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Abstract: The process parameter optimization of laser cladding using a bio-inspired algorithm is
a hot issue and attracts the attention of many scholars. The biggest difficulty, at present, is the lack
of accurate information regarding the function relationship between objectives and process parame-
ters. In this study, a novel process parameter optimization approach for laser cladding is proposed
based on a multiobjective slime mould algorithm (MOSMA) and support vector regression (SVR).
In particular, SVR is used as a bridge between target and process parameters for solving the prob-
lem of lacking accurate information regarding the function relationship. As a new metaheuristic
algorithm, MOSMA is to obtain the Pareto solution sets and fronts. The Pareto solution sets are
optimized process parameters, and the Pareto fronts are optimized objectives. Users can select the cor-
responding optimized process parameters according to their needs for the target. The performance
of the proposed approach was evaluated by the TOPSIS method, based on actual laser cladding data
and compared with several well known approaches. The results indicate that the optimal process
parameters obtained by the proposed approach have better process performance.

Keywords: bio-inspired algorithm; laser cladding; process parameter optimization; multiobjective
slime mould algorithm; support vector regression

1. Introduction

With the growing requirements for the mechanical properties of transmission parts,
traditional hardening technology is not remarkable in terms of production cost, benefit and
performance improvement. Laser cladding is a new surface hardening technology with
great potential application value. Under the irradiation of a high energy laser, the cladding
alloy powder is melted and added to the surface of the substrate. The cladding layer has
good mechanical properties after cooling [1]. In addition, it also has the advantages of high
precision, high quality and the low thermal effect of the substrate [2,3].

Laser power P, laser scanning speed V and powder feeding rate F (voltage Fv) are
the three key process parameters, which are easy to control and have a strong impact on
the quality of the cladding layer [4]. Optimal process parameters vary with different sub-
strate materials and laser cladding powders. In order to obtain a high quality cladding layer,
it is of great significance to perform parameter optimization for each laser cladding process.

An empirical statistics method has been used to optimize the process parameters
of laser cladding. The relationship between cladding geometry (width, height, depth
of molten and dilution rate) and process parameters (laser power, powder feeding rate
and scanning speed) has been studied to obtain the linear relationship by the regression
method [5]. According to simulation results of molten pool temperature distribution,
the laser power and scanning speed had a great influence on the temperature field and
geometry of the molten pool [6]. There are specific functions that have been proposed
to describe the geometry of a laser cladding layer based on the recursive model and
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experimental results. Thereby, the complete geometry of the laser cladding layer can be
predicted from the basic process parameters [7].

In this study, T15 high speed steel powder was deposited on a 42CrMo steel sub-
strate with the laser cladding process. It greatly improved the surface hardness and wear
resistance of the substrate and further improved the service life of mechanical parts [8].
On this basis, heuristic algorithms can be used to solve and optimize process parameters.
However, there is no accurate formula between the machining objectives (dilution ratio,
powder utilization rate, etc.) and process parameters. This causes significant difficulty for
the multiobjective optimization of process parameters.

A slime mould algorithm (SMA) is an up to date bio-inspired method, which was pre-
sented by Chen et al. [9] in 2020. It simulated the behavior of slime mould and established
the distinct mathematic model for an outstanding exploratory capacity and exploitation
propensity. SMA was evaluated using various benchmark data and achieved superior
results. A multiobjective slime mould algorithm (MOSMA) employed the same underly-
ing SMA mechanisms for convergence, combined with an elitist nondominated sorting
approach to estimate Pareto optimal solutions [10].

In this paper, a novel process parameter optimization approach for laser cladding
is proposed based on MOSMA and SVR (MOSMA-SVR-POLC). MOSMA is used to op-
timize the process parameters of laser cladding (Pareto solution set). Support vector
regression (SVR) is used to build the relationship between process parameters and ma-
chining objectives. The actual laser cladding data are utilized to assess the performance
of MOSMA-SVR-POLC. Simultaneously, the data fitting method (DFM) [5], the response
surface method (RSM) [11], MODA (multiobjective dragonfly algorithm)-SVR-POLC [12],
MOEA/D (multiobjective evolutionary algorithm based on decomposition)-SVR-POLC [13]
and other variant methods are compared with the proposed approach.

