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Abstract: Vision-based three-dimensional (3D) shape measurement techniques have been widely
applied over the past decades in numerous applications due to their characteristics of high preci-
sion, high efficiency and non-contact. Recently, great advances in computing devices and artificial
intelligence have facilitated the development of vision-based measurement technology. This paper
mainly focuses on state-of-the-art vision-based methods that can perform 3D shape measurement
with high precision and high resolution. Specifically, the basic principles and typical techniques of
triangulation-based measurement methods as well as their advantages and limitations are elaborated,
and the learning-based techniques used for 3D vision measurement are enumerated. Finally, the
advances of, and the prospects for, further improvement of vision-based 3D shape measurement
techniques are proposed.

Keywords: three-dimensional measurement; stereo vision; triangulation; laser scanning; structured
light; system calibration; deep learning

1. Introduction

The technical exploration of extracting three-dimensional (3D) information from two-
dimensional (2D) images began with the research on the image processing of polyhedral
block world by L. R. Roberts in the mid-1960s. An important landmark in the develop-
ment of 3D machine vision was the computational theory of vision proposed by David
Marr [1], who worked in the artificial intelligence laboratory of the Massachusetts Institute
of Technology (MIT) during the 1970s and published a book [2] which provided a complete
theoretical framework of machine vision systems in 1982. Since then, vision-based 3D
perception methods have been widely studied and employed in industrial manufacturing,
biomedical engineering and reverse engineering due to their merits of high precision, high
efficiency and non-contact [3]. Recently, the explosive growth of artificial intelligence (AI)
technology has given a boost to vision-based 3D shape measurement techniques with its
powerful capability of data representation [4,5]. Intelligent robots have been developed to
perceive their external environment and autonomously navigate by utilizing 3D vision tech-
niques [6,7]. Vision-based 3D measurement is no doubt the core technology of an advanced
manufacturing industry characterized by networked and intelligent manufacturing.

Vision-based 3D measurements can be classified into active and passive methods.
The passive methods realize 3D sensing without active illumination, and according to the
number of used cameras they can be divided into monocular vision, stereo vision [8], and
multiple view vision-based measurements [9]. Monocular vision-based measurements can
be classified into two major categories: the conventional methods including shape from
focus (SFF) [10], structure from motion (SFM) [11], simultaneous localization and mapping
(SLAM) [12], etc.; and the learning-based methods, [13] which use a large number of sample
data to train convolutional neural network (CNN) and then obtain the depth information of
the scene through network model. These passive methods are often limited by the texture
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of scenes and have lower accuracy compared with the active methods, represented by time-
of-flight (ToF) [14], triangulation-based laser scanning [15] and structured light (SL) [16],
phase measuring deflectometry (PMD) [17], differential interference contrast [18], etc.

ToF and triangulation-based 3D vision measurements are the most popular and widely
used methods in daily life and industrial production. ToF, as one of the active vision meth-
ods, has recently been brought into focus in the consumer hardware space (e.g., Microsoft
Kinect, Intel RealSense, HUAWEI P40 Pro) and has been applied to various applications at
the consumer level (e.g., 3D reconstruction, face recognition, virtual reality). In a typical
ToF system, an active optical emitter and a receiver are used to emit light and receive the
optical signal reflected by the scene in time domain, respectively. Depth information of
the scene can be obtained by recording the time difference between the light emission and
the reception. However, ToF has certain limitations in industrial applications. The time
difference for short distances is difficult to calculate accurately, and the achievable depth
resolution is from a millimeter to submillimeter, which is relatively low due to the very fast
propagation speed of light.

Triangulation-based methods require the capture of images from at least two perspec-
tives due to the depth ambiguity of monocular imaging. Photogrammetry that originated
in the field of surveying and mapping captures images from multiple perspectives followed
by matching the common feature points in the images. Camera poses and 3D points can be
calculated based on the triangulation and bundle adjustment. Despite the measurement co-
ordinate system, photogrammetry is similar to SFM [11] in computer vision, which carries
out 3D reconstruction from 2D images. Photogrammetry only obtains a set of sparse 3D
points of the scene and needs a gauge to recover the absolute scale. Stereo vision captures
images from two known perspectives and then identifies and matches the corresponding
features in the images. The 3D profile can be recovered using the known intrinsic and
extrinsic camera parameters. It also has low spatial resolution and has difficulty in dealing
with textureless scenes. To address the above problems of passive vision methods, laser
scanning and SL techniques were proposed to introduce artificial textures into textureless
scenes, so as to realize 3D reconstruction with high resolution and accuracy. A laser scan-
ning system usually uses a line laser to project one or more laser stripes onto an object, and
3D scanning is performed with the movement of the stripe or object. Three-dimensional
geometry information is then acquired by extracting the modulated laser stripes based on
the calibrated laser triangulation model. SL techniques can acquire a 3D profile with full
field of view in single measurement. A group of images with encoded features is projected
onto the object followed by the capture and decoding of the SL patterns modulated by the
object profile, and then accurate and efficient 3D data can be obtained using the calibrated
SL system model.

With the impressive advancement of AI, the research of vision-based 3D shape mea-
surement technology is making constant breakthroughs. This paper elaborates the state-of-
the-art triangulation-based methods for their achievable high resolution and accuracy and
practicability in engineering. Specifically, the basic principles and typical techniques as well
as their advantages and limitations are reviewed in this paper. The learning-based 3D vision
measurements are also discussed. On this basis, opinions about the challenges and per-
spectives of vision-based 3D shape measurement technology towards further improvement
are proposed.

2. Basics of Vision-Based 3D Measurement
2.1. Camera Model

The camera is the core component in a vision-based 3D measurement system. The
mathematical relationship between a given 3D point in the world coordinate system and
its 2D projection on the image plane can be described based on a pinhole model. As shown
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in Figure 1a, a 3D point Pw(Xw, Yw, Zw) in the world coordinate system OwXwYwZw is
transformed to a 2D pixel p(u, v) in the image coordinate system ouv by the camera lens:

s
[

u v 1
]T

= Kc[R|t]
[

Xw Yw Zw 1
]T (1)

where Kc represents the projection matrix of the camera, R and t represent the rotation
matrix and translation matrix from the 3D world coordinate system to the 3D camera
coordinate system, respectively, and s represents the scaled factor.

Figure 1. Schematic of camera model. (a) Perspective camera model; (b) telecentric camera model.

For perspective lens,

Kc =

 fx 0 cx
0 fy cy
0 0 1


where fx, fy, cx and cy are the intrinsic parameters.

