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Abstract: In order to improve the plane quality of the workpiece shape accuracy, a correction abrasive
finishing method is proposed. This method is used to achieve the effect of correcting the workpiece
surface by changing the finishing conditions of different areas according to the profile of the initial
surface, such as feed speed. In previous research, the feasibility and effectiveness of this method
were proven. In this research, a theoretical analysis of this method was carried out and the extension
of this method to the processing of larger planes was studied. Through a series of experiments on
an aluminum plate (A5052), it was proven that the shape accuracy of the workpiece surface can be
effectively corrected by accurately controlling the feed speed. The experimental results showed that
the extreme difference of the workpiece can be reduced from 4.81 µm to 2.65 µm within the processed
area of 30 mm by 10 mm.

Keywords: corrective finishing; magnetic abrasive finishing; surface profile; shape accuracy; speed
controlled; aluminum alloy (A5052)

1. Introduction

With the rapid development of electronic technology, optical technology and aerospace
technology, the requirements for workpiece surface accuracy in many fields are higher and
higher. For these components, their surfaces are required to be smooth, have low roughness,
and have high geometric accuracy. The magnetic abrasive finishing (MAF) process is an
important non-traditional finishing process [1,2]. The MAF process uses magnetic particles
to form a flexible brush structure under the action of a magnetic field, mixing abrasive
particles with magnetic particles, and using the motor to drive the magnetic brush to rotate
so as to drive the abrasive particles to move relative to the workpiece and to realize the
finishing of the workpiece [3].

Shinmura et al. proposed and designed a plane MAF device, analyzed the process
principle of plane MAF, and discussed the effect of the supply weight of finishing fluid and
magnetic abrasion on the finishing depth and surface roughness [4]. Yamaguchi studied
the use of magnetic grinding technology to process the inside of a round tube [5]. In order
to solve the disadvantage of a weak magnetic force when processing thick tubes, Zou et al.
proposed a processing method that could improve the magnetic force and made it possible
to process the inside of thick non-ferromagnetic tubing [6]. Because the magnetic brush
formed in the magnetic field has a certain flexibility and can conform to the shape of the
workpiece, it is applied to the processing of various irregular shapes, such as the inner
and outer surfaces of a tube, irregular surfaces, and so on. In order to improve processing
efficiency, researchers combined MAF with other processing methods. Based on the MAF
principles, additional ultrasonic vibration is used to achieve a high-quality workpiece
surface [7,8]. Mulik et al. employed ultrasonic vibration in the horizontal direction of the
workpiece using an ultrasonic power, a piezoelectric transducer, and a horn device [9].
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A high-frequency electrical signal was generated by ultrasonic power and transformed
into a horizontal mechanical vibration by the transducer. In order to further improve the
processing efficiency of magnetic grinding, Zou et al. made different attempts and proposed
a variety of processing methods. They proposed a processing method combining the MAF
process with electrolytic technology [10–12] and a processing method that combined MAF
with fixed abrasive polishing technology [13]. They analyzed the process mechanisms and
finishing characteristics and proved that the purpose of improving processing efficiency can
be achieved by these methods through experiments. They also proposed a MAF process
using an alternating magnetic field. Compared with a static magnetic field, the MAF
process using an alternating magnetic field can achieve higher finishing efficiency and
surface quality [14–16].

With the continuous development and improvement of MAF technology, higher
requirements for this technology are put forward. In order to make the magnetic field
of finishing tools more uniform, a lot of research was carried out to change the shape of
the magnetic pole, such as adding grooves, improving finishing tracks, and so on. Since
the magnetic abrasive finishing process is a machining process using a magnetic brush
with flexible machining behavior, the process can be used for finishing free-form surfaces
and improving surface accuracy without destroying the profile of the workpiece [17–19].
However, because the magnetic brush is not a uniform finishing tool, further research is
still needed to maintain the geometric accuracy of the workpiece or correct the geometry,
which is also the research content of this subject. Zou et al. calculated the trajectory to
elevate the surface quality of plane magnetic abrasive finishing. The finishing trajectory
could be predicted by combining the revolution motion of the magnetic brush, the pole
rotation motion, and the linear reciprocating motion of the workpiece to investigate the
finishing results [20,21]. They conducted further studies on this method and proved that
the revolution radius was an important factor affecting the surface flatness and proposed
an effective method for evaluating the surface topography [22].

