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Abstract

:

The process parameter optimization of laser cladding using a bio-inspired algorithm is a hot issue and attracts the attention of many scholars. The biggest difficulty, at present, is the lack of accurate information regarding the function relationship between objectives and process parameters. In this study, a novel process parameter optimization approach for laser cladding is proposed based on a multiobjective slime mould algorithm (MOSMA) and support vector regression (SVR). In particular, SVR is used as a bridge between target and process parameters for solving the problem of lacking accurate information regarding the function relationship. As a new metaheuristic algorithm, MOSMA is to obtain the Pareto solution sets and fronts. The Pareto solution sets are optimized process parameters, and the Pareto fronts are optimized objectives. Users can select the corresponding optimized process parameters according to their needs for the target. The performance of the proposed approach was evaluated by the TOPSIS method, based on actual laser cladding data and compared with several well known approaches. The results indicate that the optimal process parameters obtained by the proposed approach have better process performance.
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1. Introduction


With the growing requirements for the mechanical properties of transmission parts, traditional hardening technology is not remarkable in terms of production cost, benefit and performance improvement. Laser cladding is a new surface hardening technology with great potential application value. Under the irradiation of a high energy laser, the cladding alloy powder is melted and added to the surface of the substrate. The cladding layer has good mechanical properties after cooling [1]. In addition, it also has the advantages of high precision, high quality and the low thermal effect of the substrate [2,3].



Laser power P, laser scanning speed V and powder feeding rate F (voltage   F v  ) are the three key process parameters, which are easy to control and have a strong impact on the quality of the cladding layer [4]. Optimal process parameters vary with different substrate materials and laser cladding powders. In order to obtain a high quality cladding layer, it is of great significance to perform parameter optimization for each laser cladding process.



An empirical statistics method has been used to optimize the process parameters of laser cladding. The relationship between cladding geometry (width, height, depth of molten and dilution rate) and process parameters (laser power, powder feeding rate and scanning speed) has been studied to obtain the linear relationship by the regression method [5]. According to simulation results of molten pool temperature distribution, the laser power and scanning speed had a great influence on the temperature field and geometry of the molten pool [6]. There are specific functions that have been proposed to describe the geometry of a laser cladding layer based on the recursive model and experimental results. Thereby, the complete geometry of the laser cladding layer can be predicted from the basic process parameters [7].



In this study, T15 high speed steel powder was deposited on a 42CrMo steel substrate with the laser cladding process. It greatly improved the surface hardness and wear resistance of the substrate and further improved the service life of mechanical parts [8]. On this basis, heuristic algorithms can be used to solve and optimize process parameters. However, there is no accurate formula between the machining objectives (dilution ratio, powder utilization rate, etc.) and process parameters. This causes significant difficulty for the multiobjective optimization of process parameters.



A slime mould algorithm (SMA) is an up to date bio-inspired method, which was presented by Chen et al. [9] in 2020. It simulated the behavior of slime mould and established the distinct mathematic model for an outstanding exploratory capacity and exploitation propensity. SMA was evaluated using various benchmark data and achieved superior results. A multiobjective slime mould algorithm (MOSMA) employed the same underlying SMA mechanisms for convergence, combined with an elitist nondominated sorting approach to estimate Pareto optimal solutions [10].



In this paper, a novel process parameter optimization approach for laser cladding is proposed based on MOSMA and SVR (MOSMA-SVR-POLC). MOSMA is used to optimize the process parameters of laser cladding (Pareto solution set). Support vector regression (SVR) is used to build the relationship between process parameters and machining objectives. The actual laser cladding data are utilized to assess the performance of MOSMA-SVR-POLC. Simultaneously, the data fitting method (DFM) [5], the response surface method (RSM) [11], MODA (multiobjective dragonfly algorithm)-SVR-POLC [12], MOEA/D (multiobjective evolutionary algorithm based on decomposition)-SVR-POLC [13] and other variant methods are compared with the proposed approach.



There are two innovations. First, the ingenious combination of MOSMA and SVR is modeled in the process parameter optimization of laser cladding. SVR is used to predict the optimization objectives based on the past data of laser cladding, and the predicted results are involved in the iteration process of MOSMA. Secondly, the proposed approach is tested using actual machining data, which can well verify the feasibility and effectiveness of the method.