For telecentric lens [19], the imaging process is a parallel projection, as shown in
Figure 1b, and

Kc =

 m 0 cx
0 m cy
0 0 0

s = 1

where m represents the equivalent focal length.
To expand the depth of focus in the case of high magnifications, the image sensor is

often tilted relative to the optical lens to focus on an oblique plane, which is called the
Scheimpflug condition [20], as shown in Figure 2a. The tilt of the image plane causes
two perspective parameters of τx and τy, which are rotation angles about the ox axis and
o′y′ axis, respectively, as shown in Figure 2b. A Scheimpflug camera model is useful for
a triangulation-based machine vision system [21,22], which introduces two additional
transformation matrices on the basis of general camera model and can be expressed as:

s
[

u v 1
]T

= KcKτ Rτ [R|t]
[

Xw Yw Zw 1
]T (2)

where Rτ and Kτ are the rotation matrix and the projection matrix, respectively, calculated
by two tilt angle τx and τy as:

Rτ =

 cos
(
τy
)

0 − sin
(
τy
)

0 1 0

sin
(
τy
)

0 cos
(
τy
)

 1 0 0

0 cos(τx) sin(τx)

0 − sin(τx) cos(τx)

 =

 cos
(
τy
)

sin
(
τy
)

sin(τx) − sin
(
τy
)

cos(τx)

0 cos(τx) sin(τx)

sin
(
τy
)
− cos

(
τy
)

sin(τx) cos
(
τy
)

cos(τx)

 (3)

Kτ =

 cos
(
τy
)

cos(τx) 0 sin
(
τy
)

cos(τx)
0 cos

(
τy
)

cos(τx) − sin(τx)
0 0 1

 (4)
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Figure 2. Schematic of a Scheimpfug camera model. (a) Optical structure; (b) coordinate systems.

Due to manufacturing and assembly errors in the lens, geometrical distortions in the
radial and tangential direction exist in actual images to some extent, and all of the camera
parameters are described by:[

u v 1
]T ∼

(
fx, fy, cx, cx, k1, k2, k3, p1, p2, τx, τy

)[
Xc Yc Zc

]T (5)

where fx, fy, cx, cy are the intrinsic parameters, k1, k2, k3, p1, p2 are the distortion coefficients,
and τx, τy are rotation angles. A camera calibration procedure is required to be conducted
to calculate these parameters.

Calibration methods for perspective cameras include conventional methods, active
movement methods and self-calibration methods. Conventional methods [23,24] usually
employ a standard target with known parameters to produce the correspondence between
3D points and pixel points. The standard target could be 1D, 2D or 3D, among which the
most efficient and widely used is 2D targets with several corner features on the plane [23].
However, the calibration accuracy of these methods relies heavily on the manufacturing
accuracy of calibration targets and in some cases it may not be suitable to place calibration
targets. Active movement methods [25,26] realize camera calibration by controlling the
camera for specific movements followed by analyzing the change of captured images.
Active movement methods are flexible and do not require any calibration targets but are
limited by the movement devices. To address the limitations of conventional methods and
active movement methods, self-calibration methods have been developed that do not utilize
any calibration board or movement, represented by vanishing points based methods [27]
and Kruppa equations based methods [28] using geometry constraints. Self-calibration
methods can be conducted in-situ but suffer from low accuracy.

On the basis of Zhang’s method, Louhichi et al. [29] proposed a simple scheme to
carry out the calibration of a Scheimpflug camera by hand positioning a roughly known
calibration pattern and computing camera parameters using a bundle adjustment technique.
Steger et al. [30] proposed comprehensive models that can handle all tilt lens types and
an algorithm to calibrate an arbitrary combination of perspective and telecentric cameras.
In practice, appropriate camera calibration methods should be used according to the
specific application.

2.2. Epipolar Geometry

Three-dimensional geometry of the scene cannot be reconstructed from one single
image because one pixel point can only determine an optical ray (except for deep learning-
based algorithms, which are not under discussion in this paper). To perform 3D reconstruc-
tion, two or more images are required to be captured from different perspectives. These
images can be taken by one camera from different perspectives, which generates SFM
(generally more than two perspectives), and can also be taken by different cameras, which
comes into being stereo vision.
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The common principle of SFM and stereo vision is illuminated as epipolar geometry.
As demonstrated in Figure 3, 3D point P is captured from two perspectives and p1 and p2
are the imaging points of P; O1 and O2 are the camera centers; O1O2P is the epipolar plane;
e1 and e2 are the epipolar points; l1 and l2 are the epipolar lines; R, t are the rotational and
translational matrices from first perspective to second. Then p1 and p2 are constrained by:

xT
2 Ex1 = pT

2 Fp1 = 0 (6)

where x1 = K−1
c p1, x2 = K−1

c p2; E is called essential matrix and is expressed as E = t × R; F
is called fundamental matrix and is expressed as F = KT

c EK−1
c , where Kc is the projection

matrix of camera. The same point observed from different perspectives, and for each
pixel point p1 on the first image coordinate, the corresponding point p2 on the second
image locates on the epipolar line l2. In the process of image matching, the constraint of
epipolar geometry can reduce the computation space of corresponding points from 2D
to 1D linear space, which can substantially decrease the computation cost in multi-view
image matching.

Figure 3. Schematic of epipolar geometry.

To reconstruct the 3D data by SFM based on triangulation, the pose of camera (R and t)
should be estimated first. For a given pixel point p1 on the first image, the matching point p2
on the second image can be found by searching and calculating the similarity of sub-images
centered at p1 and p2 along l2. Using at least eight pairs of matching points [31], the essential
matrix E as well as the fundamental matrix F can be calculated. The rotation matrix R
and the translation matrix t can be acquired using the singular value decomposition (SVD)
solution of E or F. Then the depth of the matching points can be obtained. Due to the
homogeneity of Equation (6), the scale of obtained E, R and t is ambiguous, which causes
the scale ambiguity of 3D data. Therefore, a standard or calibrated scale is often used to
eliminate the scale ambiguity of obtained 3D data.

In contrast, since the rigid transformation matrix including the rotation R and transla-
tion t between the two cameras is known in stereo vision system, the 3D data of a given pair
of matching points can be obtained directly based on triangulation. Stereo matching is a
key step for stereo vision. To improve the searching speed of stereo correspondence, stereo
rectification [32] is conducted to make the stereo images lie in the same plane, and epipolar
lines l1 and l2 are horizontally aligned, as demonstrated in Figure 4. The corresponding 3D
point P(X, Y, Z) of point pair (pl, pr) can be obtained by:

X =
Z(ul − cx)

f
, Y =

Z
(
vl − cy

)
f

, Z =
B · f

−[d− (cx − c′x)]
(7)

where B represents the baseline of two cameras, f represents the focal length, (cx, cy)
represents the left camera center, d is the disparity and d = xl − xr.
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Figure 4. Schematic diagram of parallel stereo vision.

