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Abstract: The Harmonic Balance Method is one of the most commonly employed Reduced Order
Models for turbomachinery calculations, since it leverages the signal sparsity in the frequency domain
to cast the transient equations into a coupled set of steady-state ones. The present work aims at
detailing the development and validation of a new framework for the application of the Harmonic
Balance Method in the open-source software OpenFOAM. The paper is conceptually divided into
building blocks for the implementation of the code. For each of these, theoretical notions and coding
strategies are given, and an ad hoc validation test case is presented. This structure has been chosen
with the aim of easing the reader in the understanding and implementation of such a method in a
generic fluid dynamics solver. In a fully open source philosophy, the library files are freely accessible
in the authors’ repository (link provided below in the text).

Keywords: OpenFOAM; harmonic balance; spectral methods; turbomachinery; compressible flows;
fourier series

1. Introduction

Computational Fluid Dynamics (CFD) has become a landmark for academics and
industries to analyze the flow field behaviour in complex domains. Part of its success is
inherently due to CFD capacity of keeping pace with the increasingly demanding require-
ments of the scientific community in terms of performance and accuracy. Several challenges
still remain about the simulation of large multi-scale domains, though. One striking exam-
ple of such occurrence is the efficient simulation of unsteady turbulent flows in multi-stage
turbomachinery. Time-domain solvers are still the most commonly employed, although
they tend to be very computationally demanding. One of the methods CFD engineers
and computer scientists are tackling these problems with, is the development of efficient
algorithms to embed complex flow fields into a low-dimensional space (i.e., Reduced Order
Models (ROMs)). Among ROMs, the Harmonic Balance Method (HBM) has established as
a state-of-the-art tool for the calculation of periodic and quasi-periodic flows in time. While
conventional Unsteady Reynolds Averaged Simulations (URANS) and Large Eddy Simula-
tions (LES) can capture unsteady phenomena occurring at non-deterministic frequencies
(e.g., vortex shedding), turbulent aeroacoustics interactions and transient non-periodic
flows, many turbomachinery applications of interest exhibit periodic oscillations at known
frequencies. In these cases, the HBM can be applied, resulting in a drop in computational
time of typically one/two orders of magnitude compared to URANS analysis. It is evident
that this could have a profound impact, especially in the design phase, when one may
want to conduct a large number of calculations at a reduced cost to explore the design
space, but unsteady phenomena still play an important role and must be accounted for.
A thorough review of the numerical methods commonly employed for turbomachinery
calculations with different levels of fidelity, including LES and hybrid methods, can be
found in Tucker [1,2]. Compared to other ROMs, the HBM has the advantage of exploiting
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a universal basis (i.e., the Fourier basis) for the projection of the governing equation and
therefore does not require any previous experimental or numerical data produced by the
system. On the contrary, data-driven methods, such as the Proper Orthogonal Decomposi-
tion (POD) [3], employ a problem-dependent basis tailored on the specific dataset analyzed
which will be optimal in representing the data in a desired sense. It is worth noticing that,
as for every other ROM, the accuracy of the HBM is highly dependent on the number of
non-zero entries retained in the chosen basis.

The HBM method originates from the ideas of He [4] and Hall [5] of leveraging the
known spectral content of the flow to cast the equations into the frequency domain. In this
way, the signal sparsity in the Fourier basis is exploited to approximate the time derivative
in the governing equations. Applications of this method are manifold and range from limit
cycle oscillation of aerodynamic components [6] to forced response problem in multi-row
turbomachinery [7]. In the literature, many authors report different implementations of
the method and its application to diverse problems. Hall et al. [5] and Thomas et al. [8]
investigated the aerodynamics effects on flutter of a transonic compressor rotor and of
airfoils, respectively. Jameson et al. [9] used a similar non-linear frequency domain method
to study vortex shedding behind a cylinder and a pitching airfoil. They also modified their
method that iteratively solves for the time period during the solution of the Navier–Stokes
equations. van der Weide et al. [10] used their Time Spectral Method implemented in
the TFLO2000 solver to compute the forced response in an axial compressor stage. One
drawback of their method was that they had to use the same number of blades for the
stator and the rotor. To overcome this issue, Ekici et al. [7] extended the harmonic balance
technique to multi-stage turbomachinery employing a multi-frequencial HBM, where
excitations at frequencies non-harmonically related to each other were considered. Later
on, Gopinath et al. [11] and Sicot et al. [12] used a time-domain approach for inter-row
coupling in axial compressors. Furthermore, Su and Yuan [13], Woodgate and Badcock [14],
Sicot et al. [15] and Thomas et al. [16] proposed different implicit formulations of the
HBM. More recently, Frey et al. proposed a frequency-domain formulation for multi-
stage turbomachinery and implemented it in the TRACE solver. Nimmagaddda et al. [17]
implemented an explicit version of the HBM in the open-source software SU2 and tested it
on a pitching airfoil with multiple oscillation frequencies. Finally, Cvijetic et al. [18] and
Oliani et al. [19] proposed a pressure-based HBM formulation for incompressible flows
using foam-extend and OpenFOAM, respectively. In these works, an explicit formulation
was used for the discretization of the source terms arising from the application of the
HBM. On the contrary, in this paper we develop a novel density-based solver suitable
for compressible, high-speed turbomachinery calculations and employ a fully-implicit
formulation which significantly enhances the stability and convergence properties of the
calculations. In addition, phase-lag boundary conditions allowing for single passage
reduction were implemented, further speeding up the calculation. For a thorough review on
the HBM and its variants, the reader is referred to the works of Hall et al. [20] and He [21].

The outline of the paper is as follows. In the next sections, the governing equations
and the mathematical formulation of the HBM are illustrated. The implementation of a fully
implicit HBM in the OpenFOAM (OF) framework, starting from the baseline formulation
for a single fundamental frequency and its harmonics, is described. Attention is focused
on the numerical solution of the resultant equation system and the related CFD code. We
then move to more complex issues such as the multi-frequential formulation and the use
of phase-lag boundary condition to reduce the computational domain to a single blade
passage per row. For each step, the critical algorithmic issues are discussed, and the pseudo-
code for the implementation is detailed. One of the main aims is to provide the reader with
a thorough understanding of the building blocks necessary for the coding of a harmonic
balance technique.

Furthermore, this work introduces several sources of novelty with respect to the
state of the art. To begin with, this is the first implementation of a fully implicit HBM in
a density-based solver in the context of open-source CFD softwares. We also illustrate
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how geometries with a rotational periodicity must be carefully treated when solving the
equations in cartesian coordinates instead of cylindrical ones. Furthermore, we show
how coupled interfaces typical of turbomachinery simulations can be integrated in the OF
framework in an simple way. Additionally, as will be detailed in the next section, the very
use of implicit density-based solvers in OF has been extremely limited so far, especially with
respect to multi-row turbomachinery applications. All this being considered, the present
work aims to represent a step forward in the growing application of open-source codes
to industrial problems. Given also the wide diffusion of the C++ library OpenFOAM, the
research community could benefit from this work as a starting point to enrich the current
capabilites of the code with frequency domain methods for turbomachinery.

The code is available in the authors’ repository: https://github.com/stefanoOliani/
ICSFoam (accessed on 3 March 2022), and can be freely shared, edited and distributed by
the users.