There are two innovations. First, the ingenious combination of MOSMA and SVR is
modeled in the process parameter optimization of laser cladding. SVR is used to predict
the optimization objectives based on the past data of laser cladding, and the predicted
results are involved in the iteration process of MOSMA. Secondly, the proposed approach
is tested using actual machining data, which can well verify the feasibility and effectiveness
of the method.

The remainder of this paper is arranged as follows. Section 2 shows the research
methodology and analysis methods. The MOSMA-SVR-POLC is described in detail.
The case study is shown in Section 3. The discussion and conclusion are provided in Sec-
tions 4 and 5, respectively.

2. MOSMA-SVR-POLC Approach

In this section, the new MOSMA-SVR-POLC hybrid approach is proposed to deal
with the problem of the process parameter optimization of laser cladding. The main
idea is as follows: (a) carry out the process parameter population representation of laser
cladding, (b) obtain the current Pareto solution set and front based on the actual machining
data as the training set and SVR as the fitness function, (c) update the population via
the Pareto solution set, Pareto front and MOSMA. Steps (b) and (c) are repeated until
the cut-off condition is met. The cut-off condition is generally set to reach the maximum
iteration. During theorisation, there are two issues that need special attention. The first
is how the process parameter population of laser cladding is represented. The second is
the membership of the Pareto front. In MOSMA-SVR-POLC, the discussions of these issues
are shown in the following.

1. The process parameter population representation of laser cladding: The population X
is made up of individuals Xi. X = {X1, X2, . . . , Xn}, where n indicates the population
size. The attributes of Xi are determined by the process parameters of laser cladding
(P, Fv, V).

2. The membership of Pareto front: The dilution ratio D%, powder utilization rate PU
and machining efficiency ME are usually used to evaluate the effect of laser cladding.
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Therefore, these indicators can constitute the membership of Pareto front. Thus far,
there is no accurate employing these objectives and process parameters; hence, the
ε-SVR is applied to predict the objectives. In addition, PU and ME are special (in
essence, bigger is better). It is necessary to obtain the reciprocal of PU and ME for
unifying the characteristics of all the indicators (smaller is better).

In this work, ε-SVR [14] is used to predict the dilution ratio D%, powder utilization rate
PU and machining efficiency ME, because there is no accurate calculation formula employ-
ing the objectives (D%, PU and ME) and the process parameters (P, Fv and V) in the field
of laser cladding. The development kit LIBSVM offers the source codes of ε-SVR [15].
The radial basis function (RBF) kernel is very efficient, especially in the prediction of high
dimensional samples [16]. The function is listed below.

K(·) = exp(−γ|u− v|2) (1)

where γ is a coefficient to be set manually, u is the prediction result vector, and v indicates
the actual value vector.

The main process of the MOSMA-SVR-POLC approach is depicted in Figure 1. The spe-
cific steps are shown in the following.

Figure 1. Flowchart of MOSMA-SVR-POLC.

Step 1 Confirm the lower and upper limits of P, Fv and V to form the lower limit
sets LB and the upper limit sets UB. Thus, X is initialized randomly within LB and UB.
The maximum of the iteration is marked as MI. The iteration count variable j is set to 1.

Step 2 Based on training data, obtain the training model using ε-SVR.
Step 3 Based on the training model, predict the (D%, PU, ME) set of each Xi.
Step 4 Obtain the current Pareto solution set PSX and front PSF with the (D%, PU, ME) sets.
Step 5 Update X with the operations of MOSMA.
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Step 6 If j > MI, go to Step 8; otherwise, go to Step 7.
Step 7 j = j + 1. Go to Step 3.
Step 8 Output the Pareto solution set and front.