2.3. Laser Triangulation

As demonstrated in Figure 5a, a laser beam generated by a laser projector is projected
onto the object. The diffuse reflection light from the surface of the object is captured by the
camera with a given angle to the incident direction. Once a laser point is captured on the
image plane, the depth of the point can be calculated using laser triangulation:

z =
b sin α sin β

sin(α + β)
(8)

where b is the baseline from the optical center C to laser beam L, and α is the angle between
the laser beam and the baseline. The value of b can be obtained after system calibration.
The angle β can be determined using the projected pixel point p and the focal length f by
β = arctan (f /p).

Figure 5. Schematic of laser triangulation. (a) Measuring principle; (b) line laser projection configuration.

Generally, to improve the measurement efficiency, line laser is often used in practical
applications to project a laser stripe onto the object. As shown in Figure 5b, all 3D points on
the laser line can be obtained by solving the simultaneous equations of the camera imaging
model and the mathematic equation of laser plane. The mathematical equation of the laser
plane is expressed by:

aXw + bYw + cZw + d = 0 (9)

where a, b, c and d are the equation coefficients, which can be calculated after system
calibration. Equations (2) and (9) provide four equations with four unknown parameters
(Xw, Yw, Zw, s) for each known pixel point (uc, vc). As discussed in Section 2.1, it is suitable
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to use a tilt lens in some cases with large magnification to ensure that the laser plane is in
focus for the entire measurement range.

The calibration process of a laser scanning system consists of three steps: camera
calibration (discussed in Section 2.1), extraction of the laser centerline and laser plane
calibration. The frequently used laser centerline extraction methods, represented by gray
centroid method, extreme value method and Gaussian fitting method, are easy and efficient
to conduct but have relatively low precision. The Steger algorithm [33] uses a Hessian
matrix to compute the normal of the laser stripe at each pixel followed by calculating the
sub-pixel result using Taylor expansion of the light stripe centerline, which achieves sub-
pixel precision but suffers from low processing speed. Laser plane calibration is conducted
by computing the 3D data of the laser stripes at different positions within the laser plane
followed by fitting a plane through the whole measurements, which can be classified into
fixed position methods, controllable relative motion methods and free motion methods [34].
Fixed position methods [35] usually employ a standard target (e.g., ball or step) to calculate
the 3D coordinates of laser stripes, and the optical plane can be fitted using the obtained
non-collinear 3D points. Controllable relative motion methods need to move or rotate a
planar target to different positions, which generates a series of 3D measurements, and
the exterior orientation of the laser plane can be fitted using the 3D points. To simplify
the operation of laser plane calibration, free motion methods [36,37] using a planar target
with free motion in space have been proposed. Based on the camera model and cross ratio
invariance, a large number of non collinear points can be extracted by freely moving the
planar target to several (more than two) positions. Then the obtained points can be utilized
to fit the laser plane equation using a RANSAC algorithm. Although the procedure of
laser plane calibration is simplified, it is not applicable for large scenes. A 1D target-based
calibration method [37] was proposed to overcome the shortcoming.

2.4. Structured Light System Model

SL systems make use of a digital projector to project encoded patterns onto the object,
which can substantially improve the stereo matching results. Similar to laser triangulation,
it might be necessary to use the Scheimpflug condition, as discussed in Section 2.1, to tilt
the image plane and the projector if high magnification lenses are adopted. As shown in
Figure 6, the projector projects encoded patterns onto the object from one perspective while
the camera captures these patterns deformed by the object profile from another perspective.
By decoding the deformed SL images, accurate and dense 3D data of every illuminated
camera pixel can be acquired using the stereo vision principle.

Figure 6. Schematic of structured light system.
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The projector is considered to be the reverse process of camera shooting as it projects
images instead of capturing images. Based on the mathematic model of a camera, an SL
system is modelled as follows:

sc
[

uc vc 1
]T

= Pcam · Tworld_to_cam
[

Xw Yw Zw 1
]T (10)

sp
[

up vp 1
]T

= Pproj · Tworld_to_proj
[

Xw Yw Zw 1
]T (11)

where Pcam and Pproj represent the projection matrices of camera and projector, respectively,
Tworld_to_cam and Tworld_to_proj represent the rigid transformation from world coordinate
system to camera coordinate and projector coordinate system, respectively.

Given that the projector cannot take pictures itself, the conventional calibration process
of SL system is complex and difficult to implement. Zhang et al. [38] proposed a scheme
to simplify the calibration process. The pixel correspondence between the camera and
the projector can be established by projecting a sequence of vertical and horizontal phase
shifting patterns. As demonstrated in Figure 7, for a given pixel in the camera image
coordinate system, the corresponding pixel in the projector image coordinate system can
be determined by locating an intersection point using the horizontal and vertical phase
values. Using the correspondence data, SL system calibration can be carried out based on
the stereo vision technique.

Figure 7. Correspondence of camera pixel and projector pixel.

Most proposed calibration methods work on the premise that the camera lens and the
projector lens are nearly focused, which could fail if the camera is substantially defocused.
To deal with the defocusing occasions and simplify the calibration process, out-of-focus
calibration methods [39,40] have been presented. These methods can produce accurate
results but might not be robust enough for complicated scenes.

3. Vision-Based 3D Shape Measurement Techniques
3.1. Stereo Vision Technique

Stereo vision is one of the most widely researched and employed 3D vision measure-
ment methods, which commonly uses a pair of synchronous cameras to capture images
from two different perspectives. By identifying and matching the common features on
the images, the depth information of the scene can be recovered based on the standard
triangulation principle. Barnard and Fischler [41] discussed the working principles and
functional modules of binocular vision systems, including image acquisition, camera cali-
bration, feature extraction, stereo matching, depth determination and interpolation, among
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which stereo matching is the most important and challenging step. The function of stereo
matching is to calculate the stereo correspondence between stereo images and generate the
disparity results. To optimize and accelerate the stereo matching algorithm, the point search
is generally conducted along a 1D horizontal line owing to the epipolar constraint-based
stereo rectification, as discussed in Section 2.2.

In the past two decades, the conventional stereo matching approaches have been
intensively researched in the field of computer vision. Daniel and Richard [42] provided a
taxonomy that divides stereo matching process into four procedures: cost computation,
cost aggregation, disparity optimization and disparity refinement, as shown in Figure 8.
The function of cost computation is to compute the similarity score of left image pixels and
corresponding candidates in the right image and generate an initial disparity result for
the left image. Several common functions including sum of absolute difference (SAD) [43],
squared intensity differences (SSD) [44], normalized cross-correlation (NCC) [45], CEN-
SUS [46], BRIEF [47], while combined functions (e.g., AD-CENSUS) are often used in this
step to calculate the similarity. The matching cost aggregation and disparity optimization
steps are carried out to acquire more accurate and robust disparity results utilizing the
contextual matching cost information and regularization terms.

