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Abstract: In the field of Diagnostics, the fundamental task of detecting damage is basically a binary
classification problem, which is addressed in many cases via Novelty Detection (ND): an observation
is classified as novel if it differs significantly from reference, healthy data. ND is practically imple-
mented summarizing a multivariate dataset with univariate distance information called Novelty
Index. As many different approaches are possible to produce NIs, in this analysis, the possibility of
implementing a simple classifier in a reduced-dimensionality space of NIs is studied. In addition
to a simple decision-tree-like classification method, the process for obtaining the NIs can result as a
dimension reduction method and, in turn, the NIs can be used for other classification algorithms. In
addition, a case study will be analyzed thanks to the data published by the Prognostics and Health
Management Europe (PHME) society, on the occasion of the Data Challenge 2021.

Keywords: machine diagnostics; novelty detection; dimension reduction method; complex machine;
electronic components quality control line; SCARA robot; big data

1. Introduction

The maintenance of a mechanical system has a fundamental role in the industrial field
and has repercussions, both in terms of safety and economics, as it allows for reducing
costs and downtime. In fact, in recent years, maintenance techniques have evolved rapidly,
passing from corrective and preventive approaches to the most recent and developed
condition-based [1] and predictive ones. Recently, research is focusing on further diagnostic
techniques, aimed at prescriptive maintenance, which allows exploiting predictions to rec-
ommend operational decisions, thanks to the damage-type recognition and, consequently,
its cause [2].

Among the different diagnostic techniques and prominent studies present in the litera-
ture [3–11], Novelty Detection (ND) is a classification technique based on the recognition of
“abnormal” values and is frequently used for fault detection in complex industrial systems.
In particular, the novelty information has a direct correspondence to the fault detection in
case of exclusion of confounding influences, among which are the work and environmental
conditions. ND can be based on different types of approaches, among which are distance-
based and model-based approaches, support vector methods, other statistical methods, and
neural networks. For example, in [12], a multivariate technique, such as Principal Compo-
nent Analysis (PCA), was implemented for diagnostics via Novelty Detection. In general,
ND can be seen as a classification technique between two classes (normal and abnormal or,
in the context of diagnostics, healthy and damaged). From a multiclass diagnostic system
point of view for prescriptive maintenance, this problem can be decomposed into multiple
two-class classifications using ND, since pattern recognition usually occurs with a higher
number of classes. Focusing on the monitoring of mechanical systems, ND is frequently
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used because it allows for recognizing the condition of machinery, when data recorded for
model training is limited for abnormal classes and abundant for healthy ones. Damage
simulation is, indeed, often challenging and expensive, while normal functioning is usually
easy to achieve. The Novelty Indexes (NIs) exploited for ND can be obtained through differ-
ent approaches, including those of a Bayesian nature, Neural Networks and Support Vector
methods. In general, the effectiveness of ND techniques is evaluated both through detection
rates, false alarm rates (usually summarized by the ROC curve [13]), computational costs
and the complexity of the model [14,15]. For instance, Markou et al. [16] collected several
neural network-based approaches for novelty detection. However, while these can be
moderately effective methods, at the same time, they are complex and consequently require
considerable time for generation and training. Furthermore, reduced knowledge of specific
intermediate steps in neural networks is a concept called the unpredictability of Artificial
Intelligence (AI) [17] and, consequently, reduces confidence in the results. For this reason,
tools subject to unpredictability are not safe to use, especially when considering an AI
security [18–21] and AI governance [22] context, such as the one under consideration.

This article proposes a multiclass diagnostic method, ND-based and optimized by
means of a Genetic Algorithm (GA) [23]. An example of GA application is developed in [24].
The proposed method was applied to data published by PHME, which were collected on
a real industrial test bench, consisting of a quality control line for electronic components.
The configuration of this complex industrial line includes subsystems of different nature-
rotating and non-rotating components, working in highly non-stationary conditions and
with several damage and failure conditions.

The results of the proposed ND-based technique have been evaluated with different
performance indices (e.g., accuracy), obtained through six different types of classifiers [25,26]
(Linear Discriminant Analysis, k-Nearest Neighbors, Decision Tree, Linear Support Vector
Machine, Gaussian Naive Bayes and Kernel Naive Bayes). In addition to the positive results
obtained in terms of performance, the proposed work further allows both reducing the dataset
dimensions (and, consequently, the amount of data to be stored and processed) and speeding
up the diagnostic process, by making the fault recognition timely. Thanks to the latter property,
the proposed method is particularly suitable for online applications and allows for reducing
the effects of the curse of dimensionality [5,27].