Multiobjective Slime Mould Algorithm

SMA was presented by Chen et al. [9] in 2020. It was motivated by the oscillating
patterns of slime mould. For forming the optimum path to connect food with outstand-
ing exploratory capacity and exploitation propensity, a distinct mathematic model was
presented using accommodative weights to imitate the process of generating positive and
negative feedback of the propagation wave supported by a bio-oscillator. MOSMA em-
ployed the same underlying SMA mechanisms for convergence, combined with an elitist
nondominated sorting approach to estimate Pareto optimal solutions [10]. The operations
of MOSMA required for this work are shown in Figure 2.

Figure 2. Flowchart of the required operations of MOSMA.

3. Case Study
3.1. Feasibility Experiment

The experimental conditions involve (i) a PC with Matlab R2018a, (ii) the LIBSVM soft-
ware package, and (iii) the data sets, which were obtained from the practical laser cladding
processing experiment. In this study, 42CrMo steel with dimensions of (100 × 100 × 15) mm
was used as the substrate. The steel was treated by quenching and tempering. The cladding
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powder was T15 high speed steel powder with a particle size of (30–100) µm. The chemical
compositiosn of the T15 powder and 42CrMo steel are represented in Table 1.

The laser model was a TruDisk4002, as shown in Figure 3. A single layer cladding
layer was prepared by the coaxial powder feeding method with T15 high speed steel as
the cladding powder, argon as the powder carrier gas and shielding gas in the cladding
process. Experimental process parameters are listed below: laser power (P) selection
of 1400 W, 1700 W, 2000 W and 2300 W; the scanning speeds (V) were 6 mm/s, 7 mm/s,
8 mm/s and 9 mm/s; similarly, there were four rates of powder feeding voltage (Fv): 40 V,
50 V, 60 V, 70 V. Other parameters include: defocus: 16 mm, lap rate: 30%, and protective gas
flow: 20 L/min. The complete experimental method was adopted. A total of 64 machining
experiments were carried out. They were cut with a sample size of (15 × 15 × 15) mm.
The inlaying, grinding, polishing and other processes were carried out to make the sample
surface show a mirror effect and no obvious scratches. Then, the surface of the samples
were etched with a solution with HNO3. Lastly, the 64 samples were placed in sequence
under an electron microscope for observation and photography. The geometric shape
of the cladding layer of each sample was recorded (as shown in Figures 4 and 5, where w is
width, h is height, and b is melting depth. S1 is melting height area, and S2 is melting depth
area). Figure 5 shows the transverse cross section of the claddings using a scanning electron
microscope. The relative geometric dimensions of the cladding layer were measured with
AutoCAD software. It was found that there were no obvious cracks, pores, inclusions nor
other defects in the cladding layer section.

The machining data are shown in Table 2, where D% can be obtained according to
Equation (2) [17]. PU is calculated via Equation (3), and ME is obtained by Equation (4).

D% =
S2

S1 + S2
(2)

PU =
S1×V × 0.00819× 60

0.28815× Fv
(3)

ME = S1×V (4)

Figure 3. Laser cladding system.
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Table 1. Chemical composition of clad powder and substrate materials.

Material Form Elements wt (%)
C V Mn Cr Mo Co Si W Fe

42CrMo Plate 0.4 - 0.63 0.99 0.19 - 0.21 - Rem
T15 Powder 1.6 4.7 0.45 4.5 - 5.4 0.48 11.7 Rem

Figure 4. Geometric shape diagrammatic sketch of the cladding layer.

Figure 5. Cross section optimal micrographs of the single clad tracks for different process parameters.