Figure 8. Flowchart of stereo matching.

The conventional stereo matching algorithms can be classified into local matching al-
gorithms and global matching algorithms [48]. Local matching algorithms often choose the
pixel with the lowest matching cost as the corresponding point and produce the disparity
results. The disparity result at each pixel depends only on the intensity of the sub-image
window. Thus, local methods consider only local information and have high processing
speed but low quality. By comparison, global matching algorithms, represented by graph
cut [49] and belief propagation [50], can generate more accurate disparity results, which
normally replace the cost aggregation with a global energy optimizing framework. The
energy optimizing framework includes a data smoothness term, which is used to smooth
the disparity result among neighbor pixels, and the disparity map is finally acquired by
producing continuous depth values at the neighbor pixels. However, these algorithms are
time consuming. The semi-global method [8] computes the matching cost using mutual
information at each pixel instead of block matching. One dimensional energy minimization
along multiple directions is conducted to approximately replace two-dimensional global
energy minimization. This method achieves a good balance between computational com-
plexity and the quality of disparity results. Various stereo matching algorithms [51] have
been developed to generate a disparity map with relative high quality, but accuracy and
robustness are limited by the occlusion, lack of texture, discontinuity and uneven ambient
light. For example, the reported measurement error was 1.3% in Ref. [52]. For objects with
rich textures, the measurement accuracy could reach up to 0.12% [53].

3.2. Three-Dimensional Laser Scanning Technique

The 3D laser scanning technique has been widely applied in various applications due
to its characteristics of high precision, strong robustness and low cost. In the setup shown
in Figure 5b, the object needs to move relative to the laser plane to scan the entire 3D
surface, and the real-time relative positions between the laser plane and object are required
to be known in the process of laser scanning. Conventional laser scanning techniques are
usually based on controllable relative motion by calibrating the rotation and translation
devices [54,55]. Encoders are often used to trigger the image acquisition to ensure con-
stant motion of two adjacent frames. To realize full-field 3D reconstruction, a multi-view
laser scanning system [54] implementing a translational and rotational platform has been
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presented. The translational platform provides one-dimensional scanning from a fixed
view. The rotational platform is used to rotate the object to obtain 3D data from different
perspectives and then the entire surface data can be easily registered after utilizing the
parameters of turntable calibration. This realizes the integration of laser scanning and point
clouds registration without using any complex registration algorithm or markers-based
method but faces challenges when measuring large objects. We developed a laser scanning
system using a rotation and a translation platform for 3D reconstruction [15], as shown
in Figure 9. A stepped gauge (each step had a height of 2 mm, and a length and width of
20 mm × 5 mm) was used to evaluate the measurement accuracy, The root mean square
(RMS) errors in the translation scan and rotation scan were 0.016 and 0.031 mm, respectively.
An industrial robot was also used to replace the motion platform to realize multiple axes
scanning [56].

Figure 9. Dual-platform laser scanning. (a) Configuration; (b) translational scanning point cloud;
(c) rotational scanning point cloud [15].

These methods mentioned above usually need a high-precision mechanical platform
or robot for scanning, but they are not suitable for some application scenarios with the
requirement of a higher scanning speed and lower cost. In order to simplify the scan-
ning process, Winkelbach et al. [57] designed a 3D sensing system consisting of a fixed
camera and a hand-held laser projector. A known background geometry was employed
to calculate the mathematical equation of the laser plane in real-time. The coordinate
transformation parameters of the camera and background geometry were acquired before-
hand through system calibration. In the whole scanning process, the laser stripe projected
onto the background geometry was utilized to extract the central points and determine
a mathematical equation of the laser plane using a RANSAC algorithm. Finally, the 3D
profile was calculated based on laser triangulation. Due to the limitation of the background
calibration board, this method cannot meet the measurement requirements of large-scale
objects. Mark-based hand-held laser scanning technique is one of the most widely used
commercial solutions for large object measurement so far. Taking advantage of binocular
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cameras, hand-held laser scanning techniques can realize real-time self-positioning by
extracting and tracking the mark points pasted on to the surface of the object, and then
large-scale and multi-perspective 3D shape measurement can be performed based on the
combination of stereo vision and laser triangulation. The representative commercial prod-
ucts are the CREAFORM HandySCAN series, which achieved a measurement accuracy
of 0.025 mm with a scanning area of 310 mm × 350 mm. Although this solution has been
well developed, the use of mark points leads to the complexity of the measurement process
and the limitation of usage scenarios. Theiler et al. [58] proposed an automatic keypoint-
based method to register two point clouds without placing any markers in the scene. A
4-Points Congruent Sets is used to extract 3D keypoints followed by the calculation of the
transformation between the two measures using the keypoints. This method is suitable for
3D reconstruction of large scenes but the measurement accuracy is relative low.

As an alternative setup, the orientation of the laser plane can be altered continuously
to scan the entire surface of the measuring object. This is done by projecting the laser stripe
onto a rotating planar mirror, or so-called galvanometer, as shown in Figure 10, which is
generally composed of a swing motor and a mirror. We proposed a system calibration
method [59] and an error compensation method [60] for galvanometric laser scanning
system, which achieved an average error of 0.05 mm in measuring two standard balls
with a center distance of 60 mm. In order to avoid establishing the complex mathematical
model and improve the calibration accuracy of the system, a neural network model was
established by using the image coordinates of calibration points and the rotation angle
of laser plane as input and the corresponding 3D world coordinates as output, and the
system calibration was completed by training [61]. Compared with the conventional
methods, galvanometric laser scanning methods can perform accurate and fast 3D surface
reconstruction without using motion equipment or pasting markers, and has great potential
for in-situ measurement.

Figure 10. Schematic of galvanometric laser scanning method. (a) System calibration; (b) measured
point cloud of a checkerboard flat panel before (red) and after (blue) error compensation [60].

3.3. Structured Light Technique

SL techniques can realize rapid, low-cost and non-contact 3D surface measurement
with relative high accuracy, and hence have been widely applied in practical engineering
such as accurate and precise detection in advanced manufacturing, automatic robot recog-
nition, biomedical diagnosis and many other fields [62,63]. The measuring procedures
mainly include three steps: projecting coded patterns onto the object surface, capturing
the deformed images and decoding the images to reconstruct the 3D information utilizing
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SL system model [37]. Various methods that differ in SL pattern codification have been
reported in the past two decades.