Finally, it is worth noting that a generic data-to-decision (D2D) process taken from
the implementation of structural health monitoring [6,28] is mainly composed of the
following six phases: (1) operational evaluation, (2) data acquisition and cleansing, (3) signal
processing (i.e., features selection, extraction, and metrics), (4) pattern processing (i.e.,
statistical model development and validation), (5) situation assessment and (6) decision
making. Considering this waterfall structure, it is possible to affirm that the proposed
work focuses mainly on (4), since the introduced novelty concerns data mining for damage
identification. These techniques generally follow a consolidated hierarchical structure
of steps, defined in [29,30]. The foremost levels of this structure can be summarized as:
(a) detection (a qualitative indication of the damage presence), (b) localization (damage
position), (c) classification (damage type), (d) assessment (damage size) and (e) prediction
(degree of safety and remaining useful life estimation). Among the levels (a–d) concerning
diagnostics, this work aims both to detect the presence of damage and to classify the
damage itself, thanks to class recognition. The scientific literature contains numerous
articles, in which these aspects, concerning fault diagnosis, are deepened, as in [31–34].

The article is structured as follows. Section 2 contains a description of the mechanical
system adopted as case study and of the dataset used for the application of the proposed
methodology, which is described in Section 3. Finally, the results and conclusions are
reported in Sections 4 and 5, respectively.

2. Case Study

The proposed diagnostic method was developed for industrial applications and, in
particular, was tested on the dataset that was distributed for the Prognostics and Health
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Management Europe (PHME) society Data Challenge 2021 [35]. This section describes the
dataset and the related test bench used for its acquisition.

2.1. Test Bench Description

The machine used by PHME is a complex system, composed primarily of the 4-axis
SCARA robot shown in Figure 1. It represents a typical component for the quality control
of an industrial production line. Electric fuses are tested on this test bench (electricity
conduction, temperature reached by induced heating), taken with a vacuum gripper. For
these controls and for real-time monitoring of the machinery health state, a Supervisory
Control and Data Acquisition (SCADA) system composed of 50 sensors was implemented
to record the evolution of the quantities of interest and to consider the contributions of
the several different components. Please note that the main components making up the
entire machine are the 4-axis SCARA robot, a thermal imaging camera and a camera
for detecting fuses, Electronically Commutated (EC) and Direct-Current (DC) motors, a
pneumatic system, including vacuum pumps and various valves and an electrical power
supply circuit for control tests. As can be noted, the overall structure of the machine is
rather complex and heterogeneous. There are components of a different nature (rotating
and non-rotating parts, electric and pneumatic equipment) and this makes the extraction of
the most representative features for the machinery health conditions more challenging.
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Figure 1. Equipment: 4-axis SCARA robot picking up electrical fuses with a vacuum gripper, from a
feeder to a fuse-test-bench for large-scale quality control.

There are no defects throughout the entire quality control line during the tests carried
out under healthy conditions. The five different artificial failure forms introduced were
obtained by manually altering one or more components. The five introduced faults affect
the sensor readings in different ways, so this dataset potentially allows one to classify not
only the presence of defects but also their type, from a prescriptive maintenance point
of view.

2.2. Dataset Description

The recorded experimental dataset is relative to 50 signals, inherent to different quan-
tities of interest. These quantities vary from measurements of ambient temperature and
humidity to pressure measurements inherent to the state of the machine up to quantities
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of a different nature, such as CPU temperature and process memory consumption. Each
of these signals is described in the dataset through a specific set of fields, inherent to a
fixed time window (vCnt = number of samples recorded; vFreq = Sampling frequency;
vMax = Maximum recorded value; vMin = Minimum recorded value; vTrend = trend of
the historical series and value = Average value) to describe its characteristics. Appendix A
lists the different signals present in the dataset and the related measured fields per sensor.
The reference time windows have a duration of 10 s, while each experiment can last from 1
to 3 h approximately. However, the dataset was pre-processed by averaging the available
features over the entire acquisition period (i.e., ≈ 1 to 3 h) to limit the dataset and to obtain
unique features describing each experiment. Furthermore, not all measures have all the
above characteristics. Therefore, the dimension of the data matrix X0 of dimensions m× n
is composed of m = 70 rows for n = 240 columns (where m represents the tests and n
the features). Further, 50 tests were performed under healthy conditions, while the five
conditions with different failures have a cardinality of 4 tests each, for a total of 70 tests.

