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Abstract: Axial-flux permanent-magnet (AFPM) motors are a kind of important motor with compact
structure, high power density and high torque density. In this review, the progress of AFPM motors
and their key technologies are analyzed and described, with emphasis on the topological structures,
design and optimization methods and control techniques. Based on these analyses, the main findings
of the review are the following: (1) the yokeless and segment armature (YASA)-type motors have
great potential for development; (2) the multi-objective optimization design theories can be integrated
and applied to optimize the design of AFPM motors; and (3) optimal control and sensorless control
have important value in improving system reliability and reducing cost. Finally, highlights and
prospects are provided for further advancing AFPM motors.

Keywords: axial-flux permanent-magnet motors; topological structures; design and optimization
methods; control techniques

1. Introduction

Axial-flux permanent-magnet (AFPM) motors are now attractive choices for various
applications, such as new energy vehicles [1], aerospace [2], marine [3] and other industrial
applications [4,5]. The reason is that AFPM motors have the advantages of compact
structure, high torque density and high power density [6]. Compared with the conventional
radial-flux permanent-magnet (RFPM) motors, AFPM motors can be made in a smaller
volume under the same power demand, which is more suitable for compact applications.
Additionally, AFPM motors can obtain better dynamic response performance [7]. In view
of the many advantages of AFPM motors, studying the progress of AFPM motors is of
great significance.

In order to improve the comprehensive performance of AFPM motors, some studies
have presented the novel topological structures, design and optimization methods and
control techniques [8–10]. In terms of the topological structures, studies mainly focus on the
rotor shape optimization, stator design, winding structure and permanent magnet selection
and evaluate the air gap flux intensity, back electromotive force, flux linkage, cogging
torque and torque ripple performances of the designed topological structure of AFPM
motors [11–13]. In addition, in terms of the design and optimization methods, cogging
torque reduction, flux leakage reduction and torque ripple reduction are important issues
which demand attention of designers during design process [14,15], and the size design
and electromagnetic model of AFPM motors are the basis of design optimization, which
demands attention as well. Furthermore, in terms of the control techniques, the controlled
system and control algorithm are proposed to increase torque density and decrease the
cogging torque of AFPM motors [16–18], and the studies mainly focus on simplifying
the structure of controlled system and improving the precision of control algorithm to
achieve effective dynamic performance and high reliability. Based on the above, this paper
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mainly focuses on three aspects: (i) topological structures; (ii) design and optimization; and
(iii) control techniques, and Figure 1 depicts a summary of the major points of this paper.

Machines 2022, 10, x FOR PEER REVIEW 2 of 20 
 

 

controlled system and improving the precision of control algorithm to achieve effective dy-
namic performance and high reliability. Based on the above, this paper mainly focuses on 
three aspects: (i) topological structures; (ii) design and optimization; and (iii) control tech-
niques, and Figure 1 depicts a summary of the major points of this paper. 

 
Figure 1. The major points of this paper. 

1.1. Literature Survey 
In recent years, many studies on key technologies for AFPM motors have been pub-

lished, which provides references for this paper. The scope, keywords and results of the 
literature survey in this paper are given in Table 1. A total of 126 related studies were re-
ferred to in this review, of which 69.05% were published in the last 5 years (see Figure 2). 

Table 1. List of literature survey. 

Scope Keywords Results 

Web of Science and  
Engineering Village 
(Publisher: MDPI, 
Elsevier, IEEE, etc.) 

 axial flux permanent magnet 

 journal articles (100) 
 conference articles (23) 
 website reports (3) 

 topological structure 
 novel 
 design 
 modeling 
 optimization 
 improved 
 control algorithm 

 
Figure 2. Analysis of references: (a) classified by year and (b) proportion in past 5 years. 

1.2. Motivations and Contributions  
Based on the abovementioned information and the literature survey, AFPM motors 

are important and widely used, and certain progress has been made in key technologies. 
However, to date, only a few reviews on AFPM motors have been published [7,19,20]. In 
light of this, we review the research progresses of AFPM motors in this paper. We not 
only summarize the research progresses of AFPM motors in topological structures, design 

Figure 1. The major points of this paper.

