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Abstract: Due to an arising COVID-19 positive confirmed case in Taiwan, the screening of body
temperature, mask wearing and quarantined violation is enhanced. A mobile robot that conducts
this task is demanded to reduce the human labor. However, conventional robots suffer from sev-
eral limitations, perceptual aliasing (e.g., different places/objects can appear identical), occlusion
(e.g., place/object appearance changes between visits), different viewpoints, the scale of objects, low
mobility, less functionality, and some environmental limitations. As for the thermal imager, it dis-
plays the current heat spectrum colors, and needs manual monitoring. This paper proposes applying
Simultaneous Localization and Mapping in an unknown environment and using deep learning for
detection of temperature, mask wearing, and human face on the Raspberry Pi to overcome these
problems. It also uses the A* algorithm to do path planning and obstacle avoidance via 3D Light De-
tection and Ranging to make the robot move more smoothly. Evaluating and implementing different
Simultaneous Localization and Mapping algorithms and deep learning models, then selecting the
most suitable method. Root Mean Square Error of three Simultaneous Localization and Mapping
algorithms are compared. The predictions of deep learning models are evaluated via the metrics
(model speed, accuracy, complexity, precision, recall, precision–recall curve, F1 score). In conclusion,
Google Cartographer for building a map, Convolutional Neural Network for mask wearing detection,
and only looking once for human face detection achieve the best result among all algorithms.

Keywords: artificial intelligence; deep learning; disaster response; mobile robots; navigation

1. Introduction

At this stage, the epidemic is severe around the world and the infection rate is very
high. Nowadays, people’s awareness of their own health is gradually improving; it is
a fact that researchers have shown an increased interest in epidemic prevention. With
new technology continuously advancing, mobile robots are widely used in many different
fields, such as logistics services, industrial transportation system, etc. Recent developments
in the field of artificial intelligence have led to a renewed interest in medical combined
with artificial intelligence. However, conventional robots suffer from several limitations,
perceptual aliasing, occlusion, different viewpoints, the scale of objects, low mobility, less
functionality, and some environmental limitations. In previous papers, most methods of
taking people’s temperature via a thermal imager could do preliminary screening effectively.
Nevertheless, the previous experiment results were not enough for us. According to
previous papers, the mobility of the thermal imager is one of the significant limitations
in those methods. Most of the thermal imagers at many quarantine stations are installed
in fixed areas. The location of the thermal imagers is at the entrance and the view point
is fixed. Therefore, those methods cannot adapt to various environments. Some existing
algorithms have proven to accurately measure people’s temperature through the thermal
imager, but they still have less function, are easily affected by the temperature of other
objects, and cannot move. Furthermore, it can only display the current heat spectrum
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colors, and needs a person to monitor. There is a significant difference between manual
monitoring and machine detection. The error rate of manual monitoring is higher than
machine detection. In terms of the detection of mask wearing and human face, they may be
affected by light, the scale of objects, people’s poses, obstructions, etc. Hence, it is necessary
to use an alternative method.

Why are the above-mentioned problems and the epidemic prevention issues impor-
tant? According to the data of Taiwan Centers for Disease Control, the highest attendance
rate of weekly emergency-type influenza is 22.22% in the past two years. It is still 6.46%
so far. In addition to flu, there are other diseases with higher infection rates and some
diseases may be asymptomatic infection. Through the literature review, the problems in
the previous paragraph can be proved to be important. The Gmapping package was used
on both PC and Raspberry Pi to maintain high performance [1]. To solve the problem
of lack of environment features, an improved Hector SLAM (Simultaneous Localization
and Mapping) algorithm was proposed. This algorithm provides the precise input and
projects the scan information onto grid map during scan matching process [2]. An analysis
of Gmapping, Hector SLAM, and Google Cartographer was presented and realized in the
indoor environment [3]. Therefore, SLAM plays an important role in this system. The use
of autonomous mobile robots turns the fixed-point detection into 360-degree surround
detection at any time. The advantage of this system is that it can adapt to changing envi-
ronments by modifying the robot system’s configuration. Moreover, combining data from
different kinds of sensors in this system can provide users with more accurate information
to achieve better results. A physiological monitoring system for assistive robots using a
thermal camera is proposed in [4]. The human face detection is affected by various poses,
occlusions, lighting, and so on. A novel deep cascade convolutional network was proposed
to solve these problems, using the Fast Region-based Convolutional Neural Network (Fast
R-CNN) at the end of the structure. The result shows 91.87% recall [5]. In addition, the
impact of using various color spaces on the performance of the Faster Region-based Con-
volutional Neural Network (Faster R-CNN) night human detection was discussed [6]. As
for the thermal image, some previous papers apply deep learning to process images. For
example, using Faster R-CNN to handle thermography images [7], and thermal image
recognition based on You Only Look Once (YOLO) can detect temperature accurately [8] to
identify power facilities and to avoid accidents. These approaches are more efficient and
accurate than human beings. In order to reduce the fatal injury rate for the construction
industry, a perception module was proposed, it used end-to-end deep learning and visual
SLAM for an effective and efficient object recognition and navigation via a mobile robot [9].

This paper integrated temperature detection, mask wearing detection, and human
face detection to save manpower to see the detection results on the monitor. At the same
time, it can also immediately identify the person suspected of hyperthermia and whether
the person is wearing a mask or not. Moreover, integrating these identification functions
on a mobile robot greatly improves the mobility during detection.

In recent years, people’s health awareness has risen, and epidemic prevention equip-
ment has continued to improve. In addition to meeting people’s needs, it can also effectively
reduce the risk of infection. However, for temperature detection, there are some require-
ments of camera types to ensure that the measurement results are accurate. General cameras
do not have the function of measuring temperature. In terms of mobility, the single thermal
imager cannot move to anywhere; it can only be installed in a fixed position. While some
articles use thermal cameras in areas such as security robots and guide robots [10], this pro-
vide only humans’ temperature, which is not a sufficient biometric measure in most of the
cases. This paper addressed previous unanswered questions and proposed an alternative
method. In order to realize the intelligence of the mobile robot, autonomous localization,
mapping, and obstacle avoidance cannot be lacking. Light Detection and Ranging (LiDAR)
with SLAM was used for autonomous navigation by a mobile robot. When navigating the
mobile robot, it needs to obtain the map of the environment in advance for path planning;
thus, SLAM has been widely studied to solve this problem. The method of SLAM starts
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from an unknown location in an unknown environment; the mobile robot locates its own
position and posture by repeating the observed map features during movement, and then
incrementally constructs a map based on its own position to achieve the purpose of simul-
taneous positioning and map construction. There are some different approaches for object
detection and face detection now and they have been implemented and verified. This paper
extends previous papers, various deep learning frameworks, and evaluation indicators,
including Convolutional Neural Network (CNN), Region-based Convolutional Neural
Network (R-CNN), mask Region-based Convolutional Neural Network (Mask R-CNN),
and YOLO, which have been applied. Hence, they can be used for the best model selection.