It should be noted that, in the context of diagnostics and health monitoring of me-
chanical systems, data are generally collected using suitable sensors (e.g., accelerometers,
load cells and temperature sensors) positioned on the machinery of interest, both during its
operation in optimal conditions and with the presence of (alternatively simulating) faults,
defects, damage, failures. Therefore, each performed test is classified through a specific
label describing the condition of the machinery. In the following, healthy conditions of the
machinery will be indicated as Class 0, while the damage will be generally defined as Class
k, where k ∈ N is the number of types of damage considered.

Finally, this dataset was further pre-processed by standardizing the data on the mean
value and on the standard deviation, referred to as the healthy class, obtaining the X
matrix of size m× n and rank L ≤ min(m, n). Vector C, containing the labels, describes
the condition of the machinery concerning each test carried out and, consequently, has
dimensions of 1×m.

3. Proposed Methodology

Novelty Detection (ND) is a semi-supervised methodology for implementing a binary
classification problem using only data from a healthy reference condition. When a new
datapoint arrives, its distance from the healthy reference data cloud is measured, and this
measure, usually called Novelty Index (NI), is compared to a threshold so as to identify
if the new data are sufficiently far away to be considered novel. The NI is then a reduced
dimensionality (1-D) version of the original multivariate dataset.

Different algorithms are available for computing NIs. The simplest involves the
projection of the multivariate dataset along a direction which is believed to correspond
to the damage-evolution direction. In this case, the NI is simply a linear combination of
features (i.e., a weighted sum of features). Hence, the training consists in the determination
of such weights α.

NIα = X·α (1)

In this work this task has been tackled by a heuristic maximization of a utility function
measuring the separation of the different classes along the direction identified by α.

A genetic algorithm was used to find the optimal α minimizing the p-value from an
ANOVA post-hoc test indicating the degree of separation. In particular, the average value
of the p-values which represents the degree of separation between each pair of classes
has been optimized. In this way, not only the ability of features to identify classes was
considered but the number of distinguished classes was also maximized.

To improve the identification of classes, a more refined NI was implemented, based on
Mahalanobis Distance (MD) [36]:

NIm = MD2 = X′Σ−1X (2)
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where Σ is the covariance matrix of the reference class. Considering that datasets with
a high number of features are usually handled, it may often be impossible to correctly
estimate Σ−1 using a few healthy points in a feature space with a large dimension.

An optimization scheme similar to the previously introduced one, based on GA, was
then proposed for the selection of a subspace with a lower dimension. GA was then iterated
several times changing the dimensionality to find the optimal features to be kept for the
computation of NIm. Comparing the optimal utility function values, it is possible to select
the final subspace. Appendix A shows the results of the performed GA optimization in
terms of coefficients referred to each feature which allow obtaining NIα and NIm.

Merging the information of NIα and NIm in a 2-D space, the classification task can
be implemented with better results. This proves that the implementation of a simple
classifier in a 2D space of NIs (such as a decision tree that basically allows recognizing
the damage class by dividing the resulting 2D space into regions) can be used for multi-
class classification purposes. In addition to this possible use, NIs are also suitable for the
implementation of other classifiers, as shown in Section 4. In general, the proposed method
can be considered as a size reduction method for classification algorithms.

To conclude, a flowchart is presented in Figure 2 to summarize and clarify the pro-
posed method.
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4. Results and Discussion

This section shows the results obtained with the proposed method applied on the
database described in Section 2. After having obtained the NIs in a reduced-dimension
space, six of the main classification models were applied: Linear Discriminant Analysis
(LDA) [37], k-Nearest Neighbor (kNN) with k = 2, given the small amount of data for the
minority classes [38], Decision Trees (DT) [39], Linear Support Vector Machine (SVM) [40],
Gaussian Naive Bayes (GNB) and Kernel Naive Bayes (KNB) [41]. These classifiers have
been adopted both because they are the most widely used (semi-)supervised machine
learning algorithms, and to study the proposed method performances as the type of
algorithm varies.
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A Monte Carlo Cross-Validation (MCCV) [42] was applied to all the tests to obtain more
precise results, in terms of performance indices. Indeed, since a classification model needs
both a training dataset and a second group of data for verification (called validation dataset),
the choice of these datasets can take place in different ways. A k-fold Cross-Validation (CV)
consists of dividing data into k groups. Only one group is used as a validation dataset,
while the remaining k − 1 as training. This process is repeated k times until all groups
have been validated. In this case, given that the number of samples describing classes with
damage is reduced to four examples per class, k = 4 was chosen to have at least one test in
each subdivision of the dataset and to train the model correctly. Considering a generic CV
on a database composed of n samples, divided, respectively, into nt for the training set and