1.1. Literature Survey
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1.2. Motivations and Contributions

Based on the abovementioned information and the literature survey, AFPM motors
are important and widely used, and certain progress has been made in key technologies.
However, to date, only a few reviews on AFPM motors have been published [7,19,20]. In
light of this, we review the research progresses of AFPM motors in this paper. We not only
summarize the research progresses of AFPM motors in topological structures, design and
optimization methods and control techniques but also put forward the prospects in the
future development of AFPM motors.



Machines 2022, 10, 1178 3 of 20

In order to advance the understanding and development of novel high-performance
AFPM motors, the research progress of topological structures, design and optimization
methods and control techniques of AFPM motors are extensively reviewed in this paper.
Specifically, the main contributions of this paper include: (i) a comprehensive summary
of the progress of AFPM motors (especially topological structures, design and optimiza-
tion methods and control techniques) over the past 5 years and (ii) a presentation of the
important highlights and prospects regarding the optimization and innovation of AFPM
motors. This review can provide better insight into current progress and future directions
and provide some reference value for related studies on the optimization and innovation of
AFPM motors.

2. Topological Structures of Axial-Flux Permanent-Magnet Motors

Many different topological structures of axial-flux permanent-magnet motors have
been proposed. According to the number of stators and rotors in the AFPM motor structure,
AFPM motors can be classified as four typical-types [19,21]: single-stator/single-rotor
(SSSR), double-stator/single-rotor (DSSR), single-stator/double-rotor (SSDR) and multi-
stator/multi-rotor (MSMR), as shown in Figure 3. The SSSR-type AFPM motors are widely
used in the servo drive and transportation industry due to their compact structure and high
torque capacity. However, the unbalanced axial force between stator and rotor can easily
distort the structure and produce vibration noise and reduce the life of the motors [22]. For
the DSSR-type AFPM motors, the rotor is located between two stators, and the permanent
magnet (PM) can be located on the surface or inside of the rotor, and compared with the
structure where the PM is located on the surface, embedding the PM inside the rotor can
better protect the PM from impact and corrosion [23]. The SSDR-type AFPM motors with
the stator located between two rotors have good symmetry to eliminate the unbalanced
axial forces and can improve the vibration and life of the motor during the life cycle [24].
With N stators and (N+1) rotors, the MSMR-type AFPM motors can improve the torque
density and power density without increasing the motor diameter and are very suitable for
large torque occasions such as ship propulsion [25].
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AFPM motors have gradually become the application hotspot in the field of new energy
vehicles due to their excellent characteristics [26,27]. Many studies have studied the new
topological structures of AFPM motors for new energy vehicles. AFPM motors of external
stator/internal rotor (axial flux internal rotor, AFIR)-type and external rotor/internal stator
(toroidally wound internal stator, TORUS)-type can be designed to be suitable for the drive
system of electric vehicles [28,29]. The topological structures of AFIR- and TORUS-type
AFPM motors are shown in Figure 4 [30,31]. References [32–34] designed and analyzed
the topology of AFIR-type AFPM motors and made some progress in reducing cost and
improving efficiency and service life, and references [35–37] designed TORUS-type AFPM
motors for the drive systems of electric vehicles, hybrid electric vehicles and fuel cell
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vehicles. Most of the designed AFPM motors used soft magnetic composite (SMC) cores to
improve the weak magnetic capacity and reduce the magnetic flux loss.
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In order to further improve the efficiency and power density of the AFPM motors,
the stator yoke of the TORUS-type AFPM motor is removed, and the stator structure is
partitioned by the centralized windings, obtaining a new-type of AFPM motor, the yokeless
and segment armature (YASA) topology (see Figure 5, [31,38]). Compared with the TORUS-
type AFPM motors, the YASA-type AFPM motors not only reduce the core loss but also
reduce the winding copper consumption so that the efficiency and power density of the
AFPM motors are improved. Studies on YASA-type AFPM motor mainly focus on improving
power and efficiency. Di Gerlando et al. studied and optimized the size of YASA-type AFPM
motor to further reduce the additional power loss and improve the working efficiency of
the motor [39]. Xu et al. investigated and optimized the cogging torque of the YASA
motor with SMC core [40]. Concretely, the structure of YASA motor was with 10 poles and
12 slots, and the stator cores were made of SMC material, while the rotors were made of solid
magnetic material. Fard et al. proposed a novel yokeless and segmented armature axial field
flux-switching sandwiched permanent-magnet (YASA-AFFSSPM) motor [41]. The YASA-
AFFSSPM motor with three-phase 12/19-pole was composed of a single stator and two
rotors, which could exhibit higher torque density and lower cogging torque. Reference [42]
innovatively designed the 65 kW 18-slot/20-pole YASA-type AFPM motor. The stator
and rotor of the AFPM motor were manufactured with SMC to reduce the core loss at
high frequency, and the PM was divided into three segments to reduce the magnet loss,
and reference [43] studied and compared a double-rotor/single-stator YASA and a single-
stator/single-rotor configuration, and the studies showed that YASA configuration exhibited
higher efficiencies at higher speeds, while the single-stator/single-rotor was more efficient
in high torque cycles. Currently, many motor manufacturers have developed more mature
YASA-type AFPM motor products, such as Magnax AXF290 [44], YASA 750 [45], Magelec
motor [46] and other motor products, and the peak power is higher than 200 kW and the
efficiency is more than 95%, which can be used in the drive systems of new energy vehicles.
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3. Design and Optimization of Axial-Flux Permanent-Magnet Motors