2. Implicit Density-Based Solver Implementation
2.1. Governing Equations

In the present work, we solve the unsteady three-dimensional compressible Reynolds-
averaged Navier–Stokes (RANS) equations in conservation form:∫

V

∂Q
∂t

dV +
∫

∂V
(Fc − Fv)dS = 0 (1)

where V and ∂V denote the control volume and the related closed surface, respectively.
For what concerns 2D simulations, in OF they are carried out on 3D grids with only one
cell in the third (depth) direction. Therefore, there is no conceptual difference and we
will maintain the 3D formulation throughout the paper for consistency. The vector of
conservative variables Q, the convective flux vector Fc and the diffusive flux vector Fv are
given by

Q =

 ρ
ρu
ρE

, Fc =

 ρu · n
(ρu⊗ u) · n + pn

ρuH · n

, Fv =

 0
τ · n

(τ · u + q) · n

 (2)

where n is the surface outward-pointing normal vector, ρ is the density, u is the velocity, E
is the total internal energy, H is the total enthalpy, p is the static pressure, τ is the viscous
stress tensor and q is the heat flux vector. These last two terms, for a Newtonian fluid, are
respectively given by

τ = (µ + µt)[(∇u +∇uT)− 2
3
(∇ · u) · I] (3)

q = −
(µcp

Pr
+

µtcp

Prt

)
∇T (4)

where µ and µt are the molecular and turbulent viscosity, cp is the specific heat at constant
pressure, Pr and Prt are the laminar and turbulent Prandtl numbers, and T is the tempera-
ture. The resultant equations represent the conservation of mass, momentum and internal
energy for an arbitrary control volume V. To obtain the turbulent viscosity, the turbulence
equations are solved in a segregated manner in order to exploit the built-in OF structure.
In this way, the turbulent quantities can be obtained without modifying the related part of
the code, and the user can freely choose the desired turbulence model among the many
present in OF. The set of equations is finally completed by the ideal gas hypothesis to relate
the pressure and enthalpy to conservation variables.

https://github.com/stefanoOliani/ICSFoam
https://github.com/stefanoOliani/ICSFoam
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2.2. Numerical Discretization

Using the finite volume method to carry out the spatial discretization of Equation (1),
one obtains a set of semi-discretized equations:

VDtQ = R(Q) (5)

where Dt is the physical-time derivative operator and R(Q) is the numerical flux residual
term. In density-based solvers, a dual time-stepping (DTS) technique is typically used to
perform the time integration, adding a pseudo-time term τ in the equations:

V
∂Q
∂τ

+ VDtQ = R(Q) (6)

If an implicit method is employed to march the equations in pseudo-time to the
iteration n + 1, the residual is linearized about iteration n as

R(Qn+1) = R(Qn)+
∂R(Q)

∂Q

∣∣∣∣
Q=Qn

∆Qn +O(∆Q2) (7)

∆Qn = Qn+1 −Qn (8)

Since at each physical step, the system of equations is solved as a steady state problem
in pseudo-time, a first-order backward scheme is used for the pseudo-time term. For the
discretization in physical-time, we will see in the next section how the time derivative
operator can be approximated with the HBM. For time-accurate simulations, on the other
hand, a second-order backward scheme is employed in the present work. All this being
considered, at each iteration one needs to solve the linear system of equations for the
solution increment ∆Qn:[

V
( 1

∆τ
− 3

2∆t

)
I− ∂R(Qn)

∂Qn

]
∆Qn = R(Qn)+

(
V

3Qn − 4Qk + Qk−1

2∆t

)
(9)

where k is the current physical time level and ∆τ and ∆t represent the pseudo and
physical time-steps, respectively. If the numerical flux Jacobian is derived from an exact
linearization of the numerical flux R(Q), Equation (9) represents a standard Newton
iteration for the nonlinear system (6). Nevertheless, only approximate Jacobians are usually
employed since an exact linearization of second-order inviscid fluxes requires large storage
and can be excessively expensive to compute [22]. Here, for a generic interface between
cell i and cell j we choose the approximate Jacobian as follows:

∂R(Qi)

∂Qi
=

1
2
(J(Qi)+ |λij|I) (10)

∂R(Qi)

∂Qj
=

1
2
(J(Qj)− |λij|I) (11)

where J is the convective flux Jacobian and λij is the sum of the spectral radii of the Roe
and viscous flux matrices [23]:

|λij| = |uij · nij|+ cij +
1

‖xi − xj‖
max

(
4

3ρij
,

γ

ρij

)(
µ

Pr
+

µt

Prt

)
(12)

where cij is the sound velocity and the subscript ij denotes quantities interpolated at the
face between cell i and cell j. The GMRES linear solver [24] together with the LU-SGS
preconditioner [25] is then used to find the solution of the system of equations. Since in OF
all the implicit baseline solvers and the underlying code structure are based on a segregated
pressure-based formulation, a new library has been implemented to accommodate the
solution of the block-coupled system of Equation (9). The HiSA density-based library [26]
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has been uptaken as a starting point, to which the necessary features have been added.
First of all, the structure for block-coupled matrix solution has been generalized, to ac-
commodate the assembly of an arbitrary number of blocks and equations. In this way, a
block-coupled solution of pressure-based or whatever type of solvers is possible as well. In
addition, as detailed in the next section, this is necessary for the fully implicit version of the
HBM, because the solution of Equation (6) must be carried out for different time instances
simultaneously. Furthermore, the Roe approximate Riemann solver has been implemented
for the computation of the inviscid fluxes, and has been employed in the numerical applica-
tions shown later. Eventually, Multiple Reference Frame (MRF) support for the solution in
relative frames for rotating as well as translating domain motion has been integrated into
the solvers. To achieve a high-order accuracy in space, a MUSCL reconstruction with the
Van Leer limiter is applied on primitive variables in order to reconstruct the solution at cell
faces. Viscous flux terms are computed using second-order central difference formulas.

2.3. Code Validation

The NASA rotor 37 test case has been used to validate the code. This is a widespread
transonic compressor case used to validate turbomachinery CFD codes and it was also
used by AGARD to test the performance of several numerical codes [27]. The detailed
3D geometry and design parameters can be found in the work of Reid and Moore [28].
The computational domain is composed of a structured hexahedral mesh of 1.1 million
elements generated using Ansys Turbogrid. The tip gap between the blade and the shroud
is also accounted for by meshing the tip clearance. At the inlet, an absolute total pressure of
101,325 Pa and an absolute total temperature of 288.15 K are imposed. A turbulent kinetic
energy intensity of 3% is specified at the inlet, and the k−ω SST turbulence model is used
as a closure for the RANS equations A steady-state calculation is employed, by solving
the equation of motion in a relative frame of reference for the compressor row. The near
peak efficiency condition, corresponding to a normalized mass flow rate (ṁ/ṁchoking) of
0.98 has been used for the validation. To achieve this condition, the choking mass flow
rate was initially computed by imposing a static pressure outlet boundary condition. The
static pressure was then increased until the mass flow rate achieved the desired value. The
obtained solution at 70% span compared to the experimental results from is reported in
Figure 1a. It can be clearly seen that the bow shock position and strength are well captured.
Furthermore, as reported in the experiments, shock/boundary layer interaction can be
observed on the blade suction side. In Figure 1b, the relative Mach number profile at 70%
span and 20% chord is reported for the numerical simulation and the experimental tests.
The results obtained with OF compare fairly well with the experimental ones, so the code
can be considered validated.

(a)
Figure 1. Cont.
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(b)
Figure 1. Numerical code validation against experimental results from [29]. (a) Relative Mach number
contours at 70% span obtained with the CFD code (left) and experimentally (right). (b) Relative Mach
number along the pitch at 70% span and 20% chord for the near peak efficiency condition.

3. Baseline Harmonic Balance Method

As already described in Section 1, several different approaches have been formulated
in the last two decades that fall into the category of the so-called Fourier methods in CFD.
Despite the seemingly fundamental differences, the common denominator of all these
techniques is the frequency-domain approach to periodic unsteadiness. This idea basically
harnesses the fact that a nonlinear harmonic solution with N f harmonics is equivalent
to 2N f + 1 coupled steady flow solutions. Therefore, the aim of an harmonic balance
solution is to leverage the signal sparsity in the Fourier basis in order to approximate an
unsteady solution with a coupled set of steady-state simulations. In the next paragraph, the
mathematical formulation of the method is presented following the time-spectral approach
by Hall et al. [5]. This approach is based on a time-domain formulation of the governing
equations. Equivalent methods which are based on a frequency-domain formulation can
be found in McMullen et al. [30] and Frey et al. [31].