This paper proposes an approach to verify three detections (temperature, mask, face) in
real time by using deep learning models on the mobile robot. Nowadays, deep learning in
object detection and face detection has grown significantly and it has been applied to access
control system. Compared with conventional solutions based on manual feature extraction,
using deep learning solutions is better in many monitoring systems. For the conventional
approaches, the result of feature extraction depends on the engineer’s skills. In contrast, for
deep learning approaches, the design of manual features is not needed and people can feed
the original image data directly to a deep learning structure to achieve detection. The aim
of this paper is to evaluate and validate the above verification experiment, which is divided
into two stages. First, it is necessary for the mobile robot to carry out self-positioning
and navigation in an unknown indoor environment. Second, detecting accurately in real
time and obstacle avoidance are indispensable while the mobile robot is moving. This
paper applied three SLAM algorithms, which are Gmapping, Hector SLAM, and Google
Cartographer. After evaluation and testing, the best algorithm was selected from these
three algorithms. When selecting the SLAM algorithm, Root Mean Square Error (RMSE)
was used as the consideration and standard. Among these three algorithms, Google
Cartographer was chosen because it shows the minimum RMSE and the processing time is
acceptable. Next, for the path planning part, A* algorithm was used. Finally, in order to
achieve navigation, an algorithm called Adaptive Monte Carlo Localization (AMCL) was
used. To conclude, the mobile robot in this paper operates on a Robotic Operating System
(ROS). The mobile robot performs SLAM with LiDAR to obtain the matching data of LiDAR
scanning and Google Cartographer SLAM. In an indoor environment, mapping, navigation,
path planning and obstacle avoidance indoor via a 3D visualization tool for ROS called
RVIZ are implemented. The experimental results show that three SLAM algorithms are
feasible. For the detection part, image frames are put into the deep learning models. The
accuracy and recall of the results are verified to select the most suitable model.

2. Materials and Methods

This part introduces the methods to solve the problems mentioned before. Mainly
SLAM algorithms are used to build a map in an indoor environment, the A* algorithm
for path planning, and the AMCL to let the mobile robot self-position and navigate. Deep
learning is applied for detection of temperature, mask wearing, and human faces. The
action of the mobile robot in an indoor public place is presented in Figure 1.
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This paper proposes an intelligent behavior control system for multiple mobile robots,
as shown in Figure 2. The autonomous robotic behavior includes obstacle avoidance,
goal seeking, trajectory tracking, and formation. The frontier command is located on
the site workstations for collecting raw sensory data and sending task commands to
robots. The remote Artificial Intelligence (AI) strategy is in the cloud for highest strategical
decision making.
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The proposed Artificial Intelligence of Things (AIoT) architecture is illustrated in
Figure 3. The workflow is as follows:

1. Data Collection: sensory data from the environment are transmitted to the cloud
through the site workstation.

2. Training: The AI model is built using the data collected by mobile robots from the
environment.

3. Validation: The AI model is evaluated for hyper-parameter tuning and model selection.
4. Testing: The trained AI model is further deployed to the local workstation for further

testing the performance. The tested model is finally deployed to the embedded system
in mobile robots and the learning process is continued.
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The hierarchical control architectures of autonomous mobile robots proposed in this
paper are shown in Figure 4. The high-level behavior control system is located at the remote
end and the low-level pose control system is located at the mobile robot in the field. The
communication includes wireless (distributed) and wire (centralized).
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The overall system architecture is shown in Figure 5. The map is obtained through
SLAM, and the robot is applied to the actual indoor environment by path planning and
navigation. At the same time, the camera is used to do real-time detection.
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2.1. SLAM

In this section, three common SLAM algorithms and navigation methods are in-
troduced. This paper selected three of the most common SLAM algorithms, which are
Gmapping, Hector SLAM, and Google Cartographer [11]. Due to the need for a set of
evaluation criteria to ensure accuracy, a navigation system based on SLAM was designed
in this paper. The process was as follows. First, the mobile robot received data from 3D
LiDAR. According to these data, the mobile robot could calculate its own position and build
a map of the environment through the SLAM algorithm. At the beginning of navigation,
this paper used AMCL to locate the initial pose of the mobile robot. Next, for the path
planning part, the A* algorithm was used to generate the global path. Finally, in the part of
the obstacle avoidance LiDAR was used to implement it. Several laser-based 2D SLAM
techniques were evaluated according to reviewed literature. This paper selects three of
the most popular and commonly used SLAM algorithms to evaluate each performance. In
order to pursue the accuracy of the evaluation criteria, this paper designed a consistent
SLAM-based navigation system. The off-line and real-time map building is illustrated in
Figure 6. The on-line and real-time SLAM and object detection is illustrated in Figure 7.
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2.1.1. Gmapping

Gmapping is a common open-source SLAM algorithm based on the filtering SLAM
framework. There are some serious depletion and computational complexity problems
for the conventional particle filter. It is based on the Rao-Blackwellized Particle Filter
(RBPF) [12,13] particle filter algorithm, which separates the positioning and mapping
process, and performs positioning before mapping. Gmapping also uses an adaptive
resampling technique. Thus, it solves the previous problem of the particle filter.

The main idea of the RBPF for SLAM is to do the following factorization and estimate
a posteriori p, as in (1), whereas p (·|·) is conditional probability.

p( x1:t|z1:t, u0:t) = p(m|x1:t, z1:t)p( x1:t|z1:t, u0:t), (1)

where p is a posterior, x1:t is potential trajectories, z1:t is observation of posterior, u0:t is the
odometry measurements of x1:t, and m is the total number of particles.

The Sampling Importance Resampling (SIR) filter is one of the most common particle
filtering algorithms. The sensor observations and the odometry readings are available
when using the Rao-Blackwellized SIR filter for incrementally mapping processes. The
process can be integrated into the following four steps:

1. Sampling: The next particle xt
(i) originates from current particles xt−1

(i) by using a
proposal distribution π (xt|z1:t, u0:t).

2. Correction: According to the sequence of calibration observations, the corresponding
inherent weight is calculated for each particle. Each particle will pair a weight.

w(i) =
p( x(i)t

∣∣∣z1:t, u0:t)

π( x(i)t

∣∣∣z1:t, u0:t)
, (2)

3. Resampling: Particles are drawn with replacement proportional to their importance
weight. The particle with a low weight w will be removed.

4. Map estimation: The corresponding map estimate mt
(i) is calculated from the trajectory

and observations for every sampled particle.
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Most current applications for particle filters depend on a recursive structure. There is
an accurate proposal distribution in this paper and that performs resampling adaptively.
Two methods used to develop the Rao-Blackwellized mapping algorithm were used in
the adaptive resampling technique. These two techniques improved proposal function,
decreased robot pose uncertainty, and used selective resampling to solve the particle
depletion problem. The scan-match method estimates the robot position using the gradient
descent method, the current generated map, the current LiDAR point, and the robot position
as the initial estimates. The scan score is computed as follows:

score(scan, map) = ∑p∈scan e−
1
σ ·d(p,map)2

, (3)

where p is a scan point, d (p, map) is the shortest distance between the obstacle stored in
the map and p, and σ is the predefined parameter. Even in large enough environments
(250 m × 250 m), Gmapping only requires between 30 and 80 particles to build accurate
maps. Therefore, this method can obtain more precise robot positioning through the sensor
data and the movement model.