The design and analysis of AFPM motors usually starts from performance require-
ments and size constraints, followed by the matching design and optimization design
of parameters and finally the evaluation of the mechanical performance of the overall
structure [7,47]. After years of exploration in academia and industry, the unique design and
analysis methods of AFPM motors have been established. This section focuses on analyzing
and summarizing the recent advances in sizing equation, electromagnetic modeling and
optimization design of AFPM motors.

3.1. Sizing Equation

The design starts with estimating the external size of the AFPM motors to meet the
power/torque requirements under the given constraints (such as maximum allowable
geometric size, rated/peak torque, rated/peak speed, peak voltage/current, etc.) [48,49]. If
the stator resistance and leakage inductance of the AFPM motors are negligible, the output
power Pout of the AFPM motors can be calculated by Equation (1) [21,50]:

Pout = η
np

T

∫ T

0
e(t)i(t)dt =ηnpKpEpk Ipk (1)

where η is the motor efficiency; np is the number of motor phases; T is the periodic cycle of
the motor electromotive force (EMF); e(t) is the phase air-gap EMF; i(t) is the phase current;
Kp is the electrical power waveform factor; Epk and Ipk are the peak values of phase air-gap
EMF and phase current, respectively, and Kp, Epk can be defined from reference [51].

Kp =
∫ T

0

e(t)i(t)
Epk Ipk

dt (2)

Epk = KeNphBg
f
p
(1 − λ2)Do

2 (3)

where Ke is the EMF factor per unit air-gap area; Nph is the number of winding turns per
phase; Bg is the flux density in air-gap; f is the converter frequency; p is motor pole pairs;
λ is the ratio of the inner diameter Di to the outer diameter Do of the motor.

Based on the above equations, a general-purpose sizing equation for AFPM motors
can be obtained, as expressed in Equation (4) [52]:

Pout =
1

1 + Kφ

np

n1

π

2
KeKiKpKLηBg A × f

p
(1 − λ2)(

1 + λ

2
)Do

2Le (4)

where Kφ is the ratio of electrical load on rotor and stator; n1 is the number of phases of
each stator; Ki is the current waveform factor; KL is the aspect ratio coefficient related to
the motor structure considering such factors as energy consumption loss, temperature rise
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and demand efficiency; A is the total electrical load; Le is the effective axial length of the
motor; and KL = Do/Le.