3.1. Mathematical Formulation

Consider the vector of conservative variables Q in the control volume l that evolves
periodically in time with a known single base frequency ω and its harmonics. Now suppose
to expand the vector Ql and the corresponding residual term R(Ql) in a Fourier series
truncated to NH harmonics

Ql ≈ Q̂l,0 +
NH

∑
m=1

Q̂l,me−imωt +
NH

∑
m=1

Q̂l,−meimωt (13)

R(Ql) ≈ R̂l,0 +
NH

∑
m=1

R̂l,me−imωt +
NH

∑
m=1

R̂l,−meimωt (14)

where the terms Q̂l,0, Q̂l,m, Q̂l,−m constitute the NT = 2NH + 1 Fourier coefficients of the
series for the time-average term and the positive and negative frequencies, respectively.
This coefficients are unknown and represent an output of the calculation. Substituting
Equations (13) and (14) into Equation (5), we obtain, for the control volume l

iVAQ̂l = R̂l (15)
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where

Q̂l =



Q̂l,0
Q̂l,1

...
Q̂l,NH

Q̂l,−NH

...
Q̂l,−1


, R̂l =



R̂l,0
R̂l,1

...
R̂l,NH

R̂l,−NH

...
R̂l,−1


, and A =



0 . . . . . . . . . . . . . . . 0
... ω
...

. . .
... NHω
... −NHω
...

. . .
0 −ω


(16)

It must be noticed that Equation (15) is a system of equations coupled through the
residual flux term R̂l . Since this term is nonlinear, the k-th harmonic of the residual will,
generally speaking, depend on all harmonics of the conservative variables vector Ql . In
their nonlinear harmonic approach, He and Ning [4] propose to include this coupling only in
the time-averaged residual equation (through a deterministic stress term), while neglecting
the cross coupling of higher order harmonics. As shown by Hall et al. [5], a more convenient
way to solve the equations is to model these terms implicitly, transforming them back into
the time domain. This allows operating with time-domain solution stored at 2N + 1 time
levels as working variables, and the nonlinear flux term can be computed in the usual
way for each time level. Once again, this method leads to a set of coupled steady-state
equations which are, hopefully, much cheaper to solve than a fully time-resolved simulation.
Following this approach, we now proceed by expressing the Fourier coefficients vectors Q̂
and R̂ as

Q̂l = EQl , and R̂l = ERl (17)

where Q is the vector containing the variables Q stored at NT discrete and equally spaced
subtime levels over the fundamental period T = 2π/ω while E is the NT × NT discrete
Fourier transform matrix. With the aid of Equation (17), and multiplying on the left
Equation (15) by the inverse Fourier matrix E−1, one has finally

VDQl = Rl (18)

where D = E−1iAE. Due to its definition, D is a skew-symmetric circulant matrix [20].
This system is coupled over NT subtime levels (or snapshots of the flow field) because of
the VDQl term. It is worthwhile to notice that Equation (18) is a system of steady-state
equations which is marched to convergence by adding a pseudo-time derivative term in
the same way as in Equation (6):

∂Ql
∂τ

+ VDQl = Rl (19)

A comparison with Equation (6) reveals that the aforementioned procedure has al-
lowed finding a proxy for the time derivative operator DtQl,j ≈ (DQl)j for the flow field
snapshot j and in the control volume l. The HBM is thus a way to replace the transient
equations with a system of coupled steady-state equations. All the acceleration techniques
for steady-state formulations can thus be exploited (e.g., multigrid and local time-stepping),
significantly reducing the turnaround times of the simulation.

3.2. Numerical Solution

As explained in the previous section, we need now to solve a system of equations
which couples all the subtime levels (i.e., snapshots) through the harmonic balance source
term VDQ. There are various ways in which this term can be discretized numerically. If
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this term is treated implicitly, it can be easily included into the matrix of the linear system
since the operator D is linear

VDQn+1 = VDQn + VD∆Qn (20)

Including this linearization into Equation (19) and carrying out the discretization in
pseudo-time one obtains:

M∆Qn = Rn −VDQn (21)

where

M =



(
V

∆τ0
I− ∂Rn

0
∂Qn

0

)
VD0,1I . . . VD0,2NH I

−VD0,1I
(

V
∆τ1

I− ∂Rn
1

∂Qn
1

)
...

. . .

−VD2NH ,0I −VD2NH ,1I
(

V
∆τ2NH

I−
∂Rn

2NH
∂Qn

2NH

)


(22)

In Equation (22) the fact that the matrix D is skew symmetric has been exploited to
set Dk,k = 0 and Di,j = −Dj,i. There are a few observations that are worth pointing out
when solving Equation (21). First, if the off-diagonal terms in Equation (22) are neglected,
this is equivalent to an explicit treatment of the HBM source term ΩDQ, since now all the
increments in the solution variables ∆Qn are not coupled anymore. Second, as pointed
out by Su and Yuan [13], for large values of the angular frequency ω and a high number
of wave modes NH , the diagonal-dominance property of the matrix M may be lost. In
these cases, algorithms that require diagonal-dominance to ensure the convergence (e.g.,
Jacobi and Gauss-Seidel method) can lead to stability problems during the iterative solution.
Therefore, in the present work, LU-SGS is used only as a preconditioner, while the GMRES
method is employed for the solution of the preconditioned system. With this method,
once the linear solution achieves iterative convergence, the increment in the flow variables
are found for all the time snapshots simultaneously. Similar methods, but with different
preconditioners, have been used by Su and Yuan [13] and Woodgate and Badcock [14]. In
our solver, the time derivatives of the turbulent quantities are not included in the HBM, but
are treated in the usual segregated manner as steady-state quantities. However, this has
been found to have only a minor impact on the final solution. Finally, in turbomachinery
applications and, more generally, in all cases in which a dynamic mesh is involved, it
is necessary to take into account the domain motion. Therefore, the relative fluxes with
respect to the mesh motion are calculated and used in Equation (1).

The new block-coupled solver structure allows for an easy assembly of the matrix M
for the linear system. Algorithm 1 below describes in detail all the steps of the solution for
the baseline HBM.

3.3. Numerical Application: NASA Rotor 37

To showcase the implementation of the baseline HBM, the first numerical application
presented here regards a radial slice of the NASA rotor geometry used in Section 2.3 to
validate the solver. The midspan slice of the domain was projected onto a plane to perform
a 2D simulation. Being a single row domain, steady-state simulations in a relative frame of
reference are usually employed for this type of configuration. Nevertheless, the study of the
downstream propagation of the wake of the rotor represents an excellent spot to validate
the HBM on a simple test case with a single dominant frequency (i.e., the blade passing
frequency). To this purpose, the domain has been divided into three zones: the intake,
the rotor and the discharge, where the first and the last are solved in the absolute frame,
while the rotor is solved in a relative frame that translates with it. A linear motion with
a velocity of 200 m/s in the azimuthal direction has been set for the rotor. In addition, a
wake-like perturbation has been imposed at the inlet, basing on the self-similarity condition
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proposed by Lakshminarayana and Davino [32]. Specifically, a Gaussian perturbation
with the same azimuthal wavelength as the blade pitch has been imposed in terms of total
pressure and temperature:

p0(y) = p0,re f [1− ∆p · e−0.693(2 y
L )

2
]

T0(y) = T0,re f [1− ∆T · e−0.693(2 y
L )

2
]

where p0,re f = 101 325 Pa and T0,re f = 288.15 K. ∆p and ∆T are the total pressure and total
temperature deficits, which have been selected according to the realistic values of 0.025
and −0.007, respectively, proposed by Gomar et al. [33]. L is the wake width and has been
selected as 25% of the blade pitch. This non-uniform perturbation in the absolute frame is
seen by the rotor as a travelling disturbance with a frequency equal to the BPF. At the same
time, the rotor wake represents a travelling disturbance with the same frequency in the
discharge region. We are interested in reproducing the correct behaviour of this entropy
disturbances in the whole domain, as well as their interaction in the discharge region. This
can be accomplished by the use of either time-resolved or HBM simulations.