2.1.2. Hector SLAM

Hector SLAM is one of the scan matching algorithms. It combines scanning laser
rangefinder matching and the 2D navigation approach with an inertial sensing system
by Extended Kalman Filter (EKF). While there is no explicit loop closure detection in this
system, the accuracy is high in many practical situations [14]. The EKF can overcome the
linearity assumption of the Kalman Filter (KF). The KF model assumes the true state at
time k evolved from the state at (k − 1) and the probability of the model’s next state must
be a linear function xk, as in (4).

xk = Fkxk−1 + Bkuk + wk, (4)

where Fk is the state transition model which is applied to the previous state xk−1, Bk is
the control-input model which is applied to the control vector uk, and wk is the random
variable representing the prediction noise.

At time k an observation (or measurement) zk of the true state xk is made according
to (5).

zk = Hkxk + vk, (5)

where Hk is the observation model which maps the true state space into the observed space
and vk is the observed noise. When the mobile robot is in state xk, the observation will be
received ideally.

The EKF is different from the KF. The state transition and observation models do not
need to be linear functions of the state, but they may instead be differentiable functions in
the EKF; xk and zk are shown in (6) and (7).

xk = f (xk−1, vk) + wk, (6)

zk = h(xk) + vk, (7)

where wk and vk are the process and observation noises. The predicted state and the
predicted measurement are the functions f and h, respectively.

For scan matching, the Gauss–Newton method was used to solve the problem, which
has higher requirements concerning the sensor [15]. The Gauss–Newton iteration method is
an iterative method for finding regression parameters for minimum squares in a nonlinear
regression model, and its aim is to minimize the error of the occupancy M(Si(ξ)) to get the
end pose. The target function ξ* is shown in (8). In this paper, the Gauss–Newton optimiza-
tion method aligns the laser beam endpoints and the obtained map. A continuous map
coordinate Pm is defined using the four closest coordinates P00, P01, P10, P11 to approximate
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the occupancy value as M(Pm) and the gradient ∇M(Pm), as in (9). Linear interpolation
along the x-axis and y-axis yields M(Pm), as in (10).

ξ∗ = argmin
ξ

∑n
i=1[(1−M(Si(ξ)))]

2
, (8)

∇M(Pm) =

(
∂M
∂x

(Pm),
∂M
∂y

(Pm)

)
, (9)

M(Pm) ≈ y−y0
y1−y0

(
x−x0
x1−x0

M(P11) +
x1−x
x1−x0

M(P01)
)

+ y1−y
y1−y0

(
x−x0
x1−x0

M(P10) +
x1−x
x1−x0

M(P00)
) (10)

where n is the number of scan readings in each sweep. The M represents map and
ξ = (px, py, ψ)T is a pose on the map at point Pxy. The transform of the end-point scan
in the robot frame to the world frame is Si(ξ), as in (11).

Si(ξ) =

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

][
Si,x
Si,y

]
+

[
px
py

]
, (11)

where (Si,x, Si,y) is the laser scan point.
In conclusion, Hector SLAM requires the mobile robot to be controlled at a lower

speed because of higher requirements on the sensor. Therefore, the mapping effect will be
more ideal. This is also a sequela of no loop closure. When the odometer data is relatively
accurate, it cannot be used effectively.

2.1.3. Google Cartographer

Cartographer is part of an open-source SLAM library of ROS, and is developed by
Google. The basic architecture of Cartographer includes front-end and back-end. The
front-end uses sensor data to create a map, including nodes and edges. The back-end
optimizes the map and calculates the best position of the node. It is also a system which
provides real-time SLAM in 2D and 3D.

For 2D and 3D internal SLAM, the main sensor relies on LiDAR and inertial nav-
igation [16]. This algorithm uses grid mapping, so it is different from Gmapping and
Hector SLAM.

For the scan matching, it is necessary to optimize the scanning pose. The following
equation is the scan matching process as it goes through a minimization:

argmin
ξ

∑K
k=1

[(
1−Msmooth(Tξ hk)

)]2
, (12)

where Tξ is the conversion coefficient that shifts a point hk by ξ, ξ is the offset vector (ξ x,
ξy, ξθ)T, Msmooth(x) is the value of a cell x smoothed by values in its neighborhood, and hk
is a cell involving a point from the laser scan.

Branch-and-bound scan (BBS) matching is the other method for closed-loop optimiza-
tion, as in (13).

argmax
ξ∈w

∑K
k=1 Mnearest(Tξ hk), (13)

where w is a search window size, K is the last scan point, and Mnearest is the extension of
the nearest grid point in Msmooth.

The above scan matching method is based on Ceres scan matching. When obtaining
each frame data of laser scan, scan matching is used to insert a submap at the best estimated
position, and the scan matching is only related to the current submap. It increases the
probabilities on a large scale to find a scan pose accurately in the submap.

To conclude, Gmapping is the most widely used algorithm. Gmapping and Car-
tographer are more accurate than other SLAM algorithms. This paper collects data and
experiments in an indoor environment. When selecting the SLAM algorithms, RMSE is
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used as the consideration and standard, as in (14). After comparing three algorithms,
the most powerful algorithm is Cartographer. Compared to Hector SLAM, Gmapping
has lower requirements for LiDAR frequency and high robustness. The result shows that
Gmapping and Cartographer have comparable RMSE values on most input sequences.
Finally, this paper decided to take advantage of Google Cartographer concerning the mobile
robot and construct the map in the indoor environment. The result shows that deformation
of the map generated by Cartographer is slightly less than that of the map generated
by Gmapping.

RMSE =

√
1
m

m

∑
i=1

(yi − ŷi)
2, (14)

where m represents the number of different predictions, yi is the labeled value and ŷi is the
predicted value.

2.2. Path Planning and Navigation

Among the above three SLAM algorithms, this paper determines that Google Car-
tographer with LiDAR is to be used to create a map which is in the indoor environment.
After the mobile robot laser scans and builds the map, the indoor map is generated. When
obtaining the indoor map, the A* algorithm is applied to do global path planning on the
map. For local path planning, this paper uses the Dynamic Window Approach (DWA)
algorithm to avoid obstacles in real time. According to the result of path planning and
obstacle avoidance, the most suitable path is built from the initial point to the target location.
The next step is to estimate the position and orientation of the mobile robot, so this paper
makes use of AMCL to implement navigation [17]. Navigation workflow architecture is
shown in Figure 8. In the process of navigation, the visualization tool for ROS called RVIZ
is used at the same time. RVIZ is a 3D visualization tool for ROS applications, and it is also a
kind of human–machine interface. It provides viewing of the robot model, capturing sensor
information from the sensor on the robot and replaying the captured data. It can display
data from cameras, LiDAR, and 2D and 3D devices, including pictures and point clouds.
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The algorithm of global path planning is A* in this paper; it combines advantages of
Dijkstra’s algorithm and the Breadth-First Search (BFS) algorithm. Dijkstra’s algorithm
works by preserving the shortest path of each vertex found so far. The main idea of the
Dijkstra algorithm is that the initial point is the center and extends outwards until it reaches
the target point. The steps are as follows:
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1. First, all nodes are marked as unvisited, and a set is created called the unvisited set.
2. A tentative distance value of each node is set. The value of the initial point is zero,

and to infinity for all other nodes.
3. It is important to consider all its unvisited neighbors for the current node and measure

their tentative distance within the current node. If the newly allocated distance value
is compared with the currently assigned value, then a smaller value is assigned.

4. The current node is marked as visited, after considering all the unvisited neighbors
of the current node, and is deleted from the unvisited set. A visited node will not be
reviewed again anymore.