The diameter ratio λ of AFPM motors is an important design parameter, which has a
significant influence on the characteristics of the AFPM motors [53]. Yesilbag et al. pointed
out that for a specific number of pole pairs, the power density of AFPM motors only
depended on λ and its maximum value is a proper optimum λ value [54]. In practice, the
optimal value of diameter ratio λ depends on the optimization objective. Although the
optimization criteria are the same for a given electrical load and magnetic flux density, the
optimal value of λ varies depending on the rated power demand, pole pairs and motor
structure [55,56]. Additionally, reference [57–60] pointed out that the reasonable definition
of parameters such as magnetic flux density, electrical load and current density could
achieve a good estimation of the main geometric dimensions of AFPM motor, which was
helpful for the parameter matching and design optimization of subsequent design and
analysis of AFPM motors.

3.2. Electromagnetic Modeling

The electromagnetic modeling of AFPM motors is the next step of motor analysis
after the sizing equation is determined, and the electromagnetic modeling is the basis
of AFPM motor optimization design and performance evaluation. The electromagnetic
model establishment and electromagnetic performance analysis methods of AFPM motors
mainly include two mainstream methods: finite element analysis (FEA) [61] and magnetic
equivalent circuit (MEC) [62]. Due to the inherent three-dimensional (3-D) structure and
magnetic flux path, the magnetic flux density distributions along the radial and axial
directions of AFPM motors show curvature effects and edge effects independently [63]. The
3-D FEA is generally recognized as the most accurate numerical tool for solving Maxwell
equations of each volume element under boundary conditions, so the electromagnetic
modeling based on FEA are widely used [64–66]. Some references [67–69] compared the
solutions of the proposed new model with the results of 3-D FEA analysis to verify the
rationality as well. However, the 3-D FEA method takes a long computational time, which
is difficult to adapt to the modeling and analysis of complex AFPM motors’ topological
structure. To overcome the drawback of 3-D FEA, several studies have proposed two-
dimensional finite element analysis (2-D FEA) modeling and analysis techniques. Gulec
and Aydin converted the 3D AFPM motor models into 2D radial flux motor models with
inner and outer rotors and 2D linear motor models for several 2D cut planes [70], as shown
in Figure 6a. Concretely, the 2D inner rotor modeling approach (IRMA), 2D outer rotor
modeling approach (ORMA) and 2D linear motor modeling approach (LMMA) were used
to slice a 3D AFPM motor problem into a number of 2D problems considering the topology
and motor symmetry. Kim and Woo developed a novel quasi-3-D model for the fast and
accurate design of AFPM machines [71], as shown in Figure 6b. In the conventional quasi-
3-D FEA, the cylindrical plane is represented as the 2-D analysis plane. However, enough
2-D analysis planes are required to achieve high accuracy. The novel quasi-3-D model used
spatial interpolation to obtain the magnetic flux distribution on virtual air-gap sections
between 2-D analysis planes, which could simplify the iteration of the optimization process,
reducing the overall time cost and provide a reduction of 98.87% compared to 3-D FEA.
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The core concept of magnetic equivalent circuit is to simplify and assume the complex
magnetic field to be equivalent to a simple circuit. And compared with FEA, MEC is
considered as a simpler method to analyze the electromagnetic model and performance of
AFPM motors [72]. Tong et al. proposed a quasi-3-D nonlinear MEC model for double-sided
AFPM machines with 36 slots and 24 poles [73]. The proposed MEC model can be used
to predict the performance of AFPM machines, including the 3-D distribution of air gap
flux densities, flux linkage, no-load back EMF and electromagnetic torque, and the no-load
magnetic field and armature magnetic field can be obtained as well. Zhao et al. presented
an improved MEC model for a coreless AFPM synchronous machine with 16 poles and
12 slots, which was used to calculate the coreless AFPM synchronous machine’s steady-
state and transient performances [74]. Zhang et al. presented a 3-D MEC model for the
magnetic field calculation in coreless AFPM synchronous generators by considering the
magnetic leakage and fringing flux [75], as shown in Figure 7a. The presented 3-D MEC
model was applied to a specific AFPM synchronous generators, and the magnetic field
distribution, no-load back EMF and torque could be calculated. Due to the large reluctance
of the main flux loop in the ironless stator motors, the end leakage fluxes of the ironless
stator AFPM motors are serious. In the light of this, an MEC model considering end
leakage fluxes was established in [76], and the MEC model diagram is shown in Figure 7b.
The established MEC model could obtain the leakage coefficients representing the ratio
of end leakage fluxes to main flux and radial coefficients representing effective radial
lengths of end leakage fluxes. In order to implement the electromagnetic modeling and
electromagnetic performance analysis of AFPM motors more quickly and accurately, some
studies comprehensively use FEA and MEC methods. In addition, some studies combine
FEA and MEC methods to implement electromagnetic modeling and the electromagnetic
performance analysis of AFPM motors more quickly and accurately [77–79], which is the
trend of modeling and analysis for AFPM motors in the future as well.
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3.3. Optimization Design