Algorithm 1 Baseline HBM solution algorithm.

1: Select the base frequency ω and the number of harmonics NH
2: Set the number of snapshots NT ← 2NH + 1
3: Uniformly sample T ← ω

2π at NT instants
4: Create NT instances of the mesh of the domain
5: if Mesh is dynamic then
6: for i← 0, . . . , NT − 1 do
7: Update Meshi position for time ti
8: Compute mesh flux due to Meshi motion at position defined at step 7
9: end for

10: end if
11: while Simulation not converged do
12: Compute RHS part of the HBM source term VDQn

13: Initialize implicit linear system NT × NT block matrix M
14: for j← 0, . . . , NT − 1 do

15: Compute the flux residual Rj and Jacobian
∂Rn

j
∂Qn

j
for Meshj

16: for k← 0, . . . , NT − 1 do
17: if j == k then

18: M[j][j] =
(

V
∆τj

I−
∂Rn

j
∂Qn

j

)
19: else
20: M[j][k] = VDj,kI
21: end if
22: end for
23: end for
24: Solve block coupled system M∆Qn = Rn −VDQn

25: Qn+1 = Qn + ∆Qn

26: end while

The aim is to compare the behaviour of the unsteady perturbations for three different
modelling solutions: a steady-state, a time-accurate and an HBM simulation. With respect
to the calculation, a second order MUSCL reconstruction with the van Leer limiter has been
applied on the primitive variables for interpolation from cell centroids to face centers. The
Roe scheme has been used to compute the inviscid fluxes, while a second-order centered
scheme has been employed for the viscous fluxes. The k−ω SST model has been employed
for turbulence closure. A pseudo Courant number of 50 has been set for the HBM, the
steady-state and the inner loop of the DTS simulation. For DTS, 80 timesteps per blade
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passing period have been used, considering the inner loop as converged when a drop of
the residuals of at least two orders of magnitude was achieved.

To compare the results for the different methods, the entropy field is calculated at
the same reference relative position between the inlet wake disturbance and the blade
(Figure 2). The results for the steady-state case are depicted in Figure 2a, where three
blade passages are reported for the sake of clarity. In this case the interface between the
different zones is treated as a “frozen rotor” Arbitrary Mesh Interface (AMI), meaning
that the information is simply transferred between the two non conformal sides through
a polygon-clipping conservative interpolation. It can be noticed that the wake incidence
angle is discontinuous at the interfaces, both for the inlet disturbance and for the wake
generated by the blade.

(a) (b)

(c) (d)

Figure 2. Entropy field obtained with the three different methods and different number of harmonics
included in the flow spectrum. (a) Steady-state frozen rotor; (b) 1 Harmonic; (c) 3 Harmonics; (d) DTS.

This non-physical effect is inherently linked to the steady-state nature of the calculation
and is due to the change in the relative frame of reference at the interfaces. On the other
hand, for the transient case (Figure 2d), thanks to the mesh motion, the incidence angles are
correctly preserved across the interface. The HBM aims to mimic this behaviour without
resorting to a transient simulation, by simply coupling a set of steady-state simulations.
When a single harmonic is retained in the flow spectrum, the results are reported in Figure 2b.
It can be noticed that the mere addition of a single harmonic to the mean flow is not sufficient
to reconstruct the wakes shape, although they are now correctly aligned across the interfaces.
In general, the thinner are the wake, the greater is the number if harmonics necessary to
reconstruct their shape [33]. When three harmonics are included in the frequency set, the
situation improves dramatically, as can be seen by the comparison of Figure 2c with the
reference solution in Figure 2d. The inlet entropy wave and the rotor wake are correctly
transferred across interfaces and their interaction in the downstream region is well captured.
The entropy “bubbles” due to the poor resolution of the flow spectrum disappear, as
highlighted by the close-ups in the figures. When a small number of harmonics are retained,
under and overshoots can be produced, leading to non-physical values of flow quantities.
This can be seen in Figure 3, where the entropy at location A (Figure 4) is plotted as a
function of the pitch. The HBM solution with one harmonic is not capable of reproducing
the entropy distribution across the pitch, resulting in some values falling below zero at the
wake edge. On the contrary, excellent agreement is found between the three harmonics and
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the DTS solutions, although the former has been found to be about seven times cheaper
than the latter in terms of CPU times.

Figure 3. Entropy profile in the wake at plane A for HBM and DTS.

Figure 4. Domain of the NASA rotor 37 test case for the baseline HBM.

4. Multi-Frequencial Harmonic Balance Method
4.1. Mathematical Formulation and Numerical Implementation

In the baseline method presented in the previous section—sometimes referred to as the
time-spectral method [10]—a single fundamental frequency ω and its harmonics are present.
Nevertheless, in several applications of industrial interest, multiple discrete dominant
frequencies exist, which need not be integral multiples of each other. This kind of signal is
defined as almost-periodic. Examples of such occurrences are multi-rows turbomachinery,
in which the number of blades and vanes are typically not multiples. In such a scenario,
the flow variables can still be projected into a set of arbitrary, non-harmonically related
frequencies. It is important to underline that in this case the chosen frequency set does
not form, in general, an orthogonal basis. Furthermore, we do not have an analytical
expression for the operator D, nor for the discrete Fourier matrix E. Instead, the common
approach is to define the matrix E−1 analytically, and then compute numerically its inverse
E [11,34]. In this way, the harmonic balance operator can still be defined similarly to the
baseline case. Denoting with F = [ω0, ω1, . . . , ωK, ω−K, . . . , ω−1] the vector of selected input
frequencies, where ω0 = 0 and ω−k = −ωk, we can define the inverse transform matrix by
its components as E−1

n,k = eiωktn . Finally, the harmonic balance operator becomes simply

D = E−1iAE, where Ak,k = ωk (23)

where E has been computed by numerically inverting E−1. With this procedure, the
same formulation as the baseline case can be used. Unfortunately, the presence of non-
harmonically related frequencies entails that we can not always work out a fundamental
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period for uniform sampling of the subtime levels. Furthermore, even if a common fun-
damental period is present (e.g., for frequencies which are integers and coprime, see
Section 4.2), we will be hardly interested in uniformly sampling that period. Indeed, this
would be equivalent to a baseline HBM in which the base frequency corresponds to the
common fundamental period and the discrete frequencies we are interested in are repre-
sented as harmonics of this base frequency. If the original discrete frequencies are far from
each other, a huge number of harmonics needs to be considered into the spectrum (i.e., a
huge number of snapshots). Therefore, we seek a way more general approach, even if the
selection of sampling points typically becomes a thorny issue. Indeed, the time levels of the
snapshots used during the calculation have a pivotal role in the convergence of the method.
This is because the condition number of the matrix E is responsible for amplifying errors
coming from the HB source term during the iterative solution of the equations [34].