Through a series of experiments and theoretical analysis, this research uses magnetic
abrasive finishing technology to realize the plane correction of the workpiece. In order to
further solve the problem of uniformity of finishing, a method of forming a small magnetic
brush with a small magnetic pole is proposed in this research. According to the initial
profile of the surface, the finishing in different positions is controlled at different feed speeds.
Through the analysis and finishing of the collected surface profile data, and according to the
finishing characteristics of the magnetic brush, the feed speed distribution in the finishing
process is planned to make the effective finishing time at different positions different, and
finally to improve the surface flatness.

2. Processing Principle
2.1. Processing Principle of Magnetic Abrasive Finishing

MAF is a precision finishing process, which realizes the finishing of the workpiece by
driving the abrasive particles to move relative to the workpiece through a flexible magnetic
brush formed by magnetic particles under the action of a magnetic field. Figure 1 is a
schematic diagram of the principle of the MAF process. The magnetic pole and magnetic
particles are magnetized under the action of the magnet and the magnetic particles are
arranged in order to form a brush-like structure. The abrasive particles are mixed within
the brush-like structure and driven to rotate and to move relative to the workpiece, together
with the magnet, magnetic pole, and magnetic brush, by the motor, so the workpiece can
be finished.

Figure 1 shows the schematic diagram of the magnetic force acting on a magnetic
particle at point A in a magnetic field. Fx and Fy can be calculated by Equations (1) and
(2) [3,4].

Fx = Vχµ0H
(

∂H
∂x

)
(1)
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Fy = Vχµ0H
(

∂H
∂y

)
(2)

where x is the direction of the line of magnetic force, y is the direction of the magnetic
equipotential line, V is the volume of magnetic particle, χ is the susceptibility of particles,
µ0 is the permeability of vacuum, H is the magnetic field intensity at point A, ∂H/∂x and
∂H/∂y are gradients of magnetic field intensity in x and y directions, respectively.
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Figure 1. Schematic of finishing principle.

2.2. Processing Principle of Corrective Magnetic Abrasive Finishing

Based on Preston’s Law (Preston, 1927), the Integrated Material Removal Rate (IMRR)
is proportional to the polishing tool pressure on the surface of the workpiece and the
relative velocity between the tool and the workpiece [23]. The material removal amount
satisfies the following formula:

dM = kP(x, y)V(x, y)dt, (3)

where dM is the amount of material removal, k is the removal factor, (x, y) is the coordinate
of a point on the plane. The P(x, y) is the pressure at the point (x, y), V(x, y) is the resultant
velocity of the tool relative to the workpiece, and dt is the finishing time. When the magnetic
field strength, the composition of the abrasion liquid and the working gap are constant, the
amount of material removal is dependent on V(x, y) and dt [24].

Previous studies have proven that the planar quality of the processed area can be
improved by controlling the feed speed of the workpiece, but only a single track was
finished [25]. Now the finishing area needs to be extended to a larger planar area. Assuming
that the initial profile of the workpiece is shown in Figure 2, and its profile curves are
shown as in the figure in the direction x, due to the flexibility of the magnetic brush, the
workpiece can be finished and its roughness can be reduced while maintaining the original
profile of the workpiece. However, from another point of view, can magnetic abrasive
finishing technology be used to reduce the height difference of the surface and improve
its flatness? A simple method that is easy to think of is to change the processing time or
feed speed at different positions. For example, where the surface is high, the feed speed is
slower and the processing time is longer. On the contrary, where the surface is low, the feed
speed is faster and the processing time is shorter. In other words, the purpose of correcting
the plane can be realized by controlling the motion conditions during finishing.
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Figure 2. The principle of corrective magnetic abrasive finishing.