3.3.1. Random Speckle Projection

The statistically random speckle projection (RSP) methods encode random features
locally on the projected patterns, as shown in Figure 11. Stereo correspondence can be
realized by digital image correlation (DIC) of captured speckle images, which solve the
stereo matching problem of the stereo vision system. A diffractive optical element (DOE) is
often employed in RSP systems to modulate the laser beam and project statistical random
patterns. The RSP technique has realized industrialization and been integrated in intelligent
hardware (e.g., Microsoft Kinect, Intel RealSense, HUAWEI P40 Pro).

Figure 11. Schematic diagram of DIC. (a) Left image; (b) right image.

The RSP techniques include single shot and multiple shot method. The single shot
method extracts depth from a pair of deformed speckle images, which is robust to move-
ment but has low spatial resolution and accuracy. Khan et al. [64] presented a single shot
laser speckle based stereo vision system for dynamic 3D measurement, which employed
the Kanade–Lucas–Tomasi (KLT) tracking technique to calculate the stereo correspondence.
This system had a measurement accuracy of 0.392 mm in measuring a sphere of 20 mm in
diameter which was better than the measurement accuracy of 0.845 mm achieved by the
Kinect device. The single shot-based RSP technique is often employed in some cases with a
relatively low requirement of accuracy including motion sensing [65], distance measure-
ment and rough localization. In contrast, the multiple shot RSP technique can generate
more accurate 3D data, but motion artifacts and errors will be produced when measuring
dynamic scenes. Schaffer et al. [66] proposed a high-speed multi-shot RSP system, in which
an acousto-optical deflector was utilized to project speckle patterns and the deformed
speckle images were captured by a pair of synchronized cameras. This system achieved
high speed 3D sensing of moving objects with low speed. Harendt et al. [67] presented
a motion compensation algorithm for a multi-shot RSP system based on spatio-temporal
image correlation which adapted the temporal and spatial support locally to the motion of
the measured objects.

The RSP technique has the advantages of easy implementation and miniaturization,
however, it is difficult to determine the corresponding point in the area with relative
high noise. Stark et al. [68] presented a suppression approach to decrease the intensity
of subjective speckles by moving the camera orthogonal to the view and recovering the
pixel movement. Another problem is the low measurement accuracy and spatial resolu-
tion, because the speckle size is larger than a pixel. In addition, the speckle size varies
with the measurement distance, which limits the efficient working range of RSP system.
Khan et al. [69] proposed a self-adapting RSP system to optimize the size of speckle
according to the measuring distance and comparatively dense 3D data was produced.
To suppress the noise generated by subjective speckle, histogram equalization and local
Laplacian-based image filtering were utilized to improve the feature contrast and preserve
the edge information.
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3.3.2. Binary Coding Projection

To facilitate the realization of pixel-by-pixel correspondence, binary coding methods
which encode each pixel over time were proposed [70]. Typical binary coding methods
include simple binary-coded and gray-coded methods, as demonstrated in Figure 12. Three
patterns consist of 8-pixel stripes, which generate a series of codewords for each stripe of
pixels considering black as 0 and white as 1. By projecting these patterns sequentially, the
captured images can be binarized to decode the binary codewords pixel-by-pixel. Dense
3D data can then be obtained by calculating the stereo correspondence using the pixel-
wise codewords. Although these two methods generate similar patterns, it is traditionally
considered that the gray-coded method is more robust than the simple-coded method and
is more widely used in practice. Since the gray-coded method changes only one bit of
the codewords between adjacent pixels, it can reduce the probability of generating errors,
while the simple-coded method does not have this constraint.

Figure 12. Typical binary coding schemes. (a) Simple coding; (b) gray coding.

The extraction and localization of stripe boundaries are key problems of binary coding
projection-based 3D measurement techniques. Trobina et al. [71] proposed an error model
based on the gray-coded method and analyzed various factors affecting the accuracy of
this method in detail. The research showed that both the linear interpolation technique
and the zero-crossing technique can reach sub-pixel level in stripe-edge detection and the
former performs better. Song et al. [72] used an improved zero-crossing feature detector to
enhance the precision of edge extraction.

Although binary coding methods are quite simple and robust, the achievable spatial
resolution is restricted by the pixel size of the camera and projector. On the one hand,
the narrowest stripes of the patterns must be wider than one projector pixel to avoid
sampling problems. On the other hand, the width of each captured stripe is preferably
greater than a camera pixel to ensure that the binary status is correctly found from the
captured images. Therefore, the decoded codewords are discrete rather than continuous
hence no better correspondence can be established accurately, which greatly limits the use
of binary coding methods, especially in cases with requirements of high resolution and
accuracy. In recent years, many gray-coding-assisted SL methods have been developed
to improve the measurement resolution and accuracy [73–76]. The proposed method in
Ref. [76] achieved a measurement accuracy of 0.098 mm in measuring a standard sphere
with 12.6994 mm radius.

3.3.3. Fringe Projection

The aforementioned RSP methods and binary coding methods overcome the image
correspondence problem of stereo vision, but the matching accuracy is relatively low due
to the limitation of the spatial resolution of the projector. Fringe projection profilometry
(FPP) [77] realizes 3D shape reconstruction by projecting a series of sinusoidal phase
encoding patterns onto the objects followed by capturing the deformed fringe images and
decoding the phase information, and 3D surface data can be calculated using the SL system
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model eventually. The FPP techniques mainly include Fourier transform profilometry
(FTP) [78] and phase-shifting profilometry (PSP) [79].

FTP produces wrapped phase map from only one fringe image and is suitable for
dynamic measurement, for instance, Ref. [80] reported a micro-FTP which can realize an
acquisition rate up to 10,000 3D frames per second. Takeda et al. [81] proposed a standard
FTP, in which a sinusoidal intensity encoding pattern is projected onto the object and the
deformed image is captured from another perspective followed by calculating the Fourier
transformation of the image line by line. The fundamental frequency can be separated by
filtering the frequency spectrum and is transformed to the spatial domain by inverse Fourier
transformation. The wrapped phase value distributing in [−π, π] can then be acquired.
To acquire a full-filed continuous phase distribution, phase unwrapping procedure is
carried out to eliminate the 2π gaps, and then the actual depth that relates to the absolute
phase at each pixel point can be obtained. Ref. [82] realized FTP of a single-field fringe
for dynamic objects using an interlaced scanning camera. This method not only kept the
measurement accuracy, which was about 0.2 mm, in measuring a known plane with the
height of 35 mm, but also doubled the time resolution of the measurement system. To
overcome the problem of frequency overlapping caused by shadows, non-uniformities and
contours, modified FTP [83], windowed FTP [84], wavelet transform profilometry [85] and
Hilbert transform [86] were proposed. The frequency spectrum can be separated more
precisely with these methods, but the problem of low quality in details of the complex
surfaces still exists. Wang et al. [87] combined the two-step phase-shifting algorithm,
Fourier transform profilometry and the optimum three-frequency selection method to
achieve high-speed 3D shape measurement of complex surfaces without loss of accuracy.