In particular, the following conceptual differences with the baseline approach apply:

1. The frequency set is composed of NO frequencies that, in general, are no longer
harmonics of a common base frequency. Please notice that, in spite of this, the
following relation between the minimum necessary number of samples/snapshots
(NT,min) and the number of frequencies still holds: NT,min = 2NO + 1

2. Now the matrix D is no longer skew-symmetric. Therefore, the components on its
diagonal are not zero and step 18 of Algorithm 1 must be modified according to:

M[j][j] =
(

V
∆τj

I−
∂Rn

j

∂Qn
j

)
+ VDj,jI (24)

It is worth noticing that for periodic flows, the Fourier matrix is always well-conditioned
since the uniform sampling leads to a condition number equal to 1. This is mainly due
to the orthogonality of the complex exponential basis. Conversely, when the frequency
set is arbitrary, finding a set of time instants over which the matrix E is well conditioned
is much more difficult. A variety of approaches have been proposed by several authors
to overcome this issue. For example, Ekici and Hall [7] proposed an oversampling of
the solution to achieve better conditioning of the matrix, while Guedeney et al. [34] used
a gradient-based optimization algorithm to find a suitable set of subtime levels. In this
work, we pursue the OptTP approach described by Nimmagadda et al. [17]. This approach
has proved to be robust and easy to implement, and with a negligible performance drop
compared to gradient-based optimization methods. The proposed method is de facto equal
to the first step of the optimization method proposed by Guedeney et al. [34]. It uses a
brute-force research to find the time period T∗ which minimizes the condition number
of matrix E inside a user-defined range of possible periods, and then uniformly samples
it. This operation is performed as a pre-processing step of the simulation and, due to its
simplicity, it represents a negligible portion of the total CPU time. The method is detailed
in Algorithm 2.

Unfortunately, this algorithm can lead to a sampling period which is much bigger
than the periods corresponding to the frequencies in the set. This, in turn, could traduce in
an amplification of aliasing errors in the flow spectrum. Moreover, there is no guarantee to
achieve a sufficiently low value for the condition number. For these reasons, the support
for oversampling was also added to our solver. The formulation in this case is exactly the
same, except that now the number of time snapshots NT can be greater than 2NO + 1. As a
consequence, one must work with rectangular Fourier matrices to obtain the HB operator:

D︸︷︷︸
NT×NT

= E−1︸︷︷︸
NT×NO

A︸︷︷︸
NO×NO

E+︸︷︷︸
NO×NT

(25)

where E−1 is defined as usual and E+ is the Moore–Penrose pseudo inverse of E−1. Once
the HB operator has been defined in this manner, no other differences exist in the solver
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due to oversampling, except that the code structure must allow for a different length of the
snapshots vector Q and the frequency vector F.

Algorithm 2 OptTP algorithm for the minimisation of the Fourier matrix condition number.
As per Nimmagadda et al. [17].

1: Compute ωmin = min{ω1, ω2, . . . , ωK} and T0 = ωmin
2π

2: Form a set of test time periods T starting from T0 and ending at 5T0, with a step size of
0.01T0

3: Initialize condNumber = 1010

4: Initialize snapshots = [0, 0, . . . , 0]︸ ︷︷ ︸
NT

5: Initialize selectedSnapshots = [0, 0, . . . , 0]︸ ︷︷ ︸
NT

6: for i← 0, . . . , length(T)− 1 do
7: Compute Tf = T[i]
8: Compute ∆T =

Tf
NT

9: for k← 0, . . . , NT − 1 do
10: snapshots[k] = k∆T
11: end for
12: Calculate the inverse Fourier matrix corresponding to the time instances in

snapshots and the vector of frequencies F
13: Calculate thisCondNumber as the condition number of the inverse Fourier matrix

just computed
14: if thisCondNumber < condNumber then
15: condNumber = thisCondNumber
16: selectedSnapshots = snapshots
17: end if
18: end for

4.2. Numerical Application: Channel Flow

A test case very similar to the one used by Guedeney et al. [34] is used to validate
the multi-frequential HBM implementation. It consists of a 1D channel of length 1000 m
and height 1 m discretized with 2500 elements in the streamwise direction. At the inlet, a
constant total pressure of 101,325 Pa and a total temperature of 288.15 K are imposed. An
oscillating pressure is set at the outlet

ps(t) = p̄ · [1 + A(sin 2π f1t + sin 2π f2t)] (26)

where p̄ is the 60% of the inlet total pressure, A = 0.001 f1 = 3 Hz and f2 = 17 Hz. Please
notice that these two frequencies are not harmonically related but they are integer so that
the flow is periodic with T = 1 s. In any case, the method is completely general and can be
used for any set of harmonically and non-harmonically related frequencies. The flow is
considered as inviscid and the convective fluxes are calculated by the second order Roe
scheme with van Leer limiter. The time resolved simulation employs the DTS second order
backward scheme with a time step of 0.001 s. A drop in the residuals of at least 10−3 was
used for the iterative convergence in pseudo time. Twenty seconds of physical time were
simulated to obtain a periodic flow.

Since the flow is subsonic throughout the channel, the objective is to observe the
propagation of pressure waves from the outlet as depicted in the sketch of the domain in
Figure 5. The nonlinearity of the flow triggers other frequencies in the flow spectrum as
the waves propagate towards the inlet. These frequencies need to be included in the input
frequency set for the HBM simulation. Strictly speaking, due to the quadratic nonlinearity
of the NS equations, infinitely many frequencies are produced in the flow spectrum. These
frequencies are all the linear combination of f1 and f2 and all their harmonics. For practical
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purposes, the array of solved frequencies is truncated to F∗ = [ f1, 2 f1, 3 f1, f2 − 2 f1, f2 −
f1, f2, f2 + f1, f2 + 2 f1, f2 + 3 f1]. In this case, the algorithm described in Section 4.1 produces
a condition number of the Fourier matrix equal to 1.69. In the authors’ experience, values
around 2.5 or below can be considered satisfying for the simulation. The pressure signal
is probed at three locations at 25%, 50% and 75% of the channel length, respectively, as
show in Figure 5. Then the outcomes from the DTS and the HBM simulation are compared.
The flow field at the desired time instants and locations for the HBM calculation can be
easily reconstructed from the resultant flow spectrum through an inverse Fourier transform
once the simulation has converged. The comparison is reported for each probe in Figure 6
over one period 1 s. It can be seen that the overall agreement between the two methods
is good, especially for the third probe. This is to be expected, since it is the closest to the
origin of pressure disturbance and therefore its spectrum is the sparser than the other two
probes [34]. On the other hand, the spectrum at probe 1 location is richer and more complex,
resulting in pressure peaks slightly overpredicted with respect to the DTS method. Still, the
agreement is considered satisfactory throughout the channel and the method is considered
validated.

Figure 5. Domain and boundary conditions for the channel flow test case.