With the machining data in Table 2, the proposed MOSMA-SVR-POLC was used to
search the optimized process parameters. The parameter settings of MOSMA-SVR-POLC
are shown in Table 3. The machining data is regarded as the training set, and X is taken
as the test set. The prediction D%, 1/PU and 1/ME are obtained via these approaches.
The final Pareto optimal solution and front of MOSMA-SVR-POLC are revealed in Table 4.
The corresponding graphics of MOSMA-SVR-POLC are shown in Figure 6. From the figures,
the relationship between D%, PU and ME is extremely complex.
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Table 2. Machining parameters and measurement results for each single clad.

ID P (W) Fv (V) V (mm/s) D% PU ME (mm3/s)

1 1400 40 6 37.51% 0.5082 11.921
2 1400 40 7 21.71% 0.432 10.132
3 1400 40 8 31.95% 0.4636 10.874
4 1400 40 9 18.71% 0.3966 9.3024
5 1400 50 6 11.18% 0.4654 13.65
6 1400 50 7 48.71% 0.4509 13.223
7 1400 50 8 7.74% 0.4035 11.835
8 1400 50 9 7.87% 0.3697 10.842
9 1400 60 6 5.73% 0.4497 15.826

10 1400 60 7 3.46% 0.4446 15.644
11 1400 60 8 3.38% 0.3939 13.86
12 1400 60 9 3.31% 0.3648 12.837
13 1400 70 6 2.90% 0.4675 19.193
14 1400 70 7 1.55% 0.439 18.02
15 1400 70 8 0.69% 0.4514 18.531
16 1400 70 9 0.49% 0.3968 16.288
17 1700 40 6 29.19% 0.4797 11.251
18 1700 40 7 26.65% 0.4791 11.237
19 1700 40 8 28.27% 0.4815 11.294
20 1700 40 9 34.03% 0.4673 10.961
21 1700 50 6 17.46% 0.5342 15.667
22 1700 50 7 18.50% 0.4816 14.123
23 1700 50 8 16.66% 0.4893 14.35
24 1700 50 9 17.86% 0.4348 12.753
25 1700 60 6 8.81% 0.4919 17.311
26 1700 60 7 11.61% 0.4923 17.324
27 1700 60 8 11.31% 0.4934 17.362
28 1700 60 9 11.37% 0.4495 15.819
29 1700 70 6 7.03% 0.5152 21.148
30 1700 70 7 7.07% 0.4809 19.741
31 1700 70 8 4.98% 0.455 18.679
32 1700 70 9 7.43% 0.4282 17.576
33 2000 40 6 36.10% 0.588 13.791
34 2000 40 7 37.95% 0.549 12.878
35 2000 40 8 38.59% 0.5437 12.754
36 2000 40 9 39.37% 0.5456 12.798
37 2000 50 6 26.31% 0.6026 17.674
38 2000 50 7 27.72% 0.6127 17.968
39 2000 50 8 29.92% 0.5654 16.582
40 2000 50 9 31.49% 0.5601 16.427
41 2000 60 6 19.79% 0.5891 20.73
42 2000 60 7 21.59% 0.5807 20.435
43 2000 60 8 21.60% 0.5501 19.358
44 2000 60 9 21.75% 0.5057 17.795
45 2000 70 6 12.90% 0.5743 23.573
46 2000 70 7 14.43% 0.5379 22.082
47 2000 70 8 14.92% 0.525 21.55
48 2000 70 9 15.71% 0.5068 20.805
49 2300 40 6 42.39% 0.6426 15.072
50 2300 40 7 39.94% 0.6557 15.379
51 2300 40 8 42.53% 0.6237 14.629
52 2300 40 9 41.97% 0.6167 14.465
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Table 2. Cont.