However, for the magnetic brush, the processing efficiency of the point with different
positions from the center point is different. There are many reasons, such as the different
linear velocity of rotation, different magnetic field intensities and many other factors.
Therefore, it is not an easy thing to plan the processing speed well. In order to prove
the effectiveness of the corrective MAF method, theoretical analysis and experimental
verification are carried out, and it was proved that the surface range can be reduced from
14.317 µm to 2.18 µm by the experiments [19]. However, only a single trajectory was
carried out in the previous study, and further discussion and research are still needed if
this finishing is to be extended to the larger plane range.

At present, the amount of material removal is usually described according to Preston’s
Equation [26]. The Preston equation is related to the pressure, relative velocity and residence
time in the contact area [27], as shown in Equation (3).

If the density of the workpiece is ρ, the contact area between the workpiece and the
magnetic brush is A, and the removal depth of the material is h. Then M = dρAh, which is
substituted into Equation (3), meaning the following equation will be obtained:

dM = dρAh = ρAdh = kP(x, y)V(x, y)dt, (4)

where dh is the removal depth at (x, y) on the workpiece surface at dt time. The material
removal curve generated within dwell time t is expressed as:

h(x, y) =
1

ρA

∫ t

0
kP(x, y)V(x, y)dt, (5)

In the finishing process, the movement of the particles consists of a circular motion
and feed motion relative to the workpiece. When the feed speed is very small, the particle
velocity can be approximately equal to the linear velocity of the circular motion. To simplify
the model, in this research, it is considered that the velocity of the particle relative to the
workpiece is approximately equal to ωr. Where ω is the angular velocity of circular motion,
r is the distance between the particle and the axis of rotation, which is the radius of the
circular motion. Therefore, when the angular velocity ω is constant, V(x, y) is almost
unchanged. From Equation (5), it can be seen that the amount of material removal only
depends on the finishing time t. The processing time is inversely proportional to the feed
speed v, so the corrective finishing of the workpiece can be realized by controlling the feed
speed. Then the key is how to calculate the feed speed according to the profile curves.

2.3. Calculation of Feed Speed Array

First of all, the initial profile data of the workpiece need to be measured. In this
research, the initial height H0(Si) at position Si is obtained by Surftest (SV-624-3D, Mitutoyo,
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2200 Shimogurimachi, Utsunomiya City, Tochigi Prefecture 321-0923). Si is the abscissa of
the i-th sampling point in the x-direction. Then, it is necessary to calculate the feed speed
v(Si) at different positions. To facilitate the processing of data, the original data are filtered
and H(Si) is obtained after filtering with:

H(Si) =
∑i+m−1

i H0(Si)

m
, (6)

Here, the method of mean filtering is adopted. Where Si is the position of the i-th
sampling point and m is the width of the data to be filtered, which is the number of data to
be averaged every time. Then, in order to calculate the processing time and feed speed,
it is necessary to set the height h0 of the target finishing line. Therefore removed height
sequence h(Si) at each position can be calculated according to:

h(Si) = H(Si)− h0, (7)

Thereby, the processed height transformation sequence is obtained. Assuming the
finishing efficiency is η µm min−1, then the finishing time t(Si) for each position is:

t(Si) =
h(Si)

η
, (8)

Then, assuming that it needs n loops to finish the workpiece, the displacement change
is ∆S, the speed at each position is:

v(Si) =
2n∆S
t(Si)

, (9)

Because the composite velocity of the particles is the vector sum of the rotation speed
and the feed speed, and the rotation speed is much faster than the feed speed, the influence
of the feed speed on the composite velocity is ignored here. The feed speed only changes
the finishing time. Then, at high places, the speed v(Si) is slow, the time t(Si) is long, and
in low places, the speed v(Si) is fast and the time t(Si) is short. Reorganizing the above
equations yields:

v(Si) = 2n∆S/[h(Si)/η] = 2nη∆S/h(Si), (10)

It can be seen that when the finishing parameters are unchanged, η is a constant.
Therefore, v(Si) is inversely proportional to h(Si).

v(Si)h(Si) = v(Si + 1)h(Si + 1) = 2nη∆S, (11)

This is:
v(Si + 1) = v(Si)h(Si)/h(Si + 1), (12)

To facilitate the calculation, v(S1) should be obtained first, and then all regional
velocity arrays v(Si) can be solved according to the above recurrence in Equation (12). It
can be seen that the feed speed is inversely proportional to the initial height. Therefore, by
controlling the feed speed, the profile characteristics of the surface can be improved.