The remainder of this paper is arranged as follows. Section 2 shows the research methodology and analysis methods. The MOSMA-SVR-POLC is described in detail. The case study is shown in Section 3. The discussion and conclusion are provided in Section 4 and Section 5, respectively.




2. MOSMA-SVR-POLC Approach


In this section, the new MOSMA-SVR-POLC hybrid approach is proposed to deal with the problem of the process parameter optimization of laser cladding. The main idea is as follows: (a) carry out the process parameter population representation of laser cladding, (b) obtain the current Pareto solution set and front based on the actual machining data as the training set and SVR as the fitness function, (c) update the population via the Pareto solution set, Pareto front and MOSMA. Steps (b) and (c) are repeated until the cut-off condition is met. The cut-off condition is generally set to reach the maximum iteration. During theorisation, there are two issues that need special attention. The first is how the process parameter population of laser cladding is represented. The second is the membership of the Pareto front. In MOSMA-SVR-POLC, the discussions of these issues are shown in the following.



	
The process parameter population representation of laser cladding: The population X is made up of individuals   X i  . X =    X 1  ,  X 2  , … ,  X n   , where n indicates the population size. The attributes of   X i   are determined by the process parameters of laser cladding (P,   F v  , V).



	
The membership of Pareto front: The dilution ratio   D %  , powder utilization rate   P U   and machining efficiency   M E   are usually used to evaluate the effect of laser cladding. Therefore, these indicators can constitute the membership of Pareto front. Thus far, there is no accurate employing these objectives and process parameters; hence, the  ϵ -SVR is applied to predict the objectives. In addition,   P U   and   M E   are special (in essence, bigger is better). It is necessary to obtain the reciprocal of   P U   and   M E   for unifying the characteristics of all the indicators (smaller is better).






In this work,  ϵ -SVR [14] is used to predict the dilution ratio   D %  , powder utilization rate   P U   and machining efficiency   M E  , because there is no accurate calculation formula employing the objectives (  D %  ,   P U   and   M E  ) and the process parameters (P,   F v   and V) in the field of laser cladding. The development kit LIBSVM offers the source codes of  ϵ -SVR [15]. The radial basis function (RBF) kernel is very efficient, especially in the prediction of high dimensional samples [16]. The function is listed below.


  K  ·  = exp  ( − γ   | u − v |  2  )   



(1)




where  γ  is a coefficient to be set manually,  u  is the prediction result vector, and  v  indicates the actual value vector.



The main process of the MOSMA-SVR-POLC approach is depicted in Figure 1. The specific steps are shown in the following.



Step 1 Confirm the lower and upper limits of P,   F v   and V to form the lower limit sets   L B   and the upper limit sets   U B  . Thus, X is initialized randomly within   L B   and   U B  . The maximum of the iteration is marked as   M I  . The iteration count variable j is set to 1.



Step 2 Based on training data, obtain the training model using  ϵ -SVR.



Step 3 Based on the training model, predict the   ( D % , P U , M E )   set of each   X i  .



Step 4 Obtain the current Pareto solution set   P  S X    and front   P  S F    with the   ( D % , P U , M E )   sets.



Step 5 Update X with the operations of MOSMA.



Step 6 If   j > M I  , go to Step 8; otherwise, go to Step 7.



Step 7 j = j + 1. Go to Step 3.



Step 8 Output the Pareto solution set and front.



Multiobjective Slime Mould Algorithm


SMA was presented by Chen et al. [9] in 2020. It was motivated by the oscillating patterns of slime mould. For forming the optimum path to connect food with outstanding exploratory capacity and exploitation propensity, a distinct mathematic model was presented using accommodative weights to imitate the process of generating positive and negative feedback of the propagation wave supported by a bio-oscillator. MOSMA employed the same underlying SMA mechanisms for convergence, combined with an elitist nondominated sorting approach to estimate Pareto optimal solutions [10]. The operations of MOSMA required for this work are shown in Figure 2.





3. Case Study


3.1. Feasibility Experiment


The experimental conditions involve (i) a PC with Matlab R2018a, (ii) the LIBSVM software package, and (iii) the data sets, which were obtained from the practical laser cladding processing experiment. In this study, 42CrMo steel with dimensions of (100 × 100 × 15) mm was used as the substrate. The steel was treated by quenching and tempering. The cladding powder was T15 high speed steel powder with a particle size of (30–100)  μ m. The chemical compositiosn of the T15 powder and 42CrMo steel are represented in Table 1.