4.3. Coupling between Different Zones

It is well known that in multi-stage turbomachinery, the frequencies of the unsteady
flow field are linear combinations of the blade passing frequencies of the neighbouring
rows [35]. For this reason, the code structure must accommodate the possibility to impose
a different set of frequencies in each zone. For example, in a single stage configuration, the
fundamental frequency of the HBM for either row is the passing frequency of the opposite
row ω = NBΩ. The common approach to deal with single and multi-stage turbomachinery
is to set different snapshots for each blade row, so that the time instants solved in each row
do not necessarily match to each other. The information between adjacent zones is generated
for the time levels of the receiving side through spectral interpolation of the flow field on
the donor side [12], or through spatial Fourier coefficients matching [7]. The advantage of
the former methods is that the coupling is performed purely in the time domain, allowing
the use of non-matching radial grid lines at the interfaces. Both these techniques, however,
if not properly handled through non-reflecting boundary conditions [7] or oversampling at
the interface [11,12], can generate aliasing and spurious wave reflections. Furthermore, the
application of non-reflecting boundary conditions to filter spurious frequencies at blade row
interfaces often leads to a significant complexity in the source code. Therefore, in this work
we follow another strategy, which has recently been devised by Crespo and Contreras [36]
and is called the Synchronized HBM. This method bolsters the flow continuity between
stator/rotor interfaces by using the same physical subtime levels all the way through
the different blade rows. Since now spectral interpolation is no longer necessary at the
interface, fluxes continuity is easily ensured through the use of fully conservative non-
conformal interfaces. In addition, Fourier interpolation of different time instants can lead
to oscillations in the solution due to the Runge phenomenon. Since in the Synchronized
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HBM, time instances represent a snapshot of the flow field throughout all the rows at the
same time, this technique automatically refrains Runge phenomenon without the necessity
to use non-reflecting boundary conditions at the interface [36]. The main drawback is that
now an optimized set of instants must be retrieved to accommodate the necessity of a
low condition number of the matrix E for all the blade rows at the same time, even for
single-stage configurations. To tackle this problem, the strategy highlighted in Section 4.1
was used, and the subtime levels were selected in such a way to minimize the maximum
condition number among all blade rows:

T∗ = min(max(κ(T))) (27)

Following Algorithm 2, the implementation of the coupling is straightforward, since
no complex non-reflecting boundary conditions or interpolation steps are necessary at blade
row interfaces. It is instead sufficient to include a loop to find the maximum condition
number among all rows for each test time period T. This is the variable to minimize
using Algorithm 2. Another minor drawback is that, in theory, with the non-synchronized
approach, one could use a different number of snapshots in each zone (i.e., for each row) of
the domain. This could speed up the calculation when it is known that the flow spectrum
in some region is more sparse. Of course, this is no longer possible with the synchronized
approach, where the selected number of snapshots is used throughout the whole domain.

(a) (b)

(c)

Figure 6. Comparison between HBM and DTS for the pressure signal registered by the three probes
for the channel flow test case. (a) Probe 1. (b) Probe 2. (c) Probe 3.
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4.4. Numerical Application: E3 Axial Turbine Stage

It is now time to test the HBM on a case study of greater engineering relevance.
Specifically, the midspan section of the first stage of E3 engine axial turbine is studied.

The case is 2D but contains the combined complexity of coupling between different
zones and the presence of different base frequencies in the flow spectrum. It must be
emphasized that, as described in the previous section, if each row was sampled at its own
set of time levels, the multi-frequencial approach would not be necessary. The use of the
synchronized approach, on the other hand, implies that the solved time instants must
be the same for the entire domain. Therefore, the columns of the Fourier matrix are not
orthogonal anymore, and the multi-frequencial approach must be applied. The peculiarity
is that the non-orthogonality of the basis is now caused by the selection of time instants not
corresponding to the uniform sampling of any particular frequency in the spectrum, rather
than the presence of multiple frequencies itself in single mesh regions.

A two vane/three blades configuration was employed in order to match the pitchwise
extension of the two rows. The structured mesh was generated with ICEM CFD and is
composed of 141,074 elements, selected after a grid convergence study. A turbulent viscous
grid is used, ensuring a maximum y+ value of ≈5 on the airfoil walls. The boundary
conditions imposed for the simulation are reported in Table 1. Roe upwind scheme and
van Leer limiter were used to achieve a second-order spacial accuracy for the convective
fluxes. The central difference scheme was employed for the viscous terms. Eighty physical
timesteps per blade passing were ensured for the DTS simulation, where a second-order
backward scheme is employed for the temporal derivative term. A pseudo Courant number
of 50 was set for the DTS as well as for the HBM simulations.

Table 1. Boundary conditions for the E3 axial stage simulation.

Quantity Value

Total pressure 350 kPa
Total temperature 683 KInlet

Turbulence intensity 3%

Outlet Pressure 144 kPa

Up to five harmonics of the blade passing frequency and the vane passing frequency
were retained in the spectrum of the stator and rotor regions, respectively. Interestingly,
due to the particular choice of the stator/rotor blade count, the condition number obtained
with the brute-force algorithm detailed in Section 4.1 was sufficiently low for all but the
four harmonics case. To overcome this issue, oversampling with 3NH + 1 = 13 snapshots
was employed for the four harmonics simulation in order to have a small condition number
of the Fourier matrix. In this way, a condition number of approximately 1 was obtained for
all cases. The results for the four harmonics case are reported for the sake of completeness,
although the computations is more computationally demanding than the five harmonics
solution, due to the oversampling. A comparison of the entropy contours in Figure 7
reveals a good agreement between the HBM and the DTS solutions. The wakes are correctly
aligned across the interface, preserving their position and their width. Remarkably, the
effect of wake stretching and tilting while it is convected across the blade passages is
well resolved by the HBM solution. A small difference is present in the wake of the rotor
causing a slightly larger wake pattern downstream of the row. This is probably due to
some self-induced vortex shedding frequencies which are not properly captured by the
HBM solution. Spectral convergence is shown by means of a plot of the density and
the absolute velocity magnitude as a function of the domain pitch in front of the rotor
(Figure 8). Despite the complex trend across the domain pitch, the global error between the
DTS and the HBM solutions gradually decreases when the spectral content of the solution
is augmented. Figure 9 represents the actual amount of computational resources needed for
the simulations. The plot is non-dimensionalized by the DTS simulation values, so that the
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values represent the CPU saving and the memory consumption factors. As expected, the
latter one grows almost linearly with the number of snapshots, while the former shows a
decreasing trend. It can be observed that even when 13 snapshots are used for the solution,
the HBM solution is still about three times faster than the time-resolved simulation, but the
memory consumption is about 19 times as much.

(a)

(b)

Figure 7. Comparison of entropy contours for the E3 axial turbine stage test case. (a) Five harmonics.
(b) DTS.
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(a) (b)

Figure 8. Instantaneous flow quantities in front of the rotor blades as a function of the blade pitch for
the DTS and HBM simulations. (a) Density. (b) Absolute velocity magnitude.

Figure 9. Comparison of the CPU factors required for the HBM and the DTS calculations. The plot is
non-dimensionalised by the DTS simulation values.

5. Other Relevant Issues for Turbomachinery Applications
5.1. Three-Dimensional Simulations in Cartesian Coordinates

Being a general purpose C++ library, OpenFOAM stores and computes the solution
of the flow equations in cartesian coordinates. For this reason, caution should be applied
when using the HBM for turbomachinery applications, in which the relevant coordinate
system is the cylindrical one. This traduces in some differences in the code when applying
the HB operator to a vector that rotates about the machine axis with an angular velocity
equal to the revolution speed of the machine. Think for example of the time evolution
of the velocity vector inside a cell of a rotating mesh during a transient turbomachinery
simulation. In this case, the zeroth harmonic of the vector corresponds to a steady term in a
cylindrical frame of reference rotating with the machine. On the other hand, if expressed in
a cartesian reference in the absolute frame, this term represents a periodic oscillation of the
velocity components with a frequency corresponding to the machine rotation frequency. In
other words, the term is no longer steady if seen in the absolute frame of reference. If an
HB simulation is set up with the snapshots corresponding to one or more base frequencies
and their harmonics, the presence of this spurious unsteadiness will produce a non-zero
component for the time derivative when it is projected on the selected frequencies through
the HB operator. This is true in general even if there is only one base frequency that is
a higher harmonic of the rotation frequency (e.g., the blade passing frequency and the
rotation frequency), as can be easily verified numerically.
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A workaround this issue is transforming the vector into a cylindrical coordinate
system, then applying the HB operator and transforming the result back to the original
cartesian coordinate system. In this way, the real unsteadiness is captured by the HB
operator, while the spurious one related to the mesh rotation is filtered out. Finally, it is
necessary to include the effect of the mesh rotation in the time derivative operator. From
simple kinematic considerations, the time derivative in the absolute frame of reference of a
generic vector v rotating with angular velocity Ω can be expressed as [37]