5. If the destination node has been marked as visited, or if infinity is the smallest tentative
distance between the nodes in the unvisited range, stop.

The BFS algorithm is a strategy for searching in a graph, and it is similar to Dijkstra’s
algorithm. However, the BFS algorithm can evaluate the cost of any node to the target
point; it selects the closest node to the target point.

Due to the completeness, optimality, and optimal efficiency, the A* algorithm is applied
to many fields. The A* algorithm is a graph traversal and path search algorithm, and it does
not need to search many nodes. It can also find the shortest path efficiently in the static
grid-based map. Because it is difficult for a mobile robot to move in a complex environment,
it needs to generate the most suitable route through path planning [18]. After consideration
and evaluation, it is feasible to use the A* algorithm for path planning. In this paper, the A*
algorithm is used with 3D LiDAR to do the global path planning and obstacle avoidance,
respectively. The A* algorithm selects the path that minimizes as f (n), as in (15).

f (n) = g(n) + h(n), (15)

where n is the next node on the path, g(n) is the cost of the path from the start node to the
next node n, and h(n) is a heuristic function that estimates the cost of the cheapest path
from n to the goal.

The DWA algorithm is used for local path planning in this paper. Due to the speed and
acceleration constraints, when a mobile robot is used for obstacle avoidance, its avoidance
capability is restricted. Therefore, in the design of dynamic windows, the DWA algorithm
takes into consideration the kinematic constraints of finite velocity and acceleration. In the
process, the local obstacle avoidance problem of the robot is transformed into a constrained
optimization problem in the velocity vector space. This algorithm simulates the moving
path of the mobile robot at a certain speed (v, w). After obtaining multiple trajectories, these
trajectories are evaluated and the speed corresponding to the best trajectory is selected to
let the mobile robot start moving. The evaluation function E is shown in (16).

E(v, w) =α · heading(v, w)
+β · dist(v, w) + γ · velocity(v, w)

(16)

where α, β, and γ are weight, heading is a measurement of the deviation of the robot to the
target location, dist is the distance to the closest obstacle on the trajectory, and velocity is
the forward velocity of the robot.

This paper applies the AMCL algorithm to the indoor mobile robot. AMCL is a
probabilistic localization system for a robot moving in 2D [19]. It is simply an upgraded
version of the system of Monte Carlo Localization. The current position that is global
localization or local localization at first is decided. Next, according to the different status
of the position, different particles are assigned to localization and tracking. The MCL
algorithm is shown in Algorithm 1 [20]. Given a map of the environment, the goal is for the
robot to determine its position within the environment. Every time the algorithm takes as
input the previous belief Xt−1, an actuation command ut, and data received from sensors
zt, the algorithm outputs the new belief Xt.
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Algorithm 1 MCL

1: function MCL (xt−1, ut, zt)
2: Xt =Xt= φ

3: for n = 1 to N:
4: xt[n] = motion_update (ut, xt−1[n])
5: wt[n] = sensor_update (zt, xt[n])
6: Xt = Xt + < xt[n], wt[n]>
7: end for
8: for n =1 to N:
9: draw xt[n] from Xt with probability ∝ wt[n]
10: Xt = Xt + xt [n]
11: end for
12: return Xt
13: end function

AMCL uses the adaptive Kullback–Leibler divergence method to update particles;
then it can localize the mobile robot [21]. These particles are provided with their own
coordinates and orientation, and have a given weight. Particles with larger weights are
more accurate for judging mobile robot poses. As the mobile robot position is updated,
it will resample particles. Moreover, the particles with larger weights will remain. After
many iterations, the results show that it will be closer to the actual mobile robot pose. This
method achieves precise position and reduces the complexity of the mobile robot. In short,
this algorithm uses a particle filter to track the mobile robot’s pose based on a known map.

2.3. Deep Learning

There are some layers in a basic deep learning model, including an input layer, multiple
hidden layers, and an output layer. Because of the multiple hidden layers, deep learning
models are called “deep”. A deep learning model is different from a traditional neural
network. In a deep learning model, the number of hidden layers is set as 20, 50, 100, 500,
or even more. However, a traditional neural network contains only two to five layers. An
architecture of a basic deep learning model is shown in Figure 9. Forward propagation and
back propagation are two important and main procedures in a deep learning model. They
are respectively illustrated in the following paragraphs.
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Figure 9. An architecture of a basic deep learning model.

For forward propagation, the initial weights are set up randomly. The values for the
neurons in the first hidden layer can be calculated. In Figure 4, the value of H1 with input
node x, weight w, and a bias b can be calculated through (17). The output of this equation
is linear.

H1 = x1 ∗ w1 + x2 ∗ w2 + x3 ∗ w3 + b, (17)

An activation function is applied to transfer these linear values into nonlinear. Before
calculating the neurons in the second hidden layer (H5, H6, H7, H8), some activation
functions are proposed, such as sigmoid, Rectified Linear Unit (ReLU), and so on. Then,
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the forward propagation is processed until the output layer. The first set of predicted labels
is generated.

The backward propagation starts after producing the first set of expected outcomes.
Second, the loss and cost function between the expected labels and the annotated labels is
determined. Several algorithms were suggested for loss and cost functions. The square loss
function l is in (18), and it calculates the loss between each predicted label f (xi|θ) and its
annotated label yi. The number of predictions is n and θ is the parameter of the model. The
overall loss of predicted and annotated labels is further obtained by Mean Squared Error,
as shown in (19).

l( f ( xi|θ), yi) = ( f ( xi|θ)− yi)
2, (18)

MSE(θ) =
1
n

n

∑
i=1

( f ( xi|θ)− yi)
2, (19)

2.3.1. CNN

In deep learning, CNN is a class of deep neural network, and it is the most common
application in image and video recognition [22]. CNN contains one or more multiple
convolutional layers, multiple pooling layers, and fully connected layer. Many image
recognition models are also extended based on the CNN architecture. Figure 10 shows
an example of a convolution operation on a two-dimensional tensor. The concept map of
CNN is shown in Figure 11. The 2D convolution formula S in the convolutional neural
network can be defined as (20), where the feature map is I and the kernel is K.

S(i, j) = (I ∗ K)(i, j) = ∑m ∑n I(m, n)K(i−m, j− n), (20)

where the indices i and j are concerned with the image matrices and those of m and n deal
with that of the kernel.
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2.3.2. R-CNN

R-CNN is mainly applied for object detection. Object detection must not only achieve
object classification, but also solve the problem of target positioning. That is, it must obtain
the location information of the object in the original image. Therefore, it is necessary to
explain the input data set of the bounding-box regression. The transformation formula is f,
as in (21). The data set input to the bounding-box regression is {(Pi, Gi)}i = 1, . . . ,N, where

the region proposal is Pi =
(

Pi
x, Pi

y, Pi
w, Pi

h

)
and the ground truth is Gi = (Gx

i, Gy
i, Gw

i, Gh
i).