The design of AFPM motors must comprehensively consider the performance, cost and
reliability. Therefore, the optimal design of the motor is a multi-variable and multi-mode
problem [80]. For the optimization design of AFPM motors, studies mainly started with
the key parameters and used the optimization algorithms to optimize the key parameters,
and the common optimization algorithms include least square (LS) [81], genetic algorithms
(GA) [82], neural networks (NN) [83], etc. Meo et al. proposed a new hybrid approach
obtained combining a multi-objective particle swarm optimization and artificial neural
network (ANN) [84]. In order to generate the training dataset and verification dataset of
ANN, a preliminary design based on the sizing equations was developed, and then the
FEA of the machine for different values was developed as well. As shown in Figure 8a,
the numbers of neurons in the input layer, hidden layer and output layer of the ANN
model are 5, 15 and 1, respectively. Fard et al. proposed a hybrid algorithm based on
ANN and non-sorting genetic algorithm II (NSGA II) to obtain the maximum torque
density and minimum cogging torque [85], and the scheme for the ANN is shown in
Figure 8b. Patel et al. optimized the design of AFPM motors applied in electric vehicles and
proposed using GA to optimize parameters such as diameter ratio, air-gap flux density and
current density to obtain the best combination of parameters [86]. The optimization design
combination was verified in the 3D-FEA model, and the results showed that the efficiency
of AFPM motor was up to 91.5%. Additionally, some studies used hybrid algorithms
with GA to optimize the design of AFPM motors, such as a hybrid genetic algorithm
(HGA) combining simulated annealing and father-offspring selection [77], the elitist genetic
algorithm (EGA) [87], the non-dominated sorting genetic algorithm (NSGA-II) [88], etc.
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With the further development of efficient computer system and optimization the-
ory, new multi-objective optimization algorithms such as particle swarm optimization
(PSO) [89,90], bat optimization (BO) [91] and the Taguchi algorithm [92] have also been
applied to the optimization design of AFPM motors. Rostami optimized an AFPM motor
applied in electric vehicles by using multi-objective optimization algorithms of the quasi-3D
approach and PSO algorithm and evaluated the influence of the different driving cycles
(NEDC and US06) on the obtained machine parameters [93]. Obviously, the AFPM motor
design parameters optimized for different driving cycles would be quite different, and the
optimized parameters were imported into the 3D finite element model to verify the accuracy.
Chakkarapani et al. proposed multi-objective optimization techniques called the weighted
sum method (WSM), multi-objective genetic algorithm (MOGA) and niched pareto genetic
algorithm (NPGA) for the design optimization and analysis of slot-less permanent magnet
brushless DC motor [94]. The rotor radius, stator/rotor axial length, magnet thickness
and winding thickness were simultaneously accounted for in the proposed multi-objective
optimization algorithms to maximize the output torque and to reduce the total volume and
total power loss. A multi-objective design optimization technique using the response surface
modeling and a novel multi-objective multi-verse optimization (MOMVO) algorithm was
proposed for AFPM brushless DC micromotor in reference [95]. The two objectives of the
optimization were to minimize the micromotor volume and improve the joules efficiency
with the constraints of minimum required torque and maximum required back EMF. In the
optimization design and analysis of AFPM motors applied in the new energy vehicles in
addition to the basic design objectives, such as torque and power, limiting torque ripple, re-
ducing power loss and reducing vibration and noise, were important considerations as well.
In order to clearly describe the above optimization and design methods, the characteristics
of above methods are compared and analyzed in Table 2.

