 

0.18FS%, in which, the full scale is 1 × 10−2 . The observer accuracy for matched 

disturbance is 0.2%Fs, in which, the full scale is 1 × 1010. 

   

Figure 3. Tracking error curves of three controllers without load force. 

   

Figure 4. Tracking error curves of three controllers under 4000N constant load force. 

   

Figure 5. Tracking error curves of three controllers under variable load force of 4000sin (𝑡)N. 

 

Figure 6. Observation error of 𝐹1 and 𝐹2. 

Figure 4. Tracking error curves of three controllers under 4000N constant load force.

Machines 2022, 10, x FOR PEER REVIEW 11 of 14 
 

 

The nonlinear observer can accurately compensate for the mismatched and matched 

disturbance as shown in Figure 6, which depicts the observer errors for those 

disturbances. The observer accuracy for mismatched disturbance is approximately 

0.18FS%, in which, the full scale is 1 × 10−2 . The observer accuracy for matched 

disturbance is 0.2%Fs, in which, the full scale is 1 × 1010. 

   

Figure 3. Tracking error curves of three controllers without load force. 

   

Figure 4. Tracking error curves of three controllers under 4000N constant load force. 

   

Figure 5. Tracking error curves of three controllers under variable load force of 4000sin (𝑡)N. 

 

Figure 6. Observation error of 𝐹1 and 𝐹2. 

Figure 5. Tracking error curves of three controllers under variable load force of 4000 sin(t)N.

Machines 2022, 10, x FOR PEER REVIEW 11 of 14 
 

 

The nonlinear observer can accurately compensate for the mismatched and matched 

disturbance as shown in Figure 6, which depicts the observer errors for those 

disturbances. The observer accuracy for mismatched disturbance is approximately 

0.18FS%, in which, the full scale is 1 × 10−2 . The observer accuracy for matched 

disturbance is 0.2%Fs, in which, the full scale is 1 × 1010. 

   

Figure 3. Tracking error curves of three controllers without load force. 

   

Figure 4. Tracking error curves of three controllers under 4000N constant load force. 

   

Figure 5. Tracking error curves of three controllers under variable load force of 4000sin (𝑡)N. 

 

Figure 6. Observation error of 𝐹1 and 𝐹2. Figure 6. Observation error of F1 and F2.

The tracking-performance-based AMESim model is shown in Figures 7–9. Because
more factors are considered in the design of AMESim model parameters, such as the dead
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zone of the hydraulic cylinder and the dynamic characteristics of the valve, it is more
accurate than the Simulink model. Therefore, the control effect of the controller will be
different. The control effect of BNFTSM and BSMC is better than PID under case 1 and
case 2. Under a constant load, the control accuracy of BNFTSM (2× 10−5 m) is better than
that of BSMC (1× 10−4 m), but BSMC control is more stable and BNFTSM oscillates more
violently. BNFTSM performs better than BSMC under a time-varying load.
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5. Conclusions

Aiming at the high precision control of an underwater electro-hydrostatic actuator,
a non-singular terminal sliding mode controller based on a disturbance observer was
designed. It is worth mentioning that the matched and unmatched disturbances were
overcome. In addition, by changing the equation of the sliding mode surface, its control
accuracy was further improved, which was verified by the simulation of AMESim and
Simulink under time-varying load conditions. The control strategy plays an important role
in the underwater EHA system, which can work perfectly in the ocean exploration field.
In further studies, synchronized control for multiple actuators [34,35] and fault-tolerant
control [36] will be conducted.
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