The laser model was a TruDisk4002, as shown in Figure 3. A single layer cladding layer was prepared by the coaxial powder feeding method with T15 high speed steel as the cladding powder, argon as the powder carrier gas and shielding gas in the cladding process. Experimental process parameters are listed below: laser power (P) selection of 1400 W, 1700 W, 2000 W and 2300 W; the scanning speeds (V) were 6 mm/s, 7 mm/s, 8 mm/s and 9 mm/s; similarly, there were four rates of powder feeding voltage (  F v  ): 40 V, 50 V, 60 V, 70 V. Other parameters include: defocus: 16 mm, lap rate: 30%, and protective gas flow: 20 L/min. The complete experimental method was adopted. A total of 64 machining experiments were carried out. They were cut with a sample size of (15 × 15 × 15) mm. The inlaying, grinding, polishing and other processes were carried out to make the sample surface show a mirror effect and no obvious scratches. Then, the surface of the samples were etched with a solution with HNO   3  . Lastly, the 64 samples were placed in sequence under an electron microscope for observation and photography. The geometric shape of the cladding layer of each sample was recorded (as shown in Figure 4 and Figure 5, where w is width, h is height, and b is melting depth.   S 1   is melting height area, and   S 2   is melting depth area). Figure 5 shows the transverse cross section of the claddings using a scanning electron microscope. The relative geometric dimensions of the cladding layer were measured with AutoCAD software. It was found that there were no obvious cracks, pores, inclusions nor other defects in the cladding layer section.



The machining data are shown in Table 2, where   D %   can be obtained according to Equation (2) [17].   P U   is calculated via Equation (3), and   M E   is obtained by Equation (4).


     D %  =     S 2   S 1 + S 2        



(2)






     P U  =     S 1 × V × 0.00819 × 60   0.28815 × F v        



(3)






     M E  =  S 1 × V     



(4)







With the machining data in Table 2, the proposed MOSMA-SVR-POLC was used to search the optimized process parameters. The parameter settings of MOSMA-SVR-POLC are shown in Table 3. The machining data is regarded as the training set, and X is taken as the test set. The prediction   D %  ,   1 / P U   and   1 / M E   are obtained via these approaches. The final Pareto optimal solution and front of MOSMA-SVR-POLC are revealed in Table 4. The corresponding graphics of MOSMA-SVR-POLC are shown in Figure 6. From the figures, the relationship between   D %  ,   P U   and   M E   is extremely complex.



Many optimized process parameters were obtained, which is a challenge for practical application: how to select the optimal one for practical machining? The TOPSIS method [18] was used to obtain the best process parameter. The key lies in the weight of the three indicators:   D %  ,   1 / P U   and   1 / M E  . The Saaty weight method was used to calculate the weight. The problem becomes to determine how much users value the   D %  ,   1 / P U   and   1 / M E  . In this work,   D %   is considered to be slightly more important than the other two indicators. Therefore, the weight of   D %  ,   1 / P U   and   1 / M E   is 0.6:0.2:0.2 using the Saaty weight method. The optimal process parameters under this weight are shown in Table 5, based on Table 4. The relative error between MOSMA-SVR-POLC and the actual laser cladding is also calculated and shown in Table 5. From Table 5, it can be seen that only the last error of   M E   is relatively large, and the others are small. The feasibility of this method is verified to a great extent.




3.2. Comparative Experiment


The experimental conditions are consistent with those in the feasibility experiment. The proposed MOSMA-SVR-POLC is compared with the mainstream methods: DFM [5] and RSM [11], and some variants of MOSMA-SVR-POLC, such as MODA-SVR-POLC [12], MOEA/D-SVR-POLC [13], MOPSO-SVR-POLC [19], NSGAII-SVR-POLC [20], MOGWO-SVR-POLC [21]. The parameter settings of these approaches are also shown in Table 3. The TOPSIS method [18] is also used to obtain the best process parameter. The weight of   D %  ,   1 / P U   and   1 / M E   is also set to 0.6:0.2:0.2. The best process parameters and relative errors (  R E  ) of these approaches are shown in Table 6. Figure 7 shows the Pareto optimal front obtained by MOSMA-SVR-POLC and its similar algorithms.