Figure 3a shows a profile curve after filtering. If the finishing efficiency η is known,
the relationship between the processing time curve and the position can be calculated
according to Equation (8), as shown in Figure 3b. Then, according to Equations (9) and (12),
the speed sequence can be calculated, as shown in Figure 3c.
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Figure 3. The curves of dividing the height, time and speed into segments.

So now the key problem is how to make the control system control the motor to move
according to the feed speed curve. The specific realization method is determined by the
actual mechanical structure and motor control mode. One way to achieve this is to directly
control the speed of the motor by using analog quantities, which can make the motor run
according to the speed curve shown in Figure 3c. However, the curve of velocity versus the
position needs to be converted to a curve of velocity versus time. In this way, due to the
control error, it may not be able to accurately correspond to the displacement and velocity.

Another way is to control the position of the motor, dividing the speed curve into
several segments, and calculating the average speed of each segment, as shown in Figure 3c,
which is the speed curve segmented according to 1 mm for one segment. It can be seen
that the velocity curve is basically the same as before the segmentation. In fact, the original
velocity curve is also equivalent to the curve obtained by 0.01 mm in each section, because
the data sampling interval is 0.01 mm. For this equidistant scheme, the smaller the distance
of the partitions, the closer the resulting curve is to the target velocity curve.

But when the division is too small, the speed of the motor will change frequently, which
requires high performance from the motor. Therefore, the standard of the segmentation
curve can be changed according to the characteristics of the workpiece profile curve. In this
study, the segments are divided according to the height variation range of the profile curve.
A certain fixed height difference is used as the standard for dividing the area. When the
height change is less than this value, it is regarded as an area. In order to facilitate the use
of this area division method, it can be performed after filtering. A practical example of the
division result is shown in Figure 3a. Here, ∆h is set to 2 µm.

The number of changes of the speed curve obtained is reduced according to the second
method, which is convenient for control. After segmentation, the average height of each
segment is calculated to obtain the approximate curve of the workpiece surface. Then,
according to this curve, the processing time curve is calculated. Thus, the finishing speed
curve after segmentation is calculated as shown in Figure 3d.
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3. Experimental Stage
3.1. Experimental Setup

Figure 4 is the system structure diagram of the experimental setup. It includes debug-
ging computer, motion control circuit board, X-Y stage driver, linear slide driver, and DC
motor driver. The computer programs the STM32 circuit board by USB to control the pro-
cessing position, feed speed and rotation speed. The STM32 control board communicates
with the X-Y stage driver through the RS232 interface to control the processing position and
trajectory. The STM32 control board communicates with the linear motor driver through
the RS485 interface to realize the control of the feed speed. The STM32 control board uses
DAC to directly output analog signals to control the speed of the DC motor.
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Figure 4. Schematic of experimental setup.

A photo of the experimental setup used in this research is shown in Figure 5. The
X-Y stage is used to control the processing position of the workpiece. The DC motor drives
the magnetic poles and the magnetic brush rotation to process the workpiece. The linear
feed motor realizes the control of the feed speed by changing its speed to realize variable
speed processing. The height adjustment device is used to adjust the processing gap, which
can be accurate to 0.1 mm.

3.2. Magnetic Field Analysis

Figure 6 shows the simulation results of the magnetic field around the magnetic pole
using Magnet 7 software. It can be seen from Figure 6a that the magnetic field at the lower
end of the magnetic pole is stronger. In order to more specifically reflect the change of the
magnetic field intensity, the curves of the magnetic field intensity were drawn respectively
on a line segment with a length of 10 mm at a distance of 0 mm and 0.2 mm from the lower
surface of the magnetic pole. It can be seen from Figure 6b that there is an obvious edge
effect on the surface of the magnetic pole, and the magnetic field intensity in the center is
much smaller than that at the edges. However, at a distance of 0.2 mm from the surface of
the magnetic pole, as shown in Figure 6c, the magnetic field is relatively uniform. This is
conducive to the uniform pressure of the magnetic brush.
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Figure 6. The simulations with magnetic particles and with the magnetic plate under the workpiece.
(a) The magnetic field distribution near the magnetic pole; (b) The magnetic field intensity |B| at a
distance of 0 mm from the magnetic pole; (c) The magnetic field intensity |B| at a distance of 0.2 mm
from the magnetic pole.