Table 2. Summary of the optimization and design methods.

Methods Optimization Objectives Verification Methods Ref

EGA â weight of the permanent magnets,
efficiency, sinusoidal voltage G 3D-FEA [87]

NSGA-II â air-gap field, electromagnetic
noise, 90 times rotation frequency G 3D-FEA [88]

PSO

â air gap magnetic density
fundamental wave amplitude,
waveform distortion rate, rotor
moment of inertia

G 3D-FEA and
experiment [90]

MOMVO â volume, joules efficiency G against NSGA-II [95]
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4. Control Techniques of Axial-Flux Permanent-Magnet Motors

Despite the advantages of AFPM motors, the motors are required to provide sufficient
torque and wide speed range for practical applications, which requires the motors to be
controlled [96]. The main purpose of the AFPM motor control is to obtain the appropriate
torque and speed to meet the requirements of the actual working environment and to
obtain the efficiency, stability, reliability, speed range and other comprehensive performance
improvement as well. In order to comprehensively reflect the control techniques progress of
AFPM motors, this section classifies control techniques into traditional control techniques
and novel control techniques.

4.1. Classical Control Techniques
4.1.1. Field Oriented Control (FOC)

The field-oriented control (FOC, also known as vector control, VC) is one of the
most classical motor control techniques which is widely used in the control of AFPM
motors [97,98]. FOC refers to use the frequency converter to control excitation current and
torque current, respectively. Liu and Lee proposed a closed-loop field-oriented control
realization method [99], and the closed-loop field-oriented control diagram is shown in
Figure 9a. Among the outer feedback control loop of the FOC control diagram, the desired
stator q-axis current command was calculated to satisfy the input speed command at
various loading conditions. However, the FOC control algorithm is sensitive to rotor
parameters, and the control network is more complex. Due to sliding mode control possess
high performance robustness under parameter variation and load disturbances, Akhil et al.
proposed a look-up table (LUT) based FOC with sliding mode control [100]. The inputs of
LUT were reference torque and speed, and the outputs of LUT were reference currents id
and iq, and sliding mode control could modify the outputs of the LUT to enable an optimal
control effect. The motor control system usually obtained high-precision rotor position
and speed information through the position sensor to complete the closed-loop control
of the control system [101]. In order to further improve the stability and reliability of the
control system, some studies adopted the sensorless vector control algorithms for AFPM
motors [102,103]. Luo et al. proposed the sensorless control strategy of the AFPM machine
in electrical vehicles [104], including initial rotor position estimation and rotating position
estimation, and the sensorless control strategy was convenient for in-wheel application of
electric vehicles. Generally, FOC is easy to achieve, but the control effect is not good.
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4.1.2. Direct Torque Control (DTC)