Ĝx, Ĝy, Ĝw, Ĝh are the closer regression ground truth, as in (22) and (23). In Figure 12, the
red box represents the candidate target box, the blue box is the target box predicted by the
bounding box regression algorithm, and the green box is the real target box.

f
(

Pi
x, Pi

y, Pi
w, Pi

h

)
=
(
Ĝx, Ĝy, Ĝw, Ĝh

)
≈ (Gx, Gy, Gw, Gh), (21)

{
Ĝx = Pwdx(P) + Px
Ĝy = Phdy(P) + Py

, (22)

{
Ĝw = Pwexp(dx(P))
Ĝh = Phexp(dy(P))

, (23)

where x, y, w, h is the center point coordinates and width and height of bounding box.
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The next thing to do is to solve dx, dy, dw, and dh. In the bounding-box regression, the
linear regression is used in R-CNN, which represents features that were extracted from
the fifth pooling layer in AlexNet and further to the fully connected layer. The predicted
value d∗(P) is in (24), where ∗ represents x, y, w, and h, and φ5(P) is the eigenvector. The
optimization of the loss function is w*, as in (25), where t* is shown in (26). Hence, the least
square method or gradient descent algorithm is used to obtain the result. The gradient
descent function x(t + 1) is shown in (27). In relative coordinates, the mapping relationship of
bounding-box regression f is as in (28). Equation (29) shows the reason why the bounding-
box regression can be regarded as a linear transformation when the Intersection over Union
(IoU) is large. When x approaches zero, obtaining log (1 + x) ≈ x, that is log(1 + x) can
be approximated as a linear transformation. Therefore, tw and th of (26) can be rewritten
as (30).

d∗(P) = wT
∗φ5(P), (24)

w∗ = argmin
ŵ∗

N

∑
i=1

(ti
∗ − ŵT

∗φ5(Pi))
2
+ λ‖ŵ∗‖

2

, (25)


tx = Gx−Px

Pw

ty =
Gy−Py

Ph

tw = log Gw
Pw

th = log Gh
Ph

, (26)

x(t+1) = x(t) − γ∇ f (x(t)), (27)
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{
f (φ1) = x1 − p1
f (φ2) = x2 − p2

, (28)

lim
x→∞

log(1 + x)
x

= 1, (29){
tw = log Gw

Pw
= log Gw−Pw+Pw

Pw
= log(1 + Gw−Pw

Pw
)

th = log Gh
Ph

= log Gh−Ph+Ph
Ph

= log(1 + Gh−Ph
Ph

)
, (30)

where i is the currently calculated data and N is the total amount of data. ŵ∗ is the parameter
that needs to be learned. t is the number of update parameters, and γ is the learning rate.
The features extracted by CNN are φ1 and φ2. Pw and Ph are the width and height of the
region proposal. Gw and Gh are the width and height of the ground truth.

Using selective search, about 2000 region proposals can be found, and the extracted
region proposals can be compressed to the same size. They are put into CNN to extract
features, Support Vector Machine (SVM) is applied to segment and classify, and linear
regression is carried out with bounding boxes. The flow is as follows:

1. A bunch of about 2000 possible regions is generated (region proposals).
2. Features are extracted through a pre-trained CNN model (e.g., AlexNet) and the

results are stored.
3. The SVM classifier is used to distinguish whether it is an object or a background.
4. Finally, a linear regression model is used to correct the bounding-box position.

SVM is a supervised learning method. When using SVM, it must be with the kernel
function so that SVM can get better performance in classification problems. A decision
boundary is found in order to maximize the margins between the two categories so they
can be perfectly separated. There are common kernel functions in (31) to (34).

Polynomial kernel function:

K(xi, xj) = (xi · xj)
d, (31)

K(xi, xj) = (1 + xi · xj)
d, (32)

Gaussian kernel function:

K(xi, xj) = exp(−
∥∥xi − xj

∥∥2

2σ2 ), (33)

Sigmoid kernel function:

K(xi, xj) = tanh(k(xi · xj) + θ), (34)

where xi and xj are vectors in the input space, d is an integer, σ is a free parameter, θ is
coefficient, and k is gamma.

First, the method of Selective Search is to draw the bounding box of the segment
results. Next, a loop is used to merge the two boxes with the highest similarity each time
until the entire image is merged into a single box. All the boxes in this process are the
region proposals that are selectively searched. Figure 13 is the R-CNN architecture. Since
R-CNN must generate about 2000 region proposals at first and each region must be put
into CNN to extract features, there are many repetitive operations that take a lot of time.
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2.3.3. Mask R-CNN

Mask R-CNN is an extension of Faster R-CNN and was proposed by the same author.
Faster R-CNN is a popular target detection framework, and Mask R-CNN extends it to an
instance segmentation framework.

Faster R-CNN is mainly composed of two modules. The first layer is a deep full
convolutional network to extract regions, and the second layer is a Fast R-CNN detector [23].
The Region Proposal Network (RPN) is the core of Faster R-CNN. The offset formula of the
center coordinate x and y is as in (35). The loss function L of Faster R-CNN is optimized for
a multi-task, as shown in (36) and smoothL1 is shown in (37).{

x = (tx × wa) + xa
y = (ty × ha) + ya

, (35)

L({pi}, {ti}) = 1
Ncls

Lcls(pi, pi
∗)

+λ 1
Nbox

∑i pi
∗ · smoothL1(ti − ti

∗)
(36)

smoothL1 =

{
0.5x2, if|x| < 1
|x| − 0.5, otherwise

, (37)

where t is a vector and it is a bounding-box coordinate. w and h are width and height. a
is anchor. pi is the predicted probability of anchor i being an object and pi* is the ground
truth label of whether anchor i is an object. ti is predicted four parameterized coordinates
and ti* is the ground truth coordinates. Lcls is the log loss function over two classes, Ncls
is set to be the mini-batch size, and Nbox is set to the number of anchor locations. λ is a
balancing parameter.

Mask R-CNN is a two-stage framework. The first stage is to scan the image and
produce suggestions, and a target may be found in the regions. The second stage categorizes
suggestions and creates bounding boxes and masks. Region of Interest Align (RoI Align)
is proposed in Mask R-CNN. It removes the fixed-point process in the RoI pooling layer
so that both the input proposal area and the coordinates of its segmented area use real
numbers [24]. The training loss function L of Mask R-CNN can be described as in (38), and
Lbox and Lmask are both effective for positive RoI. Mask R-CNN continues the RPN part of
Faster R-CNN. The segmentation error Lmask is defined as the average binary cross entropy
loss function, as shown in (39).

L = L({pi}, {ti}) + (Lcls + Lbox + Lmask), (38)

Lmask = −∑
y

y log(ŷ) + (1− y) log(1− ŷ), (39)

where Lbox is the bounding box loss function. y is the labeled value and ŷ is the pre-
dicted value.

2.3.4. YOLO

YOLO is the first one-stage detector in deep learning. In the object detection, YOLO
basically decomposes the graph into many grid cells, then predicts two bounding boxes
and the category probability in each grid cell. Finally, the threshold and Non-Maximum
Suppression method are used to obtain the answer. It is assumed that the size of the input
image is 100 × 100, and C objects are detected. YOLO will divide the image into S × S
grids, and the size of the tensor output by YOLO is S × S × (B × 5 + C). If S = 5, the image
will be equally divided into 5 × 5 grids, and each grid cell is 20 × 20. The confidence score
is shown in (40) [25].