Machines 2022, 10, 98 9 of 17

Figure 7 shows the results of measuring the magnetic field near the magnetic pole
using the Tesla meter. Within 10 mm on both sides of the magnetic pole, the distances
between the sensor and the surface of the magnetic pole are set to 0 mm, 0.5 mm and
1.0 mm. It can be seen from the measurement results that as the distance increases, the
magnetic field strength becomes weaker and weaker. However, due to the small magnetic
pole diameter, the edge effect of magnetic field strength is weakened.

Machines 2022, 9, x FOR PEER REVIEW 9 of 18 
 

 

Figure 6. The simulations with magnetic particles and with the magnetic plate under the workpiece. 

(a) The magnetic field distribution near the magnetic pole; (b) The magnetic field intensity |B| at a 

distance of 0 mm from the magnetic pole; (c) The magnetic field intensity |B| at a distance of 0.2 

mm from the magnetic pole. 

Figure 7 shows the results of measuring the magnetic field near the magnetic pole 

using the Tesla meter. Within 10 mm on both sides of the magnetic pole, the distances 

between the sensor and the surface of the magnetic pole are set to 0 mm, 0.5 mm and 1.0 

mm. It can be seen from the measurement results that as the distance increases, the mag-

netic field strength becomes weaker and weaker. However, due to the small magnetic pole 

diameter, the edge effect of magnetic field strength is weakened.  

 

Figure 7. The measured results of magnetic field. 

3.3. Force Analysis 

In order to better analyze the characteristics of the magnetic pole, a device is designed 

to measure the pressure distribution of the magnetic brush during processing. The meas-

urement method is shown in Figure 8. The pressure sensor used here is the LMA-A-5N 

small pressure sensor from KYOWA. The pressure can be converted into an electrical sig-

nal by the sensor, which is amplified by an amplifier and sends the data to a recording 

instrument. In this research, the amplifier used is the CDV-700A (KYOWA, Chofugaoka 

3-5-1, Chofu, Tokyo, 182-8520), and the data logging instrument is the LOGGER GL240 

(Graphtec Corporation, 58/3-5 4th Floor, Sukhumvit 63 (Ekkamai) Rd., Phra Khanong-

Nuea, Wattana, Bangkok 10110, Thailand).  

0
50

100
150
200
250
300
350
400
450

V
al

u
e 

o
f 

|B
| (

m
T

)

Position (mm)

0mm 0.5mm 1mm

−10.0 −5.0 0.0 5.0 10.0 

Figure 7. The measured results of magnetic field.

3.3. Force Analysis

In order to better analyze the characteristics of the magnetic pole, a device is designed
to measure the pressure distribution of the magnetic brush during processing. The mea-
surement method is shown in Figure 8. The pressure sensor used here is the LMA-A-5N
small pressure sensor from KYOWA. The pressure can be converted into an electrical signal
by the sensor, which is amplified by an amplifier and sends the data to a recording instru-
ment. In this research, the amplifier used is the CDV-700A (KYOWA, Chofugaoka 3-5-1,
Chofu, Tokyo, 182-8520), and the data logging instrument is the LOGGER GL240 (Graphtec
Corporation, 58/3-5 4th Floor, Sukhumvit 63 (Ekkamai) Rd., Phra Khanong-Nuea, Wattana,
Bangkok 10110, Thailand).
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Figure 9 shows the measurement results of the pressure exerted by the magnetic brush
on the workpiece. When the gap is 0.2 mm, the pressure near the magnetic brush is between
0.463 N and 0.716 N.
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4. Experiment and Discussion

According to previous studies, it is possible to effectively improve the surface profile
of the workpiece and to correct the profile of the surface by controlling the feed speed
during the processing. So can this kind of processing be extended to a larger plane range?
Therefore, the following experiments were designed.