∂v
∂t

= Ω× v (28)

Please notice that this term is not required in unsteady simulations where the mesh
actually undergoes a rotational displacement. On the contrary, since in our version of the
HBM each dynamic mesh instance (one per snapshots) is moved in the position of the
corresponding time sample and then kept fixed during the simulation, this term must be
included in the momentum equation. This should not be surprising since exactly the same
term (Ω× ρuk) is used for MRF steady-state simulations to include the effect of the frame
rotation. This term will therefore be labelled as the “steady” term. For a generic cell of the
k-th snapshot’s mesh, the time derivative of the momentum can finally be expressed as

∂ρuk
∂t

= Ω× ρuk︸ ︷︷ ︸
“Steady”

+ (Dkjρjur
j )e

r
k + (Dkjρjuθ

j )e
`
k + (Dkjρjuz

j )e
z
k︸ ︷︷ ︸

Unsteady

(29)

where uk is the k-th snapshot velocity vector, ur, uθ and uz are the radial, tangential and
axial components of the velocity vector, respectively, while er

k, e`
k and ez

k represent the
radial, tangential and axial versors, respectively. The terms inside the round brackets
denote the scalar product between the k-th row of the D matrix and the vector containing
the momentum of all the snapshots in the selected cell, following the Einstein notation on
repeated indices. All this being considered, the calculation of the HB source term in the
code is modified as follows:

1. Transform the momentum vector in cylindrical coordinates.
2. Apply the HB operator D to the momentum vector to find the time derivative approx-

imation in cylindrical coordinates (second term on the rhs of Equation (29)).
3. Transform the just derived source term back to cartesian coordinates.
4. Add the “steady” source term as in Equation (29). This can be easily included exploit-

ing the MRF support of the solver.
5. Compute the source term for the continuity and energy equation as usual, since for

scalar quantities no changes are needed.

5.2. Single-Passage Reduction

Spatial periodicity in the azimuthal direction is often employed in turbomachinery
simulations in order to reduce the computational domain to only a portion of the whole
annulus. Nevertheless, in transient calculations, it is required to have the same pitch for
the different rows, so that a large fraction of the annulus must often be simulated. This
typically results in a highly increased computational effort. One technique to avoid such
numerical issue is the usage of phase-lagged boundary conditions [38] and the exploitation
of the chorochronic (spatio-temporal) periodicity of turbomachinery flows [39]. In this
way, the computational domain can be reduced to only a single passage per blade row,
independently of the blade count ratio. The method hinges upon the fact that the flow field
inside a blade passage at a certain time t must be equal to the flow field in an adjacent
passage at another time t + T

Q(r, θ + ∆θ, z, t) = Q(r, θ, z, t + T ) (30)
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where T is the time lag between the two passages, θ is the azimuthal coordinate and ∆θ is
the row pitch. Let us consider for simplicity a single-stage machine. In this case the time lag
is calculated basing on the phase of a wave that travels at a rotational speed ωk = 2πk fBP
in the azimuthal direction: T = kσ/ωk, where σ is the so called interblade phase angle
(IBPA). For a single stage, the IBPA in a specific row is computed basing on the relative
blade count and the rotation sense [39]:

σ = −2πsgn(Ω)

(
1−

NB2

NB1

)
(31)

where NB2 and NB1 are the number of blades in the opposite and the current blade rows,
respectively. To apply phase-lagged conditions on periodic boundaries, a common ap-
proach is to update the Fourier coefficients on the boundaries at each time-step. For this
reason, phase-lagged boundary conditions are very well-suited and easier to implement in
frequency-domain solvers (e.g., HBM) since this kind of solver is intrinsically related to the
Fourier decomposition of the solution. Indeed, an equivalent formulation of Equation (30)
in the frequency domain is

K

∑
k=−K

Q̂k(r, θ + ∆θ, z)eiωkt =
K

∑
k=−K

Q̂k(r, θ, z)eiωkteiωkT (32)

Which entails that the flow spectrum in one passage is equal to the one of the next
passage modulated by the IBPA:

Q̂k(r, θ + ∆θ, z) = Q̂k(r, θ, z)eiωkT = Q̂k(r, θ, z)eikσ (33)

All this being considered, and following very similar arguments as in Section 3, one can
express the relation between the snapshots of the flow field on the two periodic boundaries
through a linear operator as [11]

Q(r, θ + ∆θ, z) = E−1SEQ(r, θ, z) (34)

where S is a diagonal matrix whose components are Skk = eikσ. The implementation of
phase-lagged boundary conditions is relatively straightforward once the structure for the
HBM has been built. It is sufficient to implement a new type of boundary condition which
is very similar to a cyclic periodicity, here called phase-lag cyclic. The only difference is
that now, when the variables are reconstructed on the faces of the periodic boundaries,
Equation (34) must be used to maintain the correct phase-shift between the two sides of the
coupled patches.

Now that the pitches of the various rows need not be equal to each other, the logic
underpinning the exchange of information at the interface between two rows must be
modified. Specifically, one needs to replicate each of the two sides of the interface an
integer number of times to provide information where they do not overlap. Due to the
phase-lag between the different passages, the replication needs to be carried out accordingly.
Therefore, we construct a new type of interface called phase-lag Arbitrary Mesh Interface
(AMI). As an example, the set up of the boundary condition is sketched in Figure 10 for a
radial slice of an axial compressor stage. As can be seen from the picture, one aim of the
combination of phase-lag cyclics and AMI interfaces is to obtain information about the
wake from the cyclic boundaries, even if the wake is not received from the AMI interface.

The implementation follows the steps described in Algorithm 3 below and sketched in
Figure 11.
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Figure 10. Illustration of the phase-lagged boundary condition behaviour.

(a)

(b)

Figure 11. Illustration of Algorithm 3 for the implementation of phase-lag AMI interfaces. (a) Steps
1–16. (b) Steps 17–25.

Steps 1–15 are needed to calculate the weights for the interpolation on the two sides
of the interface. To calculate the weights is necessary that both sides are fully paved.
This is obtained by replicating the other side according to a periodic transformation (e.g.,
rotation by the pitch angle). These steps are performed only once as a preprocessing part
of the simulation since the mesh does not change its relative position thereafter. Since the
geometry replication can be performed either in the forward or the backward direction,
step 8 is a way to understand if we are replicating the geometry in such a way to increase
the paved area of the other side of the interface. Once we obtain as many forward and
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backward transformations as needed for each side, the fields can be interpolated through
the interface in either direction. Therefore, during steps 16–24, the required information
is exchanged from one side to the other through fields interpolation. These steps are
performed once per solver iteration.

Here we presented the algorithm for a rotational geometry, but please notice that the
aforementioned algorithm can be equally applied to a translational periodicity such as
the E3 stage presented in Section 4.4. Naturally, in this case, it is no longer necessary to
transform vectors in a cylindrical frame before applying the HB and the phase-lag operators.

Algorithm 3 Phase-lag AMI algorithm.