ID P (W) Fv (V) V (mm/s) D% PU ME (mm3/s)

53 2300 50 6 30.71% 0.6159 18.064
54 2300 50 7 34.84% 0.5758 16.888
55 2300 50 8 36.04% 0.5794 16.993
56 2300 50 9 39.57% 0.5202 15.256
57 2300 60 6 25.77% 0.6217 21.876
58 2300 60 7 27.57% 0.5631 19.816
59 2300 60 8 29.52% 0.5669 19.949
60 2300 60 9 30.35% 0.5241 18.443
61 2300 70 6 18.37% 0.6274 25.756
62 2300 70 7 18.88% 0.5917 24.289
63 2300 70 8 22.34% 0.5601 22.991
64 2300 70 9 22.47% 0.5741 23.568

Table 3. Parameter setting of MOSMA-SVR-POLC and other approaches.

Approach Parameter Item Value

All Number of search agents 200
Number of maximum iterations 200

Kernel type of ε-SVR RBF
Penalty factor of ε-SVR 0.7
Coefficient γ of ε-SVR 1/3
Coefficient ε of ε-SVR 0

MOSMA-SVR-POLC Parameter z 0.03
MODA-SVR-POLC Enemy distraction weight 0.096

MOEA/D-SVR-POLC Probability of selecting parents 0.9
Maximal copies of a new child 2

Number of neighbours 13
MOPSO-SVR-POLC Personal learning coefficient 1.5

Global learning coefficient 2
Inertia weight 1

Inertia weight damping ratio 0.99
NSGAII-SVR-POLC Crossover rate 0.5

Mutation rate 0.02
MOGWO-SVR-POLC Number of grids 10

Leading wolf selection pressure coefficient 4
Noncracking selected coefficient 2

Many optimized process parameters were obtained, which is a challenge for prac-
tical application: how to select the optimal one for practical machining? The TOPSIS
method [18] was used to obtain the best process parameter. The key lies in the weight
of the three indicators: D%, 1/PU and 1/ME. The Saaty weight method was used to
calculate the weight. The problem becomes to determine how much users value the D%,
1/PU and 1/ME. In this work, D% is considered to be slightly more important than
the other two indicators. Therefore, the weight of D%, 1/PU and 1/ME is 0.6:0.2:0.2 using
the Saaty weight method. The optimal process parameters under this weight are shown
in Table 5, based on Table 4. The relative error between MOSMA-SVR-POLC and the actual
laser cladding is also calculated and shown in Table 5. From Table 5, it can be seen that
only the last error of ME is relatively large, and the others are small. The feasibility of this
method is verified to a great extent.
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Table 4. Pareto optimal solutions and fronts of MOSMA-SVR-POLC.