The experimental steps are as follows:

(1) First, it is necessary to design experiments to calculate the processing efficiency of the
magnetic brush, and to obtain the value of η;

(2) For Pre-processing, two tracks are processed with a magnetic pole with an end di-
ameter of 3 mm to produce a surface with fluctuation in the x-direction, as shown in
Figure 10;

(3) Measuring the profile curves of the workpiece along the x-direction, analyzing and
processing the measured data according to the previous method, and obtaining the
feed speed curves data during corrective processing;

(4) Corrective processing of the workpiece surface with an area of 30 mm × 10 mm (∆y is
0.5 mm, 1.0 mm, 1.5 mm and 2.0 mm, respectively);

(5) The experimental results are measured and analyzed.

The results of each step of the experiments will be described in detail below.

4.1. Magnetic Brush Processing Efficiency Experiments

To reasonably control the feed speed during finishing, it is necessary to mea-
sure the finishing efficiency of the magnetic pole. The finishing object selected is a
100 mm × 100 mm × 2 mm A5052 plate in this research. The calculation method of the
finishing efficiency is the processing of five tracks with a length of 6 mm on the same
workpiece, and each track is processed with 2-4-6-8-10 loops, respectively, as shown in
Figure 11. Then the cross-section curve is measured to calculate the finishing depth, and the
average of four times is used as the average finishing efficiency. The experiment conditions
are shown in Table 1. The feed speed of the workpiece is 0.2 mms−1, and the rotation
speed of the magnetic pole is 400 rmin−1. The abrasive liquid is composed of 0.5 mL of
oil (Honilo 988) and 1 g of #4000 WA particles, and the magnetic brush was soaked in the
abrasive liquid for processing each time.
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Figure 11. Evaluation of finishing efficiency.

Figure 12 is the average value of the finishing depth of each group according to the
finishing method described above. As the times of reciprocating finishing increase, the
finishing depth becomes deeper. Moreover, the finishing depth has a linear relationship
with the number of reciprocations. After calculation, the average height reduction of the
one loop process is about 1.88 µm.
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Table 1. Experimental conditions of evaluating finishing efficiency.

Workpiece A5052 plate (100 mm × 100 mm × 2 mm)

Magnetic pole Nd-Fe-B rare earth permanent magnet (Φ1 × 35 mm)

Magnetic abrasive 0.02 g of 149 µm iron powder

Abrasion liquid 0.5 mL of oil (Honilo 988) and 1 g of #4000 WA particles

Clearance 0.2 mm

Finishing distance 6 mm

Finishing loops 2-4-6-8-10 loops

Feed speed 0.2 mm s−1

Rotation speed 400 r min−1
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4.2. Pre-Processing Experiment

Pre-processing is processing two traces using a magnetic pole with an end face diam-
eter of 3 mm. Figure 13 shows a photo of the workpiece after pre-processing. Then, the
profile of the workpiece is measured along the direction perpendicular to the preprocessing.
Many curves are measured at an interval of 1 mm by Surftest (SV-624-3D). The data ob-
tained are used to calculate the speed curves of the correction finishing. The preprocessing
conditions of the experiments are shown in Table 2.
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Table 2. Experimental conditions of preparation finishing.

Workpiece A5052 plate (100 mm × 100 mm × 2 mm)

Magnetic pole Nd-Fe-B rare earth permanent magnet (Φ3 × 35 mm)

Magnetic abrasive 0.5 g of 149 µm iron powder

Abrasion liquid 0.5 mL of oil (Honilo 988) and 1 g of #4000 WA particles

Clearance 0.2 mm

Finishing distance 80 mm

Finishing time 40 min

Feed speed 0.5 mms−1

Rotation speed 400 rmin−1

Figure 14a shows the 3D figure and Figure 14b shows a cross-sectional curve of the
surface profile of the workpiece after pre-processing. Since the pre-processing is processed
by using a uniform feed speed, the cross-sectional curves at different positions are almost
the same.
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Figure 14. The measurement result of the workpiece surface after pre-processing: (a) The 3D figure
after pre-processing; (b) A cross-sectional curve after pre-processing.