Direct torque control (DTC) is another classic technology of AFPM motor control,
and DTC refers to the technology of directly controlling the flux and torque obtained
by predicting the measured voltage and current [105]. Siami et al. proposed a DTC
method for AFPM machines [106], and the block diagram of proposed DTC is shown
in Figure 10a. The torque and flux can be calculated by means of machine equations in
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stationary reference frames, and then the torque and flow were compared with the reference
value in the hysteresis controllers to complete the control. However, only six active voltage
vectors of inverters in the DTC method were used to control torque and flux. Aiming
at the dynamic performance of axial-field flux-switching sandwiched permanent-magnet
(AFFSSPM) motor, Fard et al. proposed a direct torque and flux control scheme [107]. The
scheme in Figure 10b could improve the torque density and reduce the cogging torque
but still needs to match the speed sensor. Nguyen et al. presented a motion sensorless
direct torque and flux control algorithm and field-weakening algorithm for dual-airgap
axial-flux permanent-magnet machines [108], which could accurately estimate flux and
speed information. The proposed algorithm eliminated the rotary encoder, which in turn
reduced the cost of the system. And in the above references [41,106], two sensorless DTC
algorithms for AFPM motors were proposed to increase the space for windings and torque
capability. Generally, DTC is simple to implement and can obtain fast torque response, but
there are also the shortcomings of torque ripple and unstable system.
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4.1.3. Improved FOC and DTC

Aiming at the shortcomings of FOC and DTC, some studies proposed the improved
FOC and DTC schemes to achieve a better control effect. For example, a sliding mode
vector control system based on collaborative optimization of axial-flux permanent-magnet
synchronous motors (AFPMSM) for electric vehicle was proposed in [109]. The proposed
sliding mode vector control algorithm could improve the dynamic performance of electric
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vehicles, including torque tracking capability, speed limiting characteristics, and operating
characteristics. For excitation copper loss and limited speed range, Yang et al. proposed a
novel vector control based on three magnetization state (MS) manipulations for axial-field
flux-switching memory machines (AFFSMM) [110], and the three MS manipulations and
vector control diagram based on the three MS manipulations are illustrated in Figure 11a,b.
Compared with the method based on proportional integral (PI) regulator, the improved
FOC control algorithm could reduce the speed and torque overshoot and improve the
dynamic performances of AFFSMM (see Figure 11c,d). In [111], Zhao et al. took the
three-stator/double rotor AFPMSM as research object and proposed the deadbeat current
predictive vector control system based on the efficiency optimal torque distribution method.
The proposed deadbeat current predictive vector control system could effectively improve
the torque tracking characteristics and achieved no torque overshoot and small torque ripple
at steady state. Moreover, some studies also proposed the improved control techniques
based on extended disturbance observer [112] and sliding mode observer [102,113,114] to
further improve the control effect and accuracy of AFPM motors.
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4.2. Novel Control Techniques

With the further development of control theory and optimization theory, some studies
have proposed novel control techniques for the dynamic response performance of AFPM
motors, mainly including model predictive control (MPC) [115] and adaptive robust control
(ARC) [116]. MPC is widely used in the field of machine drive and control due to its simple
implementation, fast dynamic response and high tracking accuracy [117,118]. Yuan et al.
analyzed the topological structure of AFFSPM motor with 13 poles and 6 slots and proposed
a model predictive torque control (MPTC) method for AFFSPM motor [119]. The torque
reference value was obtained by the PI controller of the speed outer loop, and the reference
flux-linkage amplitude is set to a fixed value, ψ∗

s . Compared with the VC and DTC, the
proposed MPTC method could achieve quicker torque response speed and the smallest
torque ripple, and the flux-linkage ripple of the MPTC was only about 1.5%, which was
far less than the flux-linkage ripple of 15.3% under DTC. In addition, Zhao et al. proposed
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a continuous-control-set model predictive control (CCS-MPC) method for the AFSFPM
machine drive system [120]. In the CCS-MPC method, the maximum torque per ampere
and maximum output power flux-weakening strategies were presented in constant torque
and constant power regions, respectively. The proposed CCS-MPC method could improve
the anti-load disturbance capability and dynamic response.