ID P Fv V D% 1/PU 1/ME

1 1400 67.9 6 16.86% 1.9885 0.0596
2 1400 68.3 6 14.08% 2.0169 0.0589
3 1400 68.4 6 13.27% 2.0251 0.0587
4 1400 68.5 6 12.43% 2.0342 0.0585
5 1400 68.6 6 11.56% 2.0433 0.0583
6 1400 68.7 6 10.67% 2.053 0.0581
7 1400 68.8 6 9.77% 2.0627 0.0578
8 1400 68.9 6 8.87% 2.0725 0.0576
9 1400 69.2 6 6.34% 2.1004 0.057
10 1400 69.3 6 5.59% 2.1088 0.0568
11 1400 69.9 6 2.93% 2.1395 0.0562
12 1400 70 6 2.87% 2.1404 0.0562
13 1400 70 6.1 2.5% 2.1687 0.056
14 1400 70 6.2 2.2% 2.1954 0.0559
15 1400 70 6.3 1.96% 2.2198 0.0558
16 1400 70 6.4 1.78% 2.2411 0.0557
17 1400 70 6.6 1.57% 2.2707 0.0556
18 1400 70 6.7 1.53% 2.2789 0.0555
19 1400 70 6.9 1.51% 2.2815 0.0556
20 1400 70 7.1 1.52% 2.2691 0.0557
21 1400 70 7.2 1.51% 2.2589 0.0559
22 1400 70 7.3 1.49% 2.2477 0.056
23 1400 70 7.4 1.45% 2.2361 0.0562
24 1400 70 7.5 1.37% 2.2257 0.0564
25 1400 70 7.6 1.28% 2.2168 0.0566
26 1400 70 7.7 1.15% 2.2109 0.0568
27 1400 70 8.2 0.3% 2.2462 0.0583
28 1999 70 9 17.21% 1.9662 0.0572
29 2300 40 6 42.43% 1.5557 0.064
30 2300 40 6.2 42.01% 1.5349 0.0642
31 2300 40 6.4 41.4% 1.5216 0.0644
32 2300 40 6.5 41.07% 1.5177 0.0645
33 2300 40 6.6 40.75% 1.5156 0.0646
34 2300 40 6.7 40.46% 1.5156 0.0647
35 2300 40 6.8 40.22% 1.5175 0.0648
36 2300 40 6.9 40.04% 1.5209 0.0649
37 2300 40 7 39.94% 1.5256 0.065
38 2300 40 7.1 39.91% 1.5316 0.0651
39 2300 40.4 6 41.33% 1.5718 0.0639
40 2300 40.6 6 40.04% 1.5916 0.0637
41 2300 70 6 18.35% 1.5944 0.0559
42 2300 70 6.2 18.1% 1.601 0.0556
43 2300 70 6.4 18% 1.6152 0.0552
44 2300 70 6.5 18.03% 1.6252 0.0551
45 2300 70 6.6 18.1% 1.6364 0.0549
46 2300 70 6.8 18.4% 1.6622 0.0547
47 2300 70 6.9 18.63% 1.6764 0.0546
48 2300 70 7.4 20.28% 1.7452 0.0543
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Figure 6. Pareto front of MOSMA-SVR-POLC (3D and 2D).

Table 5. Optimal process parameters and relative errors (RE) of MOSMA-SVR-POLC.

ID in Table 4 (P, Fv, V ) RE

12 (1400, 70, 6) (1.03%, 0.06%, 7.29%)

3.2. Comparative Experiment

The experimental conditions are consistent with those in the feasibility experiment.
The proposed MOSMA-SVR-POLC is compared with the mainstream methods: DFM [5]
and RSM [11], and some variants of MOSMA-SVR-POLC, such as MODA-SVR-POLC [12],
MOEA/D-SVR-POLC [13], MOPSO-SVR-POLC [19], NSGAII-SVR-POLC [20], MOGWO-
SVR-POLC [21]. The parameter settings of these approaches are also shown in Table 3.
The TOPSIS method [18] is also used to obtain the best process parameter. The weight
of D%, 1/PU and 1/ME is also set to 0.6:0.2:0.2. The best process parameters and relative
errors (RE) of these approaches are shown in Table 6. Figure 7 shows the Pareto optimal
front obtained by MOSMA-SVR-POLC and its similar algorithms.

From Tables 5 and 6, it can be seen that the proposed MOSMA-SVR-POLC had
the same optimal process parameters as DFM and MOGWO-SVR-POLC. In terms of RE, it
was much better than DFM and the same as MOPSO-SVR-POLC and MOGWO-SVR-POLC.
DFM performed extremely badly in the RE of D%. RSM, MODA-SVR-POLC, MOEA/D-
SVR-POLC and NSGAII-SVR-POLC obtained different optimal process parameters. RSM
lagged behind MOSMA-SVR-POLC. MODA-SVR-POLC and MOEA/D-SVR-POLC also
had a good performance, except for the RE of ME. NSGAII-SVR-POLC did not perform
well in the RE of D%. From Figure 7, MOPSO-SVR-POLC, NSGAII-SVR-POLC and
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MOGWO-SVR-POLC had a good performance in area C. MOSMA-SVR-POLC performed
well in regions A and B. The above results confirm the capacity of MOSMA-SVR-POLC.
The proposed approach proves to be very competitive.