From Table 5 and Table 6, it can be seen that the proposed MOSMA-SVR-POLC had the same optimal process parameters as DFM and MOGWO-SVR-POLC. In terms of   R E  , it was much better than DFM and the same as MOPSO-SVR-POLC and MOGWO-SVR-POLC. DFM performed extremely badly in the   R E   of   D %  . RSM, MODA-SVR-POLC, MOEA/D-SVR-POLC and NSGAII-SVR-POLC obtained different optimal process parameters. RSM lagged behind MOSMA-SVR-POLC. MODA-SVR-POLC and MOEA/D-SVR-POLC also had a good performance, except for the   R E   of   M E  . NSGAII-SVR-POLC did not perform well in the   R E   of D%. From Figure 7, MOPSO-SVR-POLC, NSGAII-SVR-POLC and MOGWO-SVR-POLC had a good performance in area C. MOSMA-SVR-POLC performed well in regions A and B. The above results confirm the capacity of MOSMA-SVR-POLC. The proposed approach proves to be very competitive.





4. Discussion


In the feasibility experiment, the TOPSIS method was used to obtain the optimal process parameters. However, the difference in weight ratios between optimization objectives affects the selection of optimal process parameters. In this section, the different weight ratios were selected to study the output of the optimal process parameters, and the prediction accuracy of the proposed approach will be further discussed. The results are shown in Table 7.



From Table 7, it can be seen that the different weight ratios do define the different optimal process parameters. This meets the needs of different users for objectives. No matter which weight ratio, the prediction accuracy of the first two targets,   D %   and   1 / P U  , are higher than   1 / M E  . Especially in the weight ratios 1/3:1/3:1/3, 0.2:0.6:0.2 and 0.2:0.2:0.6, this situation is more obvious. The improvement ofthe prediction accuracy of   1 / M E   may be the next important research topic.



In addition, the big oh notation is used to calculate the computation cost of the proposed approach. The computation cost of MOSMA and SVR is O(  M I  (  n · d + c o f · n  )) and O(  l · t k  ), respectively,   c o f   is the consumption time of objective calculation, d is the attribute number of individuals, l represents the sample size, and   t k   represents the time consumed for the calculation of the SVR kernel function. The proposed approach is composed of MOSMA and SVR. Therefore, its computation cost is O(  M I  (  n · d + l · t k · n  )).




5. Conclusions


This work proposed a new hybrid approach for the process parameter optimization of laser cladding using a multiobjective slime mould algorithm and support vector regression. The proposed MOSMA-SVR-POLC realizes objectives prediction and process parameter optimization in laser cladding and provides users with the most valuable parameters for different objectives. Furthermore,  ϵ -SVR is applied to predict the   D %  ,   1 / P U   and   1 / M E  . The training data are from the actual laser cladding. MOSMA is used to obtain the Pareto optimal solutions and fronts. The feasibility experiment and comparative experiment were carried out to test the performance of MOSMA-SVR-POLC. The experimental results reveal that MOSMA-SVR-POLC achieves a competitive predictive performance compared with other well established approaches. The study confirms the feasibility and effectiveness of MOSMA-SVR-POLC in the field of process parameter optimization in laser cladding.



For future work, the improvement of the setting parameters and prediction accuracy of  ϵ -SVR should be further studied. Secondly, more kinds of laser cladding experiments, such as multichannel laser cladding, should be added to verify and modify the method in this paper.
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Figure 1. Flowchart of MOSMA-SVR-POLC. 
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Figure 2. Flowchart of the required operations of MOSMA. 






Figure 2. Flowchart of the required operations of MOSMA.