The adaptive robust control can continuously obtain the input, state, output variables
and performance parameters of the controlled system and update the structure of the
controller [121,122]. Therefore, ARC can not only keep the system robust but can also
achieve the optimal control effect. Wang et al. studied and proposed an adaptive robust
drive control system for an AFPMSM of an electric medium-sized bus based on the optimal
torque distribution method, focusing on anti-disturbance control [123]. The simulation
and experimental results show that the proposed ARC method could improve the control
accuracy of the drive system and could effectively suppress the disturbances, and in [124],
Zhang et al. studied the speed sensorless control methods based on model reference
adaptive system (MRAS) for hybrid excitation axial-field flux-switching permanent-magnet
machine (HEAFFSPMM). The MRAS observer of speed was designed based on the FOC
strategy, including three speed sensorless control algorithms: stator currents, stator flux
linkages, and simplified stator currents. The control block diagrams of HEAFFSPMM with
MRAS for stator current speed sensorless control, for stator flux linkage position sensorless
control and for simplified stator current position sensorless control are respectively shown
in Figure 12a–c. The simulation and experimental results shown that the MRAS algorithm
based on simplified stator currents had good control performance and high control accuracy
(see Figure 12d).
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In order to clearly describe the characteristics of the control techniques, this paper
compares the well-established FOC and DTC algorithms with the novel control algorithms
(see Table 3). As shown in Table 3, the complexity, response and robustness of algorithms
are summarized.
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Table 3. Summary of the improved and novel algorithms.

Algorithms Complexity Response Robustness Ref

improved FOC vs. PI basically same quicker response
than PI better robustness [109]

improved FOC vs. PI more complex
control than PI

quicker response
than PI better robustness [110]

MPTC vs. DTC more complex
control than DTC

quicker response
than DTC better robustness [119]

ARC vs. PI basically same better response
than PI

better
anti-interference

ability
[123]

MPC vs. FOC more complex
control than FOC

quicker response
than FOC

better steady-state
performance than

FOC
[125]

FO-EMPC vs. FOC more complex
control than FOC

quicker response
than FOC better robustness [126]

5. Conclusions

In order to improve the size and cost, torque density, dynamic response and other
comprehensive performance factors of AFPM motors and expand their applications, it is
urgent and meaningful to explore the key technologies of AFPM motors. This paper mainly
reviewed the studies on AFPM motors in the past 5 years, which mainly included three
categories: topological structures, design and optimization methods and control techniques.
At present, some studies have made progress in the structural design and performance
improvement of AFPM motors. Despite of this, there is still much room for improvement.
The main findings of the review are the following:

1. Topological structures: There are many novel topological structures of AFPM motors,
among which the YASA-type AFPM motors have great potential for development due
to their advantages of high efficiency and high energy density. At the same time, new
materials have also been applied to the design of novel topological structures of AFPM
motors. For example, AFPM motors with printed circuit board (PCB) windings have
larger air gap flux density and can effectively reduce magnetic flux leakage, which
has broad application prospects. In the future, AFPM motor topological structures
should be innovatively developed towards simple structures, with light weight and
low cost.

2. Design and optimization methods: In the design of AFPM motors, the diameter ratio
is regarded as the most important design parameter of AFPM motors, and power
loss, torque ripple and vibration noise are important considerations in the design
of AFPM motors as well. The three-dimensional model of AFPM motors can be
transformed into a quasi-three-dimensional model by comprehensively using the FEA
and MEC analysis, and on this basis, the multi-objective optimization design theories
are integrated to optimize the design of AFPM motors, which can achieve accurate
modeling and efficient analysis of AFPM motors.

3. Control techniques: The AFPM motors have high requirements for the control sys-
tem, such as simplicity, stability and reliability. With the development of traditional
control algorithms (FOC and DTC), the novel control algorithms (such as MPC and
ARC) are design and proposed to optimize the control of AFPM motors, and the
sensorless control algorithm can improve reliability and reduce cost. In the future, the
control techniques of AFPM motors will be further explored and developed around
comprehensive aspects such as robust performance, dynamic response ability and
intelligence level.

The novel topological structures, the accurate electromagnetic models, the design
and optimization methods and the excellent control techniques will promote the rapid
development of the overall performance of AFPM motors. In the future, our work will



Machines 2022, 10, 1178 15 of 20

focus on the optimization design and dynamic performance improvement of AFPM motors
for new energy vehicles.
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