Compared with FTP, PSP can perform more accurate 3D shape measurement and
is more robust to the noise produced by environmental illumination. For instance, the
measurement accuracy of a high-end commercially available 3D scanner (e.g., GOM ATOS
Core) can reach up to 2.5 µm. PSP generally projects a group of sinusoidal intensity
encoding patterns onto the objects, and the wrapped phase value at each pixel can be
obtained using the N-step phase-shifting techniques [79]. Generally, the step number N
should be equal or greater than three. The more phase-shifting patterns are projected,
the higher phase accuracy can be obtained. PSP also generates a wrapped phase map
distributing in [−π, π] and requires a phase unwrapping algorithm [88] to eliminate the 2π
phase intervals. The phase unwrapping approaches include spatial [89,90] and temporal
phase unwrapping algorithms [91]. The spatial phase unwrapping algorithms eliminate
phase discontinuities by checking the phase values of surrounding pixels, which produce
a phase map with phase ambiguities but could fail in the measurement of isolated or
abrupt surfaces. The temporal phase unwrapping algorithms represented by the multi-
frequency [92] and Gray-code [93] algorithms can obtain the absolute phase distribution of
complex scenes without phase ambiguity. However, the measurement speed is limited by
the increase of patterns, and phase distortion will occur when measuring dynamic scenes.

With the advent of digital light processing (DLP) projector and high-speed imaging
techniques, various PSP-based methods have been presented for high-speed 3D surface
measurement [16,94]. Nguyen et al. [95] developed a real-time 3D profile reconstruction
system, which can work at a frequency of 120 Hz by synchronizing a DLP projector and a
high-speed camera with an external trigger signal. This system makes use of three gray-
scale three-step phase-shifting patterns integrated into one color image, but still suffers
from phase ambiguities due to single-frequency PSP. Cong et al. [96] developed an FTP-
assisted PSP (FAPS) method to perform 3D measurements for locomotor objects, while
isolated surfaces without markers is a challenging problem. Pixel-wise phase unwrapping
methods [97,98] using geometric constraints have also been developed, which do not
require any additional images, markers or cameras, but the phase unwrapping quality may
relate to the virtual plane.

Gai et al. [99] developed an SL system based on the combining projection of single dig-
ital speckle pattern and four-step phase-shifting patterns. The initial matching information
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was calculated by speckle pattern and then refined by the wrapped phase data, while
errors that existed in the initial matching information decreased the measurement accuracy
for complex surfaces. We proposed a DIC assisted PSP method [100] and developed a
stereo SL system for accurate and dynamic 3D shape measurements based on the combined
projection of three-step phase-shifting patterns and one speckle pattern. To improve the
measurement accuracy, a stereo SL model [101] was proposed to make adequate use of
triple-view information to calculate 3D coordinates using the disparity map and absolute
phase map, as shown in Figure 13. The proposed method achieved a measurement accuracy
of 0.02 mm within a 200 × 180 mm2 field of view, and the comparative experimental results
show that the measurement error was reduced by 33% compared with the conventional
multi-frequency PSP methods.

Figure 13. Measurement results of the proposed DIC assisted PSP method [101]. (a–d) The captured
fringe images and speckle images from left and right cameras; (e) absolute phase map from left camera;
(f) phase deviation between proposed method and multi-frequency method; (g) statistical histogram
of (f); (h) disparity map; (i) disparity deviation between proposed method and multi-frequency
method; (j) statistical histogram of (i); (k) 3D point cloud; (l) 3D surface reconstruction result.

A variant phase-shifting method [102] has been proposed to compute the absolute
phase results by assigning the index number of the fringe to the phase shift value. This
method only projects four fringe patterns and achieves 3D measurement at a high speed,
while the precision of phase unwrapping may be affected by the quality of pixels, espe-
cially in noisy condition. Except for reducing the patterns, a digital binary defocusing
technique [103,104] has been proposed to defocus the projector lens and project binary
patterns to realize the projection of phase-shifting patterns. DLP projector can achieve a
frequency of 125 Hz for 8-bit gray-scale image and 4225 Hz for 1-bit binary image. Thus,
the measuring speed is substantially improved. However, the limitation of the binary
defocusing method is that the lens of the projector needs to be adjusted accurately within a
small out-of-focus range to achieve the performance of PSP.

The methods mentioned above have greatly improved the real-time capability of PSP,
but the motion error still exists no matter how fast the speed at which the PSP techniques can
achieve. Weise et al. [105] presented a motion compensation method to optimize the phase
offset produced by the motion to a small degree using a linear least-square optimization
scheme with a Taylor approximation. It assumes that the motion is small and homogeneous
at each pixel but may not work for the scenes with nonhomogeneous motion. Feng
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et al. [106] presented a motion compensation to reduce the motion error of dynamic PSP
using fringe statistics. Iterative methods [107,108] have also been researched to optimize
the nonhomogeneous motion-induced phase error. They have substantially reduced the
motion error of PSP measurement for fast moving or deforming surfaces, but the high
computation cost limits their applications for real-time measurement. Liu et al. [109]
developed a nonhomogeneous motion error compensation approach to calculate the phase
offsets by computing the differences among multiple adjacent phase maps. Guo et al. [110]
presented a real-time 3D surface measurement system, which utilized the phase value of
dual-frequency composite fringe to extract the motion area of scene followed by reducing
the motion error using the phase value calculated by PSP and FTP. This system can perform
3D reconstruction for locomotor and static objects but suffers from low quality in details of
the object surface.

3.4. Deep Learning-Based Techniques

Stereo matching algorithms [111] have become a deep learning task resorting to the
development of CNN, which can be classified into non-end-to-end and end-to-end learning
approaches. Non-end-to-end learning networks, represented by MC-CNN [112] and SGM-
Net [113], commonly replace the local descriptors of conventional methods with CNN in
the step of cost computation in stereo matching pipeline followed by several postprocessing
steps including cross-based cost aggregation, consistency check and sub-pixel enhancement,
as shown in Figure 14. However, these non-end-to-end learning algorithms suffer from
high computational cost.

Figure 14. Flowchart of non-end-to-end learning methods.