[image: Machines 10 00263 g002]







[image: Machines 10 00263 g003 550] 





Figure 3. Laser cladding system. 
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Figure 4. Geometric shape diagrammatic sketch of the cladding layer. 
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Figure 5. Cross section optimal micrographs of the single clad tracks for different process parameters. 
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Figure 6. Pareto front of MOSMA-SVR-POLC (3D and 2D). 
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Figure 7. Pareto optimal front obtained by MOSMA-SVR-POLC and its similar algorithms. 
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Table 1. Chemical composition of clad powder and substrate materials.
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Material

	
Form

	
Elements wt (%)




	
C

	
V

	
Mn

	
Cr

	
Mo

	
Co

	
Si

	
W

	
Fe






	
42CrMo

	
Plate

	
0.4

	
-

	
0.63

	
0.99

	
0.19

	
-

	
0.21

	
-

	
Rem




	
T15

	
Powder

	
1.6

	
4.7

	
0.45

	
4.5

	
-

	
5.4

	
0.48

	
11.7

	
Rem
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Table 2. Machining parameters and measurement results for each single clad.
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	ID
	P (W)
	  Fv   (V)
	V (mm/s)
	    D %    
	   PU   
	  ME   (mm3/s)





	1
	1400
	40
	6
	37.51%
	0.5082
	11.921



	2
	1400
	40
	7
	21.71%
	0.432
	10.132



	3
	1400
	40
	8
	31.95%
	0.4636
	10.874



	4
	1400
	40
	9
	18.71%
	0.3966
	9.3024



	5
	1400
	50
	6
	11.18%
	0.4654
	13.65



	6
	1400
	50
	7
	48.71%
	0.4509
	13.223



	7
	1400
	50
	8
	7.74%
	0.4035
	11.835



	8
	1400
	50
	9
	7.87%
	0.3697
	10.842



	9
	1400
	60
	6
	5.73%
	0.4497
	15.826



	10
	1400
	60
	7
	3.46%
	0.4446
	15.644



	11
	1400
	60
	8
	3.38%
	0.3939
	13.86



	12
	1400
	60
	9
	3.31%
	0.3648
	12.837



	13
	1400
	70
	6
	2.90%
	0.4675
	19.193



	14
	1400
	70
	7
	1.55%
	0.439
	18.02



	15
	1400
	70
	8
	0.69%
	0.4514
	18.531



	16
	1400
	70
	9
	0.49%
	0.3968
	16.288



	17
	1700
	40
	6
	29.19%
	0.4797
	11.251



	18
	1700
	40
	7
	26.65%
	0.4791
	11.237



	19
	1700
	40
	8
	28.27%
	0.4815
	11.294



	20
	1700
	40
	9
	34.03%
	0.4673
	10.961



	21
	1700
	50
	6
	17.46%
	0.5342
	15.667



	22
	1700
	50
	7
	18.50%
	0.4816
	14.123



	23
	1700
	50
	8
	16.66%
	0.4893
	14.35



	24
	1700
	50
	9
	17.86%
	0.4348
	12.753



	25
	1700
	60
	6
	8.81%
	0.4919
	17.311



	26
	1700
	60
	7
	11.61%
	0.4923
	17.324



	27
	1700
	60
	8
	11.31%
	0.4934
	17.362



	28
	1700
	60
	9
	11.37%
	0.4495
	15.819



	29
	1700
	70
	6
	7.03%
	0.5152
	21.148



	30
	1700
	70
	7
	7.07%
	0.4809
	19.741



	31
	1700
	70
	8
	4.98%