Table 6. Optimal process parameters and relative errors (RE) of the comparison methods.

Approach (P, Fv, V ) RE

DFM (1400, 70, 6) (180.61%, 8.10%, 6.98%)
RSM (1400, 70, 9) (51.81%, 6.51%, 24.02%)

MODA-SVR-POLC (1700, 70, 6.2) (0.14%, 0.04%, 14.42%)
MOEA/D-SVR-POLC (1700, 70, 6) (0.14%, 0.04%, 15.56%)
MOPSO-SVR-POLC (1700, 70, 6) (1.03%, 0.06%, 7.29%)
NSGAII-SVR-POLC (1402, 68.3, 6) (81.73%, 10.69%, 3.93%)

MOGWO-SVR-POLC (1400, 70, 6) (1.03%, 0.06%, 7.29%)

Figure 7. Pareto optimal front obtained by MOSMA-SVR-POLC and its similar algorithms.

4. Discussion

In the feasibility experiment, the TOPSIS method was used to obtain the optimal
process parameters. However, the difference in weight ratios between optimization ob-
jectives affects the selection of optimal process parameters. In this section, the different
weight ratios were selected to study the output of the optimal process parameters, and
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the prediction accuracy of the proposed approach will be further discussed. The results are
shown in Table 7.

From Table 7, it can be seen that the different weight ratios do define the different
optimal process parameters. This meets the needs of different users for objectives. No
matter which weight ratio, the prediction accuracy of the first two targets, D% and 1/PU,
are higher than 1/ME. Especially in the weight ratios 1/3:1/3:1/3, 0.2:0.6:0.2 and 0.2:0.2:0.6,
this situation is more obvious. The improvement ofthe prediction accuracy of 1/ME may
be the next important research topic.

Table 7. Optimal process parameters and relative errors (RE) of the proposed approach under
different weight ratios.

Objective Weight Ratio ID in Table 4 (P, Fv, V ) RE

1/3:1/3:1/3 44 (2300, 70, 6.4) (8.57%, 5.26%, 32.90%)
0.6:0.2:0.2 12 (1400, 70, 6) (1.03%, 0.06%, 7.29%)
0.2:0.6:0.2 42 (2300, 70, 6) (0.11%, 0.03%, 43.98%)
0.2:0.2:0.6 47 (2300, 70, 6.8) (11.76%, 3.30%, 39.54%)

In addition, the big oh notation is used to calculate the computation cost of the pro-
posed approach. The computation cost of MOSMA and SVR is O(MI(n · d + co f · n)) and
O(l · tk), respectively, co f is the consumption time of objective calculation, d is the attribute
number of individuals, l represents the sample size, and tk represents the time consumed for
the calculation of the SVR kernel function. The proposed approach is composed of MOSMA
and SVR. Therefore, its computation cost is O(MI(n · d + l · tk · n)).

5. Conclusions

This work proposed a new hybrid approach for the process parameter optimization
of laser cladding using a multiobjective slime mould algorithm and support vector regression.
The proposed MOSMA-SVR-POLC realizes objectives prediction and process parameter
optimization in laser cladding and provides users with the most valuable parameters for
different objectives. Furthermore, ε-SVR is applied to predict the D%, 1/PU and 1/ME.
The training data are from the actual laser cladding. MOSMA is used to obtain the Pareto
optimal solutions and fronts. The feasibility experiment and comparative experiment were
carried out to test the performance of MOSMA-SVR-POLC. The experimental results reveal
that MOSMA-SVR-POLC achieves a competitive predictive performance compared with other
well established approaches. The study confirms the feasibility and effectiveness of MOSMA-
SVR-POLC in the field of process parameter optimization in laser cladding.

For future work, the improvement of the setting parameters and prediction accuracy
of ε-SVR should be further studied. Secondly, more kinds of laser cladding experiments,
such as multichannel laser cladding, should be added to verify and modify the method
in this paper.
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