The end-to-end learning methods realize stereo matching through an end-to-end net-
work and predict dense disparity results directly from input images. DispNet [114] realized
an end-to-end learning-based stereo matching scheme. One-dimensional correlation is
conducted along the epipolar line to compute matching cost, and an encoder-decoder
structure is employed for disparity regression. iResNet [115] was shown to integrate the
stereo matching process, which predicts an initial disparity using an encoder–decoder
structure and employs a subnetwork to optimize the initial disparity using residual signals.
GC-Net [116] adequately used the geometric characteristics and context constraints of the
image, and realized an end-to-end learning network for stereo matching, which constructs
a 4D cost volume and directly generates a disparity map through 3D convolution with-
out requiring any postprocessing procedure, as shown in Figure 15. GC-Net retains the
complete features and greatly promotes the stereo matching performance.
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Figure 15. Flowchart of GC-Net.

PSMNet [117] has further improved the stereo matching accuracy, which consists
of a pyramid pooling module and a 3D convolution module. Pyramid pooling module
makes full use of global information by gathering image features at different scales and
builds matching cost volume. The 3D CNN module adjusts the matching cost volume by
combining multiple stacked hourglass networks with intermediate supervision. PSMNet
has achieved the best performance in the KITTI dataset. To reduce the computation cost,
GA-Net [118] replaces 3D convolutions with two cost aggregation layers including a semi-
global guided aggregation (SGA) and a local guided aggregation (LGA) network, as shown
in Figure 16, which speeds up the algorithm while maintaining accuracy.

Figure 16. Flowchart of GA-Net.

For RSP 3D measurement, Fanello et al. [119] considered the stereo matching process
of an RSP technique as a learning-based regression instead of digital image correlation.
An ensemble of random forests was used to realize the independent computation of each
pixel while retaining accuracy. However, this method requires tedious calibration and
expensive data collection procedures. Fanello et al. [120] further proposed an unsupervised
greedy optimization scheme, which was trained to estimate and identify corresponding
features in infrared images. This method optimizes a series of sparse hyperplanes and
reduces the complexity of matching cost computation to O(1) but faces difficulties in
textureless scenes due to the limitation of the shallow descriptor and local optimization
framework. ActiveStereoNet (ASN) [121], as shown in Figure 17, realized an end-to-end
and unsupervised deep neural networks (DNN) scheme for an RSP 3D measurement. A
novel loss function was utilized in ASN to deal with the challenges of active stereo matching
(e.g., illumination, high-frequency noise, occlusion). This method substantially improved
the performance of the active stereo 3D shape measurement technique but may suffer from
low spatial resolution. SLNet [122] was developed to improve the stereo matching results
of the RSP 3D measurement technique. SLNet utilized a Siamese DNN to extract features,
pyramid pooling layers to concatenate features of stereo images and SENet to compute
the parameters of DNN. To train the DNN, a dataset was created using a conventional
RSP technique.

Figure 17. Flowchart of ActiveStereoNet for RSP 3D measurement.



Machines 2022, 10, 124 18 of 26

Deep learning-based stereo matching algorithms have made great progress in pro-
ducing disparity maps, but there are still difficulties in dealing with textureless regions,
occlusion areas, repeated patterns, and reflective surfaces. The measurement accuracy is
not high enough for industrial applications because the prediction results cannot com-
pletely converge to the ground truth value. Furthermore, the DNN model is trained by
dataset, which could have difficulties when measuring different scenes beyond the dataset.
In the future, more efficient algorithms will be further researched to improve the stereo
matching performance using more constraint information. The RSP technique is similar to
the stereo vision technique except that the image features in the RSP technique are relatively
regular in different scenes. Most general deep learning-based stereo matching networks
cannot provide enough strength to extract these image features with high resolution and
accuracy. Therefore, feature extraction network should be further improved to be adapted
to the characteristic of speckle image when transplanting the stereo matching networks to
RSP techniques.

Recently, deep learning algorithms have also been applied to phase extraction [123],
phase unwrapping [124,125] and fringe image denoising [126] to improve the performance
of FPP. Feng et al. [124] trained two different CNNs to obtain unwrapped phase maps from
one single fringe image, as shown in Figure 18. The CNNs-1 was constructed to estimate
the background intensity and the CNNs-2 was trained to estimate the parameters of the
arctangent function in PSP using the original fringe image and estimated background inten-
sity. Spoorthi et al. [124] developed a DNN framework with an encoder–decoder structure
for spatial phase unwrapping, which ran faster and more accurately than conventional
quality-guided methods. Yin et al. [125] proposed a DNN-based algorithm for temporal
phase unwrapping, which predicted an unwrapped phase map with high reliability us-
ing dual-frequency wrapped phase maps calculated by three-step PSP. Van der Jeught
et al. [127] trained a fully convolutional DNN using amounts of simulated deformed fringe
images to realize the depth extraction from only one fringe image. Machineni et al. [128]
realized an end-to-end deep learning-based scheme for FPP systems. This used CNN
to predict the multi-scale similarity and the depth was estimated from single deformed
fringe images without phase unwrapping. Yu et al. [129] designed an FPTNet to real-
ize the transformation from single fringe image to multi-frequency fringe images based
on DNN, and the 3D reconstruction was performed by calculating the absolute phase
map. These deep learning-based approaches achieved compelling performance in the
man-made or simulated datasets, but the performance for practical objects remains to be
further researched.

Figure 18. Flowchart of phase extraction using CNNs.

4. Discussion
4.1. Comparison and Analysis

Considering the measurement requirements and the different applications, Table 1
compares the performances, the hardware configurations, the anti-interference capabilities,
the resolutions, the measurement accuracies and the applicable occasions of all the dis-
cussed methods. Each method has its own merits and limitations, and one should choose
the appropriate method or the optimal combination of several methods according to the
measured object and parameters for a given task.
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Table 1. Comparisons of different vision-based 3D shape measurement methods.

Methods

Hardware
Configuration Performance

Applicable
OccasionNumber of

Cameras
Lighting
Device Resolution Representative

Accuracy
Anti-Interference

Capability

Stereo
vision 2 None Low

0.18/13.95 mm
(1.3%) [52];

0.029/24.976 mm
(0.12%) [53]

Medium Target positioning
and tracking

3D laser
scanning 1 or 2 Laser Medium or

high

0.016/2 mm (0.8%)
[15]; 0.05/60 mm

(0.8%) [60,61];
0.025 mm with the
scanning area of
310 × 350 mm2

(CREAFORM
HandySCAN)

High (against
ambient light)

Static measurement
for surfaces with

high diffuse
reflectance

RSP 1 or 2 Projector or
laser Medium

0.392/20 mm (2%)
[64]; 0.845/20 mm

(Kinect v1)

Low (high
sensitivity to noise)