Confidencescore = P(object) ∗ IoUtruth
pred , (40)

where the existing probability of class-specific objects in the box and the fitness between
the predicted box and the object are both taken into consideration.
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The confidence score is in (41); it shows both the probability of that class and how well
the box fits the object. In the test phase, each bounding box will get a set of class-specific i
confidence score, as shown in (42). In the entire YOLO architecture, except for the last layer
with linear output, each layer will be equipped with leaky rectified linear activation (leaky
ReLU). The activation function φ(x) is (43).

p(Classi|object) ∗ IoUtruth
pred

=
p(Classi |object)

P(object) ∗ P(object) ∗ IoUtruth
pred

(41)

Confidencescore = P(Classi) ∗ IoUtruth
pred , (42)

leakyReLU : φ(x) =
{

x, ifx > 0
0.1x, otherwise

, (43)

where x is the input to a neuron.
YOLOv3 is currently the most widely used technology for object detection. First,

the bounding box is framed in the image to select the suspected region proposal, then
the feature value analysis is intercepted and the information is classified in the bounding
box. YOLOv3 is an improved version of YOLO; the output frame rate is faster than other
object detection methods (Single Shot MultiBox Detector, Retina-Net, Object Detection via
Region-based Fully Convolutional Networks). It is different from the previous detection
model, and it applies a single neural network to the full image. YOLOv3 continues the
practice of YOLOv2 and the bounding-box predicted formula b is in (44). The confidence
score of the predicted objects is shown in (45).

bx = σ(tx) + cx
by = σ(ty) + cy

bw = pwetw

bh = pheth

, (44)

Confidence score = P(object) ∗ IoU(b, object), (45)

where (tx, ty, tw, th) is the predicted output of the model (network learning target). The
coordinate offset of the cell (in the unit of cell side length) is (cx, cy), (pw, ph) is the side
length of the preset anchor box, and (bx, by, bw, bh) is the final prediction, which are the
center coordinates, width and height of bounding box.

YOLOv3 chose to train on the global area of the picture. While speeding up, it can
better distinguish between the target and the background. However, for large objects,
the background may also be included as part of the target. It is particularly effective for
small and medium objects; as for the large objects, it is not satisfactory. For the predicted
pictures, YOLOv3 uses end-to-end detection. The most important content of YOLOv3
is a large and rich deep convolutional neural network model. There are in total 53 fully
connected convolutional layers, so it is also called Darknet-53. There are three loss functions
in YOLOv3: Loss function l of box, class, and object, respectively, as in (46) to (48). The total
loss function is shown in (49); it is the sum of (46) to (48). The binary cross entropy formula
BCE is in (50). The YOLOv3 structure diagram is illustrated in Figure 14.

lbox = λcoord∑S2

i=0 ∑B
j=0 1obj

i,j (2− wi × hi)[
(xi − x̂i)

2 + (yi − ŷi)
2 + (wi − ŵi)

2 +
(

hi − ĥi

)2
] (46)

lcls = λclass∑S2

i=0 ∑B
j=0 1obj

i,j ∑c∈class pi(c) log( p̂i(c)), (47)

lobj = λnobj∑S2

i=0 ∑B
j=0 1nobj

i,j (ci − ĉi)
2

+λobj∑S2

i=0 ∑B
j=0 1nobj

i,j (ci − ĉi)
2 (48)
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loss = lbox + lcls + lobj, (49)

BCE(ĉi, ci) = −ĉi × log(ci)− (1− ĉi)× log(1− ci), (50)

where S is the grid size and B is the number of bounding boxes. If box j and cell i are
matched together, 1obj

i,j = 1; otherwise, it is 0. If box j and cell i are not matched together,

1nobj
i,j = 1; otherwise, it is 0. (xi, yi) is the location of the centroid of the anchor box and (wi, hi)

is the width and height of the anchor box. The classification loss is pi(c), all λ are the weight
parameters, ĉi is the labeled value, and ci is the predicted value.
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After considering various restrictions, YOLOv3 is more suitable for real-time detection
on the mobile robot in this paper. When doing deep learning, concerning the memory size,
this paper decides to apply a simple version; it is called Tiny-YOLOv3 [26]. Tiny-YOLOv3
also uses Darknet-53, but there are just seven convolutional layers [27]. While the detec-
tion accuracy of Tiny-YOLOv3 is not higher than YOLOv3, its speed raises dramatically.
Therefore, this paper adopts YOLO to detect human faces.

3. Results

In this paper, the entire system architecture is composed of the following parts. First,
the mobile robot is connected to the Raspberry Pi and the 3D LiDAR to construct a map
through the SLAM algorithm in an unknown environment. Second, the A* algorithm us
used to plan the path, and fixed-point navigation is achieved via the AMCL algorithm in
an indoor environment. Third, deep learning is applied for detection of temperature, mask
wearing, and human faces during the movement of the mobile robot. Fourth, the detection
results will be shown on the local side.

3.1. Hardware Design

In comparison to the system-on-a-programmable-chip (SoPC) methodology adopted
for a pragmatic networked multirobot CPS in the field-programmable gate array chips [28],
this paper proposes to use an autonomous mobile robot based on ROS, which is composed
of some sensors, and its configuration is shown in Figure 15. This platform successfully
combines software and hardware to achieve different task requirements, and it is veri-
fied in an indoor environment on the campus of National Taiwan University of Science
and Technology.
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Mobile Robot

This paper uses TurtleBot2 based on ROS as an experimental platform and an indoor
mobile robot. TurtleBot2 is an advanced version of TurtleBot. The Turtle is derived from the
Turtle robot, which in 1967 was powered by the Logo language of educational computer
programming. TurtleBot is a low-cost, small-size, personal kit with open-source software
and it is designed to let people who are new to ROS learn efficiently and teach computer
programming language using Logo. In addition, the TurtleBot kit consists of a mobile base,
3D sensor, and the TurtleBot mounting hardware kit. It is also an ROS standard platform,
and is popular among many developers and students.

The aim of TurtleBot2 is to reduce the size and expense of the platform without having
to sacrifice its functionality and quality and it can also provide expandability at the same
time. When TurtleBot2 is moving, it is a two-wheel differential drive composed of two
independent driving wheels. The forward, backward, and turning movements of the mobile
robot are done by adjusting the output power of its two motors. Moreover, it is possible for
people to combine the mobile robot’s hardware components (Kobuki base, Kinect camera)
and embedded system with TurtleBot software installed to make applications. In this way,
the entire mobile robot’s architecture can be more complete.

3.2. Embedded System

The mobile robot needs to detect in a real indoor environment, so it must be capable
of computed, analyzed, and applied data in real time. In order to save time and reduce
transmission costs, computation and data storage are directly brought to the location
needed without sending data to the cloud server.

In this paper, the deep learning model is trained by NVIDIA GEFORCE RTX Super
2060 and deep learning frameworks are adopted, such as TensorFlow. After obtaining the
deep learning models, they are deployed to an embedded system, which is Raspberry Pi 3
Model B. There are a lot of compatible software on Raspberry Pi, so it uses it as the main
control board.

3.3. Sensor

The distance measurement of an object by optical radar is identical to what is generally
referred to as the radar, which measures the distance of an object by calculating the time
interval between the transmitted and received pulse signals. LiDAR is one of the most
popular sensors in the digital market today, so this paper applies it as a SLAM sensor.
The LiDAR acronym means Light Detection and Ranging. The light emitted by LiDAR
will be transmitted to the target, so it is a kind of remote sensing technology. It is unlike
rangefinder that can only scan 240 degrees as in Figure 16. LiDAR can scan 360 degrees to
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measure the distance from itself to the target because the speed of light is constant. Hence,
the distance of the object can be known by this technology.
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Figure 16. Laser rangefinder (Hokuyo URG-04LX-UG01).