nv = n− nt for the validation set, the binomial coefficient
(

n
nv

)
represents the number

of different combinations for the subdivision. However, each of these subdivisions can
bring different results, in terms of model generation and, consequently, accuracy. MCCV is
a very effective method that consists, in addition to the random subdivision of the samples
into the training and validation groups, of the iteration of this procedure N = 50 times.
Thanks to this method, the computational complexity is significantly reduced, and the
average accuracy tends to the theoretical value of the generated model. Figure 3 shows an
example of accuracy trends calculated with MCCV as the number of iterations N increases
to demonstrate their convergence.
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The proposed method performance will be evaluated through different comparative
indices [43]. In addition to the typical accuracy, other indices are used in this study
compared to traditional sensitivity and specificity, since the database used is multi-class
and the proposed method aims to recognize not only the damage but also its nature. For
this reason, considering a generic confusion matrix, as in Table 1, the following indices
are introduced to evaluate the performance of the methods, where the acronyms are as

in Table 1 (TN = TN0, FP =
K
∑

k=1
FPk, FN =

K
∑

k=1
FNk, TP =

K
∑

k=1
TPk, CE =

K
∑

k=1

K
∑

k=1
CEk,k,

TC = TP + TN + FP + FN + CE):

• Accuracy: this represents the ability of the classifier to correctly recognize positive
and negative cases.

Acc =
TP + TN

TC
(3)
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• Missed Alarms: this indicates cases where degradation exists, but the classifier cannot
recognize it.

M.A. =
FN
TC

(4)

• False Alarms: unlike Missed Alarms, this represents the percentage of cases out of the
total in which the machinery is healthy, but the algorithm assumes damage. Both the
F.A.s and the M.A.s are important indices and could be preferred over the accuracy
for safety or economic reasons.

F.A. =
FP
TC

(5)

• Class Errors Rate: this index allows for recognizing how many tests have not been
correctly classified, despite being recognized as unhealthy. Therefore, it represents the
error made in identifying the specific damage.

C.E. R. =
CE
TC

(6)

• Performance Index: this is a redundant index, as it is the product of the indices seen
so far, but allows for observing, simultaneously, the set of previous performances.

P.I. = Acc × (1−M.A.) × (1− F.A.) × (1− C.E.) (7)

• Frobenius Norm: this is a matrix norm defined as the square root of the sum of the
absolute squares of its elements.

‖ A ‖F =

√√√√k+1

∑
i=1

k+1

∑
j=1

∣∣aij
∣∣2 (8)

where A is the confusion matrix after having standardized it by columns and subtract-
ing the identity matrix, aij are the elements of the matrix A and k are the numbers of
the fault classes. In this way, the results obtained in terms of the Frobenius norm will
be greater than or equal to 0. In detail, the larger the norm, the worse the classification
and vice versa.

• AUC: the area under the receiver operating characteristic (ROC) curve. The AUC pro-
vides a combined measure of performance across all possible classification thresholds.

Table 1. A generic confusion matrix (TP = True Positive, FP = False Positive, FN = False Negative,
TN = True Negative, CE = Class Error, TC = Total Cases) where k = 0 is the reference class and
k = 1, . . . , K are the considered damage classes.

True Class 0 True Class 1 True Class . . . True Class k True Class . . . True Class K
Predicted

Class 0 TN0 FN1 FN . . . FNk FN . . . FNK

Predicted
Class 1 FP1 TP1 CE1, . . . CE1,k CE1, . . . CE1,K

Predicted
Class . . . FP . . . CE . . . ,1 TP . . . CE . . . ,k CE CE

Predicted
Class k FPk CEk,1 CEk, . . . TPk CEk, . . . CEk,K

Predicted
Class . . . FP . . . CE . . . ,1 CE . . . , . . . CE . . . ,k TP . . . CE . . . ,K