Easy to miniaturize
for use in consumer

products

Binary
coding

projection
1 or 2 Projector Medium 0.098/12.6994 mm

(0.8%) [76] Medium

Static measurement
with fast speed but

relatively low
accuracy

FTP 1 or 2 Projector High 0.2/35 mm
(0.6%) [82] Medium

Dynamic
measurement for
surfaces without

strong texture

PSP 1 or 2 Projector High

0.02 mm within a
200 × 180 mm2

field of view [101];
up to 0.0025 mm

(GOM ATOS Core)

Medium or high

Static measurement
for complex

surfaces with high
accuracy and dense

point cloud

4.2. Uncertainty of Vision-Based Measurement

In a vision-based 3D shape measurement system, there are several parameters that
determine its performance such as measurement area, resolution and sensitivity. These
parameters are fixed after system calibration, including the position and orientation of
cameras, the lenses and pixel sizes, the working distance and FOV. However, internal and
external factors such as system installation errors, vibration, optical errors, saturation by
high reflection, and image noises, system calibration, and image rectification algorithms
may influence the measurement results [130,131]. Although plenty of research [132–134]
on parameter analysis and system optimization in vision-based measurements have been
reported, there has been little effective progress in the quantitative analysis of uncertainties.

ISO 15530 [135] and ISO 25178 [136] specify the evaluation of measurement uncer-
tainty for results of measurements obtained by traditional contact coordinate measurement
methods and some other optical measurement methods (optical probe method, coherent
scanning interferometry, phase-shifting interferometry). These are based mainly on the
guide to the expression of uncertainty in measurement (GUM) [137–139] or with the Monte
Carlo method (MCM) [140–142] to build a calibration system. When it comes to the char-
acterization of vision-based measurement processes, some external parameters that may
influence the image acquisition should be taken into consideration. As an example, some
factors such as lighting conditions, that affect the active vision-based measurement systems
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but do not belong to the main variables in traditional contact coordinate measurement
systems, are not mentioned in these standards [143–145].

Usually, a gauge whose dimensions are accurately known is used to evaluate the
absolute accuracy in a vision-based measurement system. However, as the sources of
error are varied, from instrumental biases to residual deviations of point cloud registra-
tion, the lack of comprehensive quantitative analysis of interference factors, complete
theoretical basis and available calibration methods results in the inability to quantify the
uncertainty, which restricts the development of vision-based measurement technology in
the field with the requirement of high-accuracy and reliable metrology. According to the
GUM, the uncertainty of the measurement results depends on the characteristics of the
system hardware (e.g., the camera and projection device), on the measured object and its
background, on some external parameters that may influence the image acquisition, on
the image processing algorithms adopted and on the measurement extraction procedures
executed. Therefore, it is imperative that the following main sources of uncertainties in
vision-based measurement system should be highlighted:

(1) Image acquisition: a camera system is composed of lens, hardware and software
components, all of which affect the final image taken with the camera if it is not
predefined. The camera pose also affects the position and shape of the measured
object in the image. Thus, the camera system should be accurately calibrated, and the
systematic effects should be considered and compensated. The random effects should
also be taken into account, related to fluctuations of the camera position because of
imperfections of the bearing structure, environmental vibrations, etc.

(2) Lighting conditions: the lighting of the scene directly determines the pixel values of
the image, which may have an adverse impact on image processing and measurement
results if the lighting condition varies. Lighting conditions can be considered either
as systematic effects (the background that does not change during the measurement
process) and random effects (fluctuations of the lighting conditions), and both have to
be taken into consideration when evaluating uncertainty.

(3) Image processing and 3D mapping algorithms: uncertainties introduced in the image
processing and measurement extraction algorithms must also be taken into considera-
tion. For instance, noise reduction algorithms are not 100% efficient and there is still
some noise in the output image. This contribution to uncertainty should be evaluated
and combined with all the other contributions to define the uncertainty associated
with the final measurement results.

4.3. Challenges and Prospects

Although vision-based 3D shape measurement methods have been well researched,
few of them could perform 3D measurement with high accuracy and precision in real-time
applications, which is required to output at least 10 depth frames per second. Stereo vision
and RSP systems can achieve very high-speed 3D sensing, which are practical for robotic
vision but not suitable for industrial measurement with high accuracy. Galvanometric laser
scanning systems can perform fast 3D measurement with high resolution and accuracy but
require movement to scan the whole surface of the objects assuming that the object remains
at rest during scanning. The frame rate of SL systems is limited by the speed of pattern pro-
jection device. Several proposed SL methods are capable of producing depth map at a frame
rate of 60 fps, but still limited in many scenes with fast movement (e.g., running blade).
Binary defocusing technique can achieve 300 fps taking advantage of the DLP technique
but suffers from low robustness. Therefore, the projection hardware technologies [146]
need to be improved to increase the measurement speed of SL methods while retaining the
measurement accuracy. Besides, fringe projection approaches based on two-beam optical
interference [147–149] have been proposed for high speed and high precision 3D shape
measurement. These methods realize fringe projection based on the principle of Mach–
Zehnder interferometer and Young’s double pinhole interference. However, the optical
structure and interference signal could be easily affected by environmental vibration, which
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limits the application of these methods. Recently, we have been dedicating to realizing
a novel scheme for fringe projection by using integrated optical waveguide device. This
method is hoped to perform 3D shape measurement practically with high speed and high
accuracy on the premise of overcoming the challenge of optical transmission loss and may
also be beneficial for sensor miniaturization.

In addition, vision-based 3D shape measurement methods face difficulties for surfaces
with specular reflection, transparency and high dynamic range. Though researchers have
presented various strategies [150–155], they are not robust enough for arbitrary scenes,
and their consistency and repeatability are often difficult to guarantee. Recently, great
advancements in AI technology have facilitated the development of vision-based 3D
shape measurement techniques and great progress has been made in image processing
using deep learning-based networks instead of conventional methods [156]. In the future,
the generalizability of deep learning algorithms will be further studied to improve the
performance of vision-based 3D shape measurement techniques in practical applications.

5. Conclusions

In this paper we gave an overview of vision-based 3D shape measurement methods,
their generic principles, and representative techniques such as stereo vision, 3D laser
scanning and structured light projection that are widely employed in industrial applications.
The typical vision-based measurement systems and recent research were discussed in
detail, considering both advantages and limitations in practice. The characterization of
the uncertainty in vision-based 3D measurement systems was discussed in metrological
perspective, and the challenges and prospects towards further improvement were proposed.
As one of the future trends in vision-based measurement, continuous progress in AI is
expected to rocket the development of camera calibration and image processing. More
applications are also expected in intelligent manufacturing, i.e., for on-machine and in-
process measurement. To achieve these goals, comprehensive work on both hardware, such
as the projectors and cameras, and software, such as image processing algorithms for 3D
measurement, embedded tracing calibration methods and adaptive error compensation,
is essential.
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