This paper is to solve the indoor localization problem. Based on the advantages
of lightness and portability, LiDAR has attracted more and more attention. It is also
provided with a high angular resolution, high sampling rate, good range detection, and
high robustness against environmental variability. After consideration and experiment
confirmation, the result of LiDAR is better than general radar. Therefore, LiDAR is adopted
as an indoor positioning sensor. Figure 17 is LiDAR (YDLiDAR X4).
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Figure 17. LiDAR (YDLiDAR X4).

For people’s temperature detection, the thermal camera is used (MLX90640); it is
shown in Figure 18. Inter-Integrated Circuit (I2C) is the communication for data transmis-
sion. Its features are illustrated in Table 1.
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Table 1. Thermal camera (MLX90640) features.

Specifications Value

Operating Voltage 3~3.6 V
Current Consumption ~18 mA

Field of View 110◦ × 75◦

Measurement Range −40~300 ◦C
Resolution ±1.5 ◦C

Refresh Rate 0.5~64 Hz
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3.4. Experimental Results of SLAM Algorithms N
3.4.1. Indoor Environment

This paper chose to create a map of the lab on the campus, which is shown in Figure 19,
as the indoor experimental environment (library). While the space is not very large, it is
enough for us to do every experiment and validation. During the experiment, the mobile
robot was controlled to navigate a closing loop in the indoor environment and simulta-
neously scan around to generate an indoor map via a laser rangefinder and 3D LiDAR.
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3.4.2. Ground Truth-Based Indoor Map Is Built

The ground truth-based map was created by constructing the planes of walls and
the floor from points obtained using LiDAR. The principle of LiDAR is that the pulsed
laser light emitted by the laser transmitter is emitted from the robot to the ground and
hits the buildings to cause scattering and reflection. A part of the light waves will be
backscattered back to the receiver on the carrier, and the light signals will be converted into
electrical signals and recorded. At the same time, the timer records the time from emission
to reception of the same pulsed light signal. In this way, the distance from the robot to the
target can be obtained.

3.4.3. Map from ROS-Based SLAM Algorithm and Map Comparison Is Built

This paper used three SLAM algorithms separately, Gmapping, Hector SLAM, Google
Cartographer, in the same condition and the same indoor environment. When the mobile
robot executed the SLAM algorithm, the map was saved. At the same time, ROS bag files
recorded all the ROS topics from the mobile robot platform. Finally, these constructed maps
were saved as the occupancy grid form and pgm format.

It is seen very clearly in Figures 20–25 that they are constructed by using laser
rangefinder (Hokuyo URG-04LX-UG01) and 3D LiDAR (YDLiDAR X4) to perform three
SLAM algorithms separately. The following created map results show that the effect of
using LiDAR to build the indoor map is better and more complete than that of the laser
rangefinder. The reason is that LiDAR scans are more comprehensive.
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While the mobile robot was equipped with LiDAR to build indoor maps, bag files
were recorded with the contents of their odometry. The data of these recorded bag files can
be drawn as in Figures 26–28. The contents of bag files can also be summarized via the
command-line “rosbag info”.
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3.5. Experimental Results of Deep Learning
3.5.1. Temperature Detection

For people’s temperature detection, I2C is used to do data transmission. I2C is a
synchronous, multi-master, multi-slave, packet switched, single-ended communication
bus. It’s typical voltage is +3.3 V and it uses two bidirectional open collector or open
drain lines, which are Serial Data Line and Serial Clock Line. Because detecting people’s
temperature cannot use the ordinary camera, this paper uses the thermal camera, which
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is MLX90640, to obtain people’s temperature. I2C is the data bidirectional transmission.
Detection screen displays the current heat map in real time, as shown in Figure 29. Through
image pre-processing and using Mask R-CNN the face is framed and the temperature is
displayed, as shown in Figure 30.
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3.5.2. Mask Wearing Detection

In this paper, a mask wearing detector is trained with OpenCV, Keras, TensorFlow,
and deep learning. For mask wearing detection, the whole process is divided into two
phases. The first phase is to train the mask wearing detector and the second phase is to
apply the mask wearing detector.

The dataset consists of about 1500 images, and they belong to two classes, which are
with mask and without mask. The dataset of images was segmented into two sets, where
80% is the training set and 20% is the validation set. In order to implement the detection,
the MobileNet V2 architecture is fine-tuned. There are three steps to set up fine-tuning,
which are loading MobileNet with pre-trained ImageNet weights, constructing the head of
the model that will be placed at the base model, and freezing the base layers of the network,
whereas the head layer weights will be tuned. Fine-tuning is a strategy to save considerable
time. The results are shown in the following; Figure 31 plots the loss and Figure 32 plots
the accuracy. Table 2 is the performance of the model, including precision, recall, and F1
score. Table 3 is the confusion matrix of the trained model. The Precision–Recall curve
(P-R curve) and the Receiver Operating Characteristic curve (ROC curve) are shown in
Figures 33 and 34. The area of ROC curve is called Area Under the ROC Curve (AUC), and
its value is 0.975. A larger AUC value represents a better classification effect. Figure 35 is the
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RMSE curve. The sensitivity and specificity are 0.9927 and 0.9783, respectively. Figure 36 is
mask wearing detection in real time.
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Table 2. Performance of the model.

Class Precision Recall F1 Score

with mask 0.98 1.00 0.99
without mask 1.00 0.98 0.99

Table 3. Confusion matrix of the model.

with Mask (Predicted) without Mask (Predicted)

with mask (actual) 136 1
without mask (actual) 3 135
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3.5.3. Human Face Detection

The first method for human face detection is to apply OpenCV, Keras, TensorFlow,
and deep learning to detect human faces, compute 128-dimension embeddings to quantify
a face, train a MobileNetV2 model, and recognize faces in images and real time. There are
three people and about 200 images for each person in the training data set. The training
process includes the input data to the network and the triplet loss function. Each input
batch of data has to include the anchor, positive image, and negative image. Scikit-learn’s
implementation of SVM is used to train the face detection model. After generating three
different models, OpenCV is used to recognize human faces in real time and the frames
per second value is 16.13. Figures 37 and 38 are training and validation loss and accuracy.
Figure 39 is the P-R curve of multi-class. Figure 40 is the ROC curve of three models, and
their AUCs are 0.83, 0.87, and 0.88, respectively. The RMSE curve is described in Figure 41.
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Figure 41. RMSE of human face detection.

The second method for human face detection uses the YOLO algorithm. It is built
using dlib’s state-of-the-art face detection built with deep learning. The difference from
the above is the use of models trained by others. The model has a high accuracy, 99.38%.
While the detection effect for the elderly and children is not very good, it is very little
affected by light and different face angles. Hence, YOLO is the better algorithm for human
face detection than the first method. Figure 35 is the human face detection in real time
via YOLO.