	0.455
	18.679



	32
	1700
	70
	9
	7.43%
	0.4282
	17.576



	33
	2000
	40
	6
	36.10%
	0.588
	13.791



	34
	2000
	40
	7
	37.95%
	0.549
	12.878



	35
	2000
	40
	8
	38.59%
	0.5437
	12.754



	36
	2000
	40
	9
	39.37%
	0.5456
	12.798



	37
	2000
	50
	6
	26.31%
	0.6026
	17.674



	38
	2000
	50
	7
	27.72%
	0.6127
	17.968



	39
	2000
	50
	8
	29.92%
	0.5654
	16.582



	40
	2000
	50
	9
	31.49%
	0.5601
	16.427



	41
	2000
	60
	6
	19.79%
	0.5891
	20.73



	42
	2000
	60
	7
	21.59%
	0.5807
	20.435



	43
	2000
	60
	8
	21.60%
	0.5501
	19.358



	44
	2000
	60
	9
	21.75%
	0.5057
	17.795



	45
	2000
	70
	6
	12.90%
	0.5743
	23.573



	46
	2000
	70
	7
	14.43%
	0.5379
	22.082



	47
	2000
	70
	8
	14.92%
	0.525
	21.55



	48
	2000
	70
	9
	15.71%
	0.5068
	20.805



	49
	2300
	40
	6
	42.39%
	0.6426
	15.072



	50
	2300
	40
	7
	39.94%
	0.6557
	15.379



	51
	2300
	40
	8
	42.53%
	0.6237
	14.629



	52
	2300
	40
	9
	41.97%
	0.6167
	14.465



	53
	2300
	50
	6
	30.71%
	0.6159
	18.064



	54
	2300
	50
	7
	34.84%
	0.5758
	16.888



	55
	2300
	50
	8
	36.04%
	0.5794
	16.993



	56
	2300
	50
	9
	39.57%
	0.5202
	15.256



	57
	2300
	60
	6
	25.77%
	0.6217
	21.876



	58
	2300
	60
	7
	27.57%
	0.5631
	19.816



	59
	2300
	60
	8
	29.52%
	0.5669
	19.949



	60
	2300
	60
	9
	30.35%
	0.5241
	18.443



	61
	2300
	70
	6
	18.37%
	0.6274
	25.756



	62
	2300
	70
	7
	18.88%
	0.5917
	24.289



	63
	2300
	70
	8
	22.34%
	0.5601
	22.991



	64
	2300
	70
	9
	22.47%
	0.5741
	23.568
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Table 3. Parameter setting of MOSMA-SVR-POLC and other approaches.
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	Approach
	Parameter Item
	Value





	All
	Number of search agents
	200



	
	Number of maximum iterations
	200



	
	Kernel type of  ϵ -SVR
	RBF



	
	Penalty factor of  ϵ -SVR
	0.7



	
	Coefficient  γ  of  ϵ -SVR
	1/3



	
	Coefficient  ϵ  of  ϵ -SVR
	0



	MOSMA-SVR-POLC
	Parameter z
	0.03



	MODA-SVR-POLC
	Enemy distraction weight
	0.096



	MOEA/D-SVR-POLC
	Probability of selecting parents
	0.9



	
	Maximal copies of a new child
	2



	
	Number of neighbours
	13



	MOPSO-SVR-POLC
	Personal learning coefficient
	1.5



	
	Global learning coefficient
	2



	
	Inertia weight
	1



	
	Inertia weight damping ratio
	0.99



	NSGAII-SVR-POLC
	Crossover rate
	0.5



	
	Mutation rate
	0.02



	MOGWO-SVR-POLC
	Number of grids
	10



	
	Leading wolf selection pressure coefficient
	4



	
	Noncracking selected coefficient
	2
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Table 4. Pareto optimal solutions and fronts of MOSMA-SVR-POLC.






Table 4. Pareto optimal solutions and fronts of MOSMA-SVR-POLC.