4.3. Corrective Finishing Experiments

A photo of the processed workpiece is shown in Figure 15. It can be seen from the
picture that as the step size of ∆y decreases, the surface becomes more uniform. The traces
of the transition between the two processing tracks are also reduced. When ∆y is 0.5 mm
or 1.0 mm, the traces of this transition are not obvious. When ∆y is 0.5 mm, the traces
of this transition are almost indistinguishable with the naked eye. However, in terms of
processing time, a long processing time is required at 0.5 mm spacing, so the efficiency is
slightly lower. The measurement results will be compared below.

Figure 16 is a 3D figure of the processed workpiece surface measured by a roughness
measuring instrument (Surftest: SV-624-3D). The measurement method is to measure a
group of section curves at 0.5 mm intervals to draw 3D figures. It can be seen from the
figure that when ∆y is 2 mm and 1.5 mm, there are obvious transition traces. When the
spacing is 1 mm and 0.5 mm, the traces are not very obvious and the two traces produced
by the pre-processing are no longer obvious. The surface was processed to be smooth.

In order to be able to see the difference in experimental results more clearly, the
cross-sections of the processing area were measured along the x and y directions. The
measurement results are shown in Figures 17 and 18.
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Figure 15. The photograph of the surface of the workpiece after processing.
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Figure 16. Three-dimensional figures of the processed surface: (a) The 3D figure after processing at
∆y = 2.0 mm; (b) The 3D figure after processing at ∆y = 1.5 mm; (c) The 3D figure after processing at
∆y = 1.0 mm; (d) The 3D figure after processing at ∆y = 0.5 mm.
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Figure 17. The cross-section curves of the surface along the x-direction after processing: (a) The
cross-section curves at ∆y = 2.0 mm; (b) The cross-section curves at ∆y = 1.5 mm; (c) The cross-section
curves at ∆y = 1.0 mm; (d) The cross-section curves at ∆y = 0.5 mm.

Machines 2022, 9, x FOR PEER REVIEW 16 of 18 
 

 

Figure 17. The cross-section curves of the surface along the x-direction after processing: (a) The 

cross-section curves at ∆y = 2.0 mm; (b) The cross-section curves at ∆y = 1.5 mm; (c) The cross-section 

curves at ∆y = 1.0 mm; (d) The cross-section curves at ∆y = 0.5 mm. 

 

Figure 18. The cross-section curves of the surface along the y-direction after processing: (a) The 

cross-section curves at ∆y = 2.0 mm; (b) The cross-section curves at ∆y = 1.5 mm; (c) The cross-section 

curves at ∆y = 1.0 mm; (d) The cross-section curves at ∆y = 0.5 mm. 

5. Conclusions 

In this research, a surface corrective processing method is proposed and can be sum-

marized as follows: 

(1) In the feed direction (�-direction), variable speed finishing has an obvious effect on 

the surface correction. However, when Δ� decreases, the processing time becomes 

longer, so the correction effect is better.  

(2) When correcting the surface of the workpiece through speed control, the smaller the 

step length of the processing track, the smaller the trace of surface transition, but it 

takes a longer processing time. This experiment proves that the processing effect at 

Δ� �1.0 mm is almost the same as that at Δ� � 0.5 mm, but the processing time is 

reduced by half. In variable speed correction finishing, there is a certain correction 

effect under different Δ� conditions, but when Δ� is large, it will produce transition 

traces to the profile in the �-direction. When Δ� drops to 1.0 mm, the transition traces 

are almost gone. 

(3) The experimental results show that the speed control method can be used to correct 

the surface profile of the workpiece. The extreme difference can be reduced from 4.81 

μm to 2.65 μm within a processed area of 30 mm by 10 mm.  

Author Contributions: Conceptualization, Y.Z. (Yulong Zhang) and Y.Z. (Yanhua Zou); Data cura-

tion, Y.Z. (Yulong Zhang); Formal analysis, Y.Z. (Yulong Zhang); Funding acquisition, Y.Z. (Yanhua 

Zou); Investigation, Y.Z. (Yulong Zhang) and Y.Z. (Yanhua Zou); Methodology, Y.Z. (Yulong 

Zhang) and Y.Z. (Yanhua Zou); Project administration, Y.Z. (Yanhua Zou); Validation, Y.Z. (Yulong 

Zhang) and Y.Z. (Yanhua Zou); Writing—original draft, Y.Z. (Yulong Zhang) and Y.Z. (Yanhua 