Predicted
Class K FPK CEK,1 CEK, . . . CEK,k CEK, . . . TPK
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Among the many different algorithms for calculating NIs, this method initially pro-
vides the projection of the multivariate dataset along a direction that is believed to corre-
spond to the evolution of the damage. A Genetic Algorithm was adopted to optimize the
results and, thus, to maximize the number of distinct classes. The results concerning NIα

are shown in Figure 4. As is clear from the image, classes 2 and 3 definitely stand out from
the healthy values; nevertheless, classes 5, 7 and 9 are more difficult to identify.
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Because of this, a more refined NI was calculated, based on Mahalanobis Distance
(MD). The resulting MD-NIs from such a subspace are plotted in Figure 5. As can be
noticed, classes 2 and 3 definitely stand out again from the healthy values, but classes 5
and 7 are now better identifiable. In any case, a perfect classification is still impossible.
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However, merging the information of NIα and NIm in a 2-D space (Figure 6), the
classification task can be implemented with better results. In this particular case, the
classifier was built by segmenting the 2-D space in rectangular regions, as visible in Figure 6.
After reducing the original space (having 240 dimensions) to a 2-D space (where the two
dimensions correspond to the calculated NIs), it is possible to calculate the performance
indices obtained with each classifier and initially compare them with those detectable using
the initial features. These performance indices are shown in Tables 2 and 3.
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Table 2. Comparison indices obtained with the features in the original space.

Index LDA KNN Decision
Tree

Linear
SVM

Gaussian
N.B.

Kernel
N.B.

Accuracy - 81.6% 75.7% 55.9% - 71.4%
Missed Alarms - 15.6% 6.3% 10.3% - 28.6%
False Alarms - 1.4% 8.0% 23.4% - 0.0%
Class Errors - 1.4% 10.0% 10.4% - 0.0%
P.I. - 67.0% 58.7% 34.4% - 51.0%
Frobenius N. - 2.35 2.05 2.16 - 3.16
AUC - 0.99 1.00 0.80 - 1.00

Table 3. Comparison indices obtained with the features calculated thanks to the Multi-ND method
optimized by means of GA.

Index LDA KNN Decision
Tree

Linear
SVM

Gaussian
N.B.

Kernel
N.B.

Accuracy 96.9% 95.8% 89.9% 91.1% 92.4% 89.1%
Missed Alarms 1.6% 1.9% 0.3% 1.7% 0.4% 3.7%
False Alarms 0.0% 0.0% 1.0% 0.3% 1.0% 0.5%
Class Errors 1.5% 2.3% 8.9% 6.9% 6.2% 6.7%
P.I. 93.9% 91.8% 80.9% 83.1% 85.5% 79.7%
Frobenius N. 0.54 0.73 1.60 0.98 0.92 1.33
AUC 1.00 1.00 1.00 1.00 1.00 1.00
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In Table 4 it is possible to note that all the performance indices concerning the model
precision are significantly improved thanks to the proposed method. On the other hand,
the indices indicating the different error typologies decrease on average.

Table 4. Percentage variation of the performance indices obtained with the proposed method and
with classifications using the features extracted from the original space. Frobenius Norms and AUC
percentages are standardized. Please note that all the percentage variations represent an improvement
in performance since the percentage values referring to accuracy, P.I. and AUC indicate an increase in
precision, while those referring to Missed Alarms, False Alarms, Class Errors and Frobenius Norms
indicate a decrease in errors.

Index KNN Decision
Tree

Linear
SVM

Kernel
N.B.

Accuracy 14.2% 14.3% 35.2% 17.7%
Missed Alarms 13.7% 6.1% 8.6% 24.9%
False Alarms 1.4% 7.0% 23.1% -0.5%
Class Errors −0.9% 1.2% 3.5% -6.7%

P.I. 24.8% 22.3% 48.7% 28.7%
Frobenius N. 221.5% 28.1% 121.4% 137.8%

AUC 0.6% 0.2% 20.1% 0.0%

In addition, it can be noted that the variations relating to LDA and GNB classifiers are
not present, since it is not possible to use them with the features extracted from the original
space. In fact, given that the proposed method allows for reducing the space dimensionality,
it makes it possible to employ classifiers otherwise not usable.

To conclude, in Table 5, it can be further observed how the classification operation
with the use of NIs is significantly speeded up. In particular, the proposed method allows
for reducing the computational effort by 97% (reducing the average elapsed time per cycle
from 17.40 s, using the original dataset, to 0.57 s, employing the NIs obtained thanks to the
proposed method). The reported results were obtained by averaging the time taken over 50
cycles. The computational software used to conduct these experiments is MATLAB R2020b,
running on a PC equipped with a 10th gen Intel i7 processor and 16 GB RAM.