4. Discussion

For building maps from ROS-based SLAM algorithms, three algorithms are used,
namely Gmapping, Hector, and Google Cartographer. From Figures 20–25, it can be seen
that the effect of using LiDAR to create a map is better than using a laser rangefinder. In
addition, using LiDAR to build a map takes shorter time than using a laser rangefinder.
Among these three SLAM algorithms, Gmapping and Google Cartographer have odometers.
They use odometer data to correct the map and localize it. In Figures 20 and 23, the
divergence around the map can be clearly seen. The algorithm with the best mapping effect
is Google Cartographer, as shown in Figures 22 and 25. Figures 26–28 show the odometry
of three different maps, and it can be seen that the closest actual path to the predicted path
is the map built by Google Cartographer.

In the temperature detection part, a thermal camera is used to collect images for
the dataset. First, images displayed by the thermal camera are accessed along with the
corresponding temperature information. Second, all images are unified, which is called
resizing. Third, the images are labeled, and the ground truth is generated. This step is to
separate the person from the background. Then the image pre-processing is finished. Mask
R-CNN is used to train the original images, temperature information, and labeled images.
Three things are done at the same time during training, which are classification of people
and background, human form detection, and framing of the human form. In the process of
testing, after the human form is framed, the average temperature within the calculation
range is the displayed temperature, as shown in Figure 30. Some errors in the displayed
results will be affected by insufficient training data, imperfect label, and so on.

This paper used the pre-trained MobileNetV2 architecture with fine-tuning for mask
wearing detection, where fine-tuning is the type of transfer learning that enables one to
use pre-trained networks to recognize classes for which they were not initially trained.
To fine-tune the pre-trained MobileNetV2 model, the following steps are used. First, we
remove the fully connected layers (i.e., the head of the network) from the pre-trained
model. Next, with random initializations, we replace the head with new fully connected
layers, from which all layers below the head are frozen so that their weights cannot be
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changed. Finally, we train the network so that the new fully connected layers will learn
patterns from previously trained layers earlier in the network. During training process,
we applied data augmentation to our datasets in order to enhance model generalization.
The training and validation losses of the mask wearing detector model are less than 0.07,
as shown in Figure 31. The validation loss is even smaller than the training loss, which
indicates that our model generalizes very well. Similarly, the accuracy of training and
validation of the mask wearing detector model are more than 97%, as shown in Figure 32.
The validation accuracy is even better than the accuracy of the training, which also indicates
that our model generalizes very well. For imbalanced datasets, the P-R curve is important
to demonstrate that the model only concerns the correct prediction of the minority class,
rather than correctly predicting the majority class. Precision is a ratio of the number of
true positives divided by the sum of true positives and false positives, which defines how
strong the positive class concerning being predicted by the model. Recall is the ratio of the
number of true positives divided by the sum of the true positives and the false negatives,
which determines how good the model is in predicting the positive class when the real
outcome is positive. A skillful model is defined by a curve that bends in the direction of
(1, 1), which means precision and recall equal to one. In Figure 33, our model also bends
towards one, which represents that our model has good skills because of the balanced
datasets. For a variety of different candidate threshold values between 0 and 1, the ROC
curve is a plot of the false positive rate versus the true positive rate. The true positive rate
is equal to the sensitivity that is implicitly equal to the recall. The ROC curve has valuable
information about the problem of face detection and the skill of the model. The good model
is represented at a point (0, 1). Our model is also at point (0, 1) and the AUC is 0.975, as
shown in Figure 34. This implies that our model has good skills. RMSE is a measurement
of the prediction error. A complete and good model is represented by having a very close
RMSE from training and validation datasets. In Figure 35, we have approximately very
close RMSE results, which indicates our model is good. In the end, OpenCV is used to
achieve our trained mask wearing detection model in real time, which is shown in Figure 36.
It can classify between human face with mask and without mask.

For face detection, similar to mask wearing detection, we used the pre-trained Mo-
bileNetV2 model with fine-tuning. Fine-tuning helps us to use our own training datasets
to retrain the last layer of the pre-trained MobileNetV2 model. We added data augmenta-
tion to our datasets during training in order to improve generalization of our model. In
Figure 37, the training and validation loss of the face detection model are less than 0.9 at
epoch 2.0, and also the validation loss is smaller than the training loss for two epochs, which
means that our model generalizes very well for two epochs. However, after two epochs of
training, the model’s validation loss begins to increase; that is, our model starts overfitting
since our datasets are relatively not enough and similar to the original model datasets. We
have used model check point to callback, which lets us monitor the training and validation
dataset loss so that we can save the best weights. At epoch 2.0, the accuracy of the training
and validation is more than 55%, which is shown in Figure 38. The accuracy of validation
is better than training for the first two epochs, which means that for two epochs our model
generalizes very well. The validation accuracy continues to decline after two epochs, which
means our model begins overfitting. We used model check point to callback, which lets us
monitor the training and validation datasets’ accuracy to save the best weights. The P-R
curve for three-class classification of our model is shown in Figure 39, and from the figure
we know our model is able to accurately label class 2 as compared to other classes. The
ROC curve for three-class classification of our model is shown in Figure 40, and the AUC of
the ROC curve for class 0, class 1, and class 2 are 0.83, 0.87, and 0.88, respectively. In other
words, our model has better skill concerning accurately labeling class 2 than other classes.
The RMSE for three-class classification of our model is shown in Figure 41. In Figure 33, the
training and validation RMSE values are very close up to two epochs, but the validation
RMSE value is much higher than the training RMSE value after two epochs. This means
our model begins to overfit because our datasets are relatively much less and similar to the
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original datasets of the model. Finally, our trained face detection model was successfully
implemented in real-time video streams with OpenCV. There is also an implementation
for another form of pre-trained face detection, and it shows higher accuracy than our first
model of face detection. This model of face detection is developed using dlib and deep
leaning, which is YOLO. Dlib is a modern C++ toolkit containing algorithms for machine
learning to solve real-world issues. The face detection model is able to accurately label a
face in real time and in untrained images as shown in Figure 42.
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5. Conclusions

After the various proofs of concept mentioned above, we summarize them separately.
For building an indoor map, the constructed map via the Google Cartographer algorithm
has the lowest error relative to the precise ground truth. At the same time, the mapping
effect of LiDAR is better and more complete than the laser rangefinder. Therefore, these
experiments proved that this SLAM algorithm has enough robustness for different mobile
robot movements. In the process of building a map, the most critical point is how to
correct the map and localize it. In these three SLAM algorithms, Gmapping and Google
Cartographer have odometers. They use odometer data to correct the map and localize it.
The Hector SLAM algorithm is different from the previous two algorithms. It only needs
LiDAR data, not odometer data and does not provide the loop closure function. That is the
reason why the result of Hector SLAM has lower accuracy. Hence, the result showed that
building an indoor map using Google Cartographer with LiDAR is the best algorithm in
this paper. For deep learning, there are three parts in total: Temperature detection, mask
wearing detection, and human face detection. When doing deep learning, the frameworks
used are Keras and TensorFlow. They used CNN, Mask R-CNN, and YOLO algorithms to
achieve real-time detection.

In this paper, the wheeled mobile robot is differential drive. Different locomotion of
robots can be made for different occasions in the future. More sensors can be installed
on the mobile robot to achieve more functions. The extension of deep learning is to
replace different algorithms. For human face detection, combining with the governments
or school’s database can confirm people’s identities directly.
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