 (a) ∆� �  2.0 mm 

1.92 μm 

5.000 10.000[mm] 0.000 
0.628 mm/cm.×15.928 

−
9

.4
3

6
 

0
.5

1
9
 

8
.3

9
7

[μ
m

] 
2

.0
0

0
 μ

m
/c

m
.×

5
0

0
0

.0
0

0
  (b) ∆� �  1.5 mm 

1.31 μm 

5.000 10.000[mm] 0.000 
0.628 mm/cm.×15.928 

−
9

.4
3

6
 

0
.5

1
9
 

8
.3

9
7

[μ
m

] 
2

.0
0

0
 μ

m
/c

m
.×

5
0

0
0

.0
0

0
 

 (c) ∆� �  1.0 mm 

1.05 μm 

5.000 10.000[mm] 0.000 
0.628 mm/cm.×15.928 

−
9

.4
3

6
 

0
.5

1
9
 

8
.3

9
7

[μ
m

] 
2

.0
0

0
 μ

m
/c

m
.×

5
0

0
0

.0
0

0
 

 (d) ∆� �  1.5 mm 

1.14 μm 

5.000 10.000[mm] 0.000 
0.628 mm/cm.×15.928 

−
9

.4
3

6
 

0
.5

1
9
 

8
.3

9
7

[μ
m

] 
2

.0
0

0
 μ

m
/c

m
.×

5
0

0
0

.0
0

0
 

Figure 18. The cross-section curves of the surface along the y-direction after processing: (a) The
cross-section curves at ∆y = 2.0 mm; (b) The cross-section curves at ∆y = 1.5 mm; (c) The cross-section
curves at ∆y = 1.0 mm; (d) The cross-section curves at ∆y = 0.5 mm.



Machines 2022, 10, 98 16 of 17

As shown in Figure 17, the x-direction is the direction measured along the processing
feed direction. It can be seen that the surface was significantly improved compared with
before processing, and the surface of ∆y = 1.0 mm and 0.5 mm is relatively flat. This is
because when ∆y is equal to 1.0 mm and 0.5 mm, the processing time is relatively long, and
when ∆y is equal to 1.5 mm and 2.0 mm, the processing time is relatively short.

The y-direction is the direction measured along the translation direction of the trajec-
tory, as shown in Figure 18. In this direction, the transition of the processing track during
translation can be clearly seen. For example, when ∆y = 2.0 mm, there are five obvious
transition intervals. When ∆y = 1.5 mm, there are six obvious transition intervals. When
∆y = 1.0 mm and 0.5 mm, the transition becomes inconspicuous. With the decrease in
∆y, the transition is no longer obvious, and the surface is almost flat. This shows that the
smaller ∆y is, the better the processing effect is. However, when ∆y decreases, the time
of the processing becomes longer. For example, when ∆y = 2.0 mm, six lines need to be
processed. The processing time of each line is about 1 min, so the processing time is 6 min.
When ∆y = 1.0 mm, 11 lines need to be processed, so the processing time is 11 min. When
∆y = 0.5 mm, 21 lines need to be processed, so the processing time is 21 min.

5. Conclusions

In this research, a surface corrective processing method is proposed and can be sum-
marized as follows:

(1) In the feed direction (x-direction), variable speed finishing has an obvious effect on the
surface correction. However, when ∆y decreases, the processing time becomes longer,
so the correction effect is better.

(2) When correcting the surface of the workpiece through speed control, the smaller the
step length of the processing track, the smaller the trace of surface transition, but it
takes a longer processing time. This experiment proves that the processing effect at
∆y = 1.0 mm is almost the same as that at ∆y = 0.5 mm, but the processing time is
reduced by half. In variable speed correction finishing, there is a certain correction
effect under different ∆y conditions, but when ∆y is large, it will produce transition
traces to the profile in the y-direction. When ∆y drops to 1.0 mm, the transition traces
are almost gone.

(3) The experimental results show that the speed control method can be used to correct
the surface profile of the workpiece. The extreme difference can be reduced from
4.81 µm to 2.65 µm within a processed area of 30 mm by 10 mm.
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