1: Save original geometries for Side 1 and Side 2 of the interface
2: Compute weights for AMI interpolation between the two original sides
3: Initialize NTrans f ForwardSide1 = 0 and NTrans f BackwardSide1 = 0
4: while Side 2 of the interface is not fully paved do
5: Replicate the original geometry of Side 1 of the interface according to the periodic

transformation (e.g., rotate by pitch periodicity angle, Figure 11a)
6: Append the transformed geometry to Side 1 of the interface
7: Recalculate weights for AMI interpolation between the two sides
8: if the sum of the new weights is lower than the previous one then reverse the

direction of the transformation in step 4
9: end if

10: if We are transforming in the forward direction then NTrans f ForwardSide1 ++
11: else NTrans f BackwardSide1 ++
12: end if
13: end while
14: Repeat steps 3–13 for the other side of the interface
15: Compute the AMI weights for the two expanded sides of the interface (Figure 11a)

16: ...
17: for i← 0, . . . , NTrans f ForwardSide1 − 1 do
18: Expand the field on Side 1 of the interface according to the phase-lag boundary

conditions (34) with a positive IBPA (Figure 11b)
19: end for
20: for i← 0, . . . , NTrans f backwardSide1 − 1 do
21: Expand the field on Side 1 of the interface according to the phase-lag boundary

conditions (34) with a negative IBPA (Figure 11b)
22: end for
23: Interpolate the expanded field on Side 1 of the interface onto the expanded surface of

Side 2 thanks to the AMI weights previously calculated (Figure 11b).
24: Truncate the interpolated field to the size of the Side 2 of the interface to obtain the

required information (Figure 11b).
25: Repeat steps 17–23 for the other side of the interface.

5.3. Numerical Application: NASA Stage 37

The last application presented aims to include all the building blocks of the HBM that
were illustrated in the previous sections. The 3D geometry of the NASA stage 37 [28] is
selected for such purpose. The geometry consists of 36 blades rotating at 18,000 rpm and
46 vanes. Only one blade passage per row is modelled according to the single passage
reduction method illustrated in Section 5.2. Up to four harmonics of the passing frequencies
of each row have been considered in the spectrum. Once again, the Roe upwind scheme
was employed for the convective fluxes, in combination to a second-order MUSCL recon-
struction with van Leer limiter. A pseudo Courant number of 25 was used for the local
time stepping integration. Since the mesh does not change topology from one snapshot to
another, the code parallelization has been carried out in a simple and efficient way. The
domain decomposition is performed only on the original mesh, and maintained for all the
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snapshots. In this way, corresponding cells from different snapshots are kept on the same
processor. Since the calculation of the HBM source term does not require the values of the
conservative variables in adjacent cells, no communication between processors is necessary
during the computation of this term.

For the calculation with four harmonics of the blade passing frequency, the HBM
required approximately 600 core-hours. Please notice that a comparable time-resolved
simulation would require modelling half the annulus (18 blades and 23 vanes), which is
approximately twenty times the size of the current simulation. Assuming to use 80 physical
time steps per blade passing and 20 subiterations for the inner loops, at least 2/3 complete
revolutions of the rotor are usually necessary to reach a periodic behaviour. This results
in an estimated simulation time about two orders of magnitude larger than the HBM,
depending on the number of frequencies included in the spectrum. No oversampling
was necessary in this case, since the maximum condition number was obtained for the
simulation with four harmonics and was equal to 1.77.

Figure 12 illustrates the results for the simulations with two and four harmonics
of the passing frequencies in terms of instantaneous pressure and entropy contours in
a midspan section of the annulus. The flow field has been reconstructed at the desired
time and four adjacent passages are reported taking into account the phase-lag between
them. It can be noticed that the wakes are resolved with a better resolution across the
interface and in the downstream blade row for the four harmonics simulation, as well as the
pressure disturbances due to the bow waves interaction with the upstream row. Overall, an
improved resolution of the periodic disturbance is obtained across the compressor span, as
depicted in Figure 13, where the entropy contours on an axial plane cutting the vane at 20%
of the chord are shown. As observed in the previous sections, the use of a higher number
of harmonics leads to a better localization in time and space of the disturbances, thanks to
a lower degree of under/overshoots in the flow quantities. As a final comparison, the time
evolution of the total forces over one passing period has been reported for the rotor and
the stator in Figure 14. It can be observed that, by increasing the number of harmonics, the
solution tends to converge to a fixed distribution over the time period. Please notice that
conventional steady-state methods (e.g., mixing plane) would predict a constant value over
time which is not necessary close to the time-averaged value resulting from a time-resolved
simulation.

(a) (b)

Figure 12. Cont.
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(c) (d)

Figure 12. Contours on a radial slice at midspan for the NASA stage 37 test case. (a) Pressure
contours for 2 harmonics. (b) Pressure contours for 4 harmonics. (c) Entropy contours for 2 harmonics.
(d) Entropy contours for 4 harmonics.

(a)

(b)

Figure 13. Entropy contours on an axial plane at 20% of the vane chord. (a) Two harmonics.
(b) Four harmonics.
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(a) (b)

Figure 14. Evolution of forces on stator and rotor blades over one passing period. (a) Rotor. (b) Stator.

6. Conclusions

This work has illustrated how a fully implicit HBM can be implemented step-by-step
in a CFD code. The choice has fallen upon the open-source software OpenFOAM, due to its
wide diffusion and high-standard C++ compliance, trying to propose an implementation as
far-reaching as possible. First of all, a new density-based solver is presented and validated
in the OF framework, forming the basis for the HB support. The paper then proceeds on a
combined theoretical and practical approach, starting from the fully-implicit baseline HBM
and progressively adding other important features such as multi-frequencial support and
phase-lagged boundary conditions. A research algorithm combined with a synchronized
approach are used to improve flow continuity at the interfaces. This also allows to minimize
the propagation of errors in the solution that possibly arises from a bad conditioning of the
Fourier matrix. Four test cases have been proposed to verify the correct implementation of the
different features. For the baseline HBM, disturbances propagation in a multi-region domain
has been studied, showing the differences between the steady-state and the HB methods. It
is shown that retaining three harmonics of the blade passing frequency in the spectrum is
sufficient to reproduce the transient solution with a negligible error. The multi-frequencial
approach has been tested at first on a simplified channel flow and then has been applied
to a real axial turbine stage. Both test cases have shown a satisfactory agreement with the
reference unsteady solutions. For the axial turbine case, it is reported that five harmonics
of the passing frequency are adequate to capture transient effects. Finally, the addition of
phase-lag boundary conditions on periodic boundaries and blade-row interfaces has been
illustrated for an axial compressor stage. It is also shown that the correct formulation of the
HB operator in cartesian coordinates allows to produce the correct solution for rotationally
periodic geometries. Conclusions are also drawn with respect to the performance of the HB
solver compared to time-resolved simulations. Specifically, the CPU saving factor strongly
depends on the specific application and the number of frequencies considered in the spectrum.
Broadly speaking, in case of identical domains for time-resolved and HBM solutions, a
reduction in the CPU time of an order of magnitude can be expected, as well as an increase of
one order of magnitude in the memory consumption. For turbomachinery cases where the
domain is reduced to a single passage per row through phase-lagged boundary conditions, a
reduction in CPU time of nearly two order of magnitude can be easily achieved.
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Abbreviations and Nomenclature

CFD Computational Fluid Dynamics
CPU Central Processing Unit
HBM Harmonic Balance Method
OF OpenFOAM
Q Vector of conservative variables
F Vector of fluxes
V Control volume
D Harmonic balance operator
Dt Time derivative operator
E Discrete Fourier transform matrix
R(Q) Discretized fluxes residual term
J(Q) Convective flux Jacobian
Ω Domain angular velocity vector
ω Angular frequency corresponding to a known flow periodicity
σ Interblade phase angle
θ Azimuthal coordinate
NB Number of blades in a row
NT Number of snapshots for the HBM simulation
Q̂m m-th Fourier coefficient of Q
ρ Flow density
u Flow velocity
λij Spectral radius of Roe matrix between cell i and j
∆τ Pseudo time-step
∆t Physical time-step
p Flow pressure
c Sound speed
H Flow total enthalpy
E Flow total energy
T Flow temperature
µ Dynamic viscosity
Pr Prandtl number
Cp Specific heat at constant pressure
τ Viscous stress tensor
q Heat flux vector
n Surface normal vector
M Matrix of the equations system
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