	ID
	P
	   Fv   
	V
	    D %    
	    1 / PU    
	    1 / ME    





	1
	1400
	67.9
	6
	16.86%
	1.9885
	0.0596



	2
	1400
	68.3
	6
	14.08%
	2.0169
	0.0589



	3
	1400
	68.4
	6
	13.27%
	2.0251
	0.0587



	4
	1400
	68.5
	6
	12.43%
	2.0342
	0.0585



	5
	1400
	68.6
	6
	11.56%
	2.0433
	0.0583



	6
	1400
	68.7
	6
	10.67%
	2.053
	0.0581



	7
	1400
	68.8
	6
	9.77%
	2.0627
	0.0578



	8
	1400
	68.9
	6
	8.87%
	2.0725
	0.0576



	9
	1400
	69.2
	6
	6.34%
	2.1004
	0.057



	10
	1400
	69.3
	6
	5.59%
	2.1088
	0.0568



	11
	1400
	69.9
	6
	2.93%
	2.1395
	0.0562



	12
	1400
	70
	6
	2.87%
	2.1404
	0.0562



	13
	1400
	70
	6.1
	2.5%
	2.1687
	0.056



	14
	1400
	70
	6.2
	2.2%
	2.1954
	0.0559



	15
	1400
	70
	6.3
	1.96%
	2.2198
	0.0558



	16
	1400
	70
	6.4
	1.78%
	2.2411
	0.0557



	17
	1400
	70
	6.6
	1.57%
	2.2707
	0.0556



	18
	1400
	70
	6.7
	1.53%
	2.2789
	0.0555



	19
	1400
	70
	6.9
	1.51%
	2.2815
	0.0556



	20
	1400
	70
	7.1
	1.52%
	2.2691
	0.0557



	21
	1400
	70
	7.2
	1.51%
	2.2589
	0.0559



	22
	1400
	70
	7.3
	1.49%
	2.2477
	0.056



	23
	1400
	70
	7.4
	1.45%
	2.2361
	0.0562



	24
	1400
	70
	7.5
	1.37%
	2.2257
	0.0564



	25
	1400
	70
	7.6
	1.28%
	2.2168
	0.0566



	26
	1400
	70
	7.7
	1.15%
	2.2109
	0.0568



	27
	1400
	70
	8.2
	0.3%
	2.2462
	0.0583



	28
	1999
	70
	9
	17.21%
	1.9662
	0.0572



	29
	2300
	40
	6
	42.43%
	1.5557
	0.064



	30
	2300
	40
	6.2
	42.01%
	1.5349
	0.0642



	31
	2300
	40
	6.4
	41.4%
	1.5216
	0.0644



	32
	2300
	40
	6.5
	41.07%
	1.5177
	0.0645



	33
	2300
	40
	6.6
	40.75%
	1.5156
	0.0646



	34
	2300
	40
	6.7
	40.46%
	1.5156
	0.0647



	35
	2300
	40
	6.8
	40.22%
	1.5175
	0.0648



	36
	2300
	40
	6.9
	40.04%
	1.5209
	0.0649



	37
	2300
	40
	7
	39.94%
	1.5256
	0.065



	38
	2300
	40
	7.1
	39.91%
	1.5316
	0.0651



	39
	2300
	40.4
	6
	41.33%
	1.5718
	0.0639



	40
	2300
	40.6
	6
	40.04%
	1.5916
	0.0637



	41
	2300
	70
	6
	18.35%
	1.5944
	0.0559



	42
	2300
	70
	6.2
	18.1%
	1.601
	0.0556



	43
	2300
	70
	6.4
	18%
	1.6152
	0.0552



	44
	2300
	70
	6.5
	18.03%
	1.6252
	0.0551



	45
	2300
	70
	6.6
	18.1%
	1.6364
	0.0549



	46
	2300
	70
	6.8
	18.4%
	1.6622
	0.0547



	47
	2300
	70
	6.9
	18.63%
	1.6764
	0.0546



	48
	2300
	70
	7.4
	20.28%
	1.7452
	0.0543
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Table 5. Optimal process parameters and relative errors (  R E  ) of MOSMA-SVR-POLC.
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	ID in Table 4
	(   P , Fv , V   )
	   RE   





	12
	(1400, 70, 6)
	(1.03%, 0.06%, 7.29%)
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Table 6. Optimal process parameters and relative errors (  R E  ) of the comparison methods.
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	Approach
	(   P , Fv , V   )
	   RE   





	DFM
	(1400, 70, 6)
	(180.61%, 8.10%, 6.98%)



	RSM
	(1400, 70, 9)
	(51.81%, 6.51%, 24.02%)



	MODA-SVR-POLC
	(1700, 70, 6.2)
	(0.14%, 0.04%, 14.42%)



	MOEA/D-SVR-POLC
	(1700, 70, 6)
	(0.14%, 0.04%, 15.56%)



	MOPSO-SVR-POLC
	(1700, 70, 6)
	(1.03%, 0.06%, 7.29%)



	NSGAII-SVR-POLC
	(1402, 68.3, 6)
	(81.73%, 10.69%, 3.93%)



	MOGWO-SVR-POLC
	(1400, 70, 6)
	(1.03%, 0.06%, 7.29%)
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Table 7. Optimal process parameters and relative errors (  R E  ) of the proposed approach under different weight ratios.






Table 7. Optimal process parameters and relative errors (  R E  ) of the proposed approach under different weight ratios.





	Objective Weight Ratio
	ID in Table 4
	(   P , Fv , V   )
	   RE   





	1/3:1/3:1/3
	44
	(2300, 70, 6.4)
	(8.57%, 5.26%, 32.90%)



	0.6:0.2:0.2
	12
	(1400, 70, 6)
	(1.03%, 0.06%, 7.29%)



	0.2:0.6:0.2
	42
	(2300, 70, 6)
	(0.11%, 0.03%, 43.98%)



	0.2:0.2:0.6
	47
	(2300, 70, 6.8)
	(11.76%, 3.30%, 39.54%)
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