Table 5. Processing times of the classification with different reduced datasets.

Dataset Average Elapsed Time (%)
per Cycle

Original dataset with “n” features 100.0%
Multi−NI optimized by means of GA (NIα , NIm) 3.3%

5. Conclusions

This work exploits simple novelty detection strategies to produce a 2-D space where
a classification is possible, in an easy but satisfactory way. The proposed method was
described and subsequently applied to a real industrial case, consisting of a complex
quality control line of electronic components. In particular, the first axis is obtained as a
linear combination of original features. The second axis is obtained as the (Mahalanobis)
distance of a new data point from a reference distribution in a subspace composed of
19 selected features. Since it is a parametric model, both such features and the linear
combination weights were automatically selected by a routine able to optimize a measure
of class separation by means of a genetic algorithm. This composition of the features made
it possible to extract the most relevant information in relation to the machinery state of
health. Despite the presence of components heterogeneous in nature and non-stationary
working conditions, the results seem to suggest that such a 2-D data compression can lead
to satisfactory diagnostic results, improving the performance of a simple feature extraction
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technique. In particular, the results showed an improvement in terms of the general
performance index, ranging from 22% to 49% in relation to the classification algorithm.

In addition to this advantage, the proposed method is able to recognize not only the
failure condition of the mechanical system (damage detection) but also the type of damage
(damage classification). This characteristic makes the method suitable for a prescriptive
maintenance conception.

In general, in addition to being a classification ND-based method, the proposed work
can also be applied as a dimension reduction method, since it allows for improving the
diagnostic results by simultaneously and significantly decreasing the number of features.
This is very important when dealing with big data [44]. This aspect has further related
advantages, such as the memory reduction for saving data for diagnostic purposes and the
speed increase in the calculation of the predictions. Indeed, it was possible to observe a
reduction of about 97% of calculation time compared to the classification with the original
features dataset. This last advantage makes the method suitable for real-time applications
or for applications where timely damage recognition is particularly essential.
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Appendix A

Table A1 shows the list of the signals present in the PHME dataset and the fields
measured per sensor. Furthermore, Figure A1 shows α indices and the features selected by
means of GA among those considered for the analysis.
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Table A1. List of the signals present in the PHME dataset and the related fields measured per sensor.

Sensors vCnt vFreq vMax vMin vStd vTrend Value

CpuTemperature X X X X
DurationPickToPick X X X X X X X
DurationRobotFromFeederToTestBench X X X X X X X
DurationRobotFromTestBenchToFeeder X X X X X X X
DurationTestBenchClosed X X X X X X X
EPOSCurrent X X X X X X X
EPOSPosition X X X X X X X
EPOSVelocity X X X X X X X
ErrorFrame X X
FeederAction1 X
FeederAction2 X
FeederAction3 X
FeederAction4 X
FeederBackgroundIlluminationIntensity X X X X X X X
FuseCycleDuration X X X X X X X
FuseHeatSlope X X X X X X X
FuseHeatSlopeNOK X X X X X X X
FuseHeatSlopeOK X X X X X X X
FuseIntoFeeder X
FuseOutsideOperationalSpace X X X X X X X
FusePicked X X X X X X X
FuseTestResult X X X X X X X
Humidity X
IntensityTotalImage X X X X X X X
IntensityTotalThermoImage X X X X X X X
LightBarrieActiveTaskDuration2 X X
LightBarrierActiveTaskDuration1 X X X X X X X
LightBarrierActiveTaskDuration1b X X
LightBarrierPassiveTaskDuration1 X X X X X X X
LightBarrierPassiveTaskDuration1b X X
LightBarrierPassiveTaskDuration2 X X
LightBarrierTaskDuration X X
NumberEmptyFeeder X
NumberFuseDetected X X X X X X X
NumberFuseEstimated X X X X X X X
Pressure X X X X X X X
ProcessCpuLoadNormalized X X X X
ProcessMemoryConsumption X X X X
SharpnessImage X X X X X X X
SmartMotorPositionError X X X X X X X
SmartMotorSpeed X X X X X X X
Temperature X
TemperatureThermoCam X X X X X X X
TotalCpuLoadNormalized X X X X
TotalMemoryConsumption X X X X
Vacuum X X X X X X X
VacuumFusePicked X X X X X X X
VacuumValveClosed X X X X X X X
ValidFrame X X
ValidFrameOptrisPIIRCamera X X
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