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Abstract: The conventional algorithm used for target recognition and tracking suffers from the
uncertainties of the environment, robot/sensors and object, such as variations in illumination and
viewpoint, occlusion and seasonal change, etc. This paper proposes a deep-learning based surveil-
lance and reconnaissance system for unmanned surface vehicles by adopting the Siamese network as
the main neural network architecture to achieve target tracking. It aims to detect and track suspi-
cious targets. The proposed system perceives the surrounding environment and avoids obstacles
while tracking. The proposed system is evaluated with accuracy, precision, recall, P-R curve, and F1
score. The empirical results showed a robust target tracking for the unmanned surface vehicles. The
proposed approach contributes to the intelligent management and control required by today’s ships,
and also provides a new tracking network architecture for the unmanned surface vehicles.

Keywords: unmanned surface vehicle; artificial intelligence; deep learning; object tracking;
surface robot

1. Introduction

In recent years, due to experimental and communication difficulties, unmanned sur-
face vehicles (USVs) have fallen far behind unmanned aerial vehicles (UAVs) and un-
manned ground vehicles in the field of artificial intelligence (AI) research and development.
However, USV not only has good future development, but also has a wide range of ap-
plications. In the military, it can be used for waypoint patrols [1,2], gathering intelligence,
surveillance, and reconnaissance [3,4]. For civilian purposes, it can be used to assist in
finding people who fall into the water [5], testing water quality [6,7], and so on. In the
treacherous and ever-changing marine environment, collision avoidance and target tracking
are the prerequisites for USV to perform tasks, and therefore become the key development
direction in the USV research field [8]. The problems encountered in target tracking can be
roughly divided into four categories: the shape change of the target, the scale change of
the target, the occlusion and disappearance of the target, and the blurred image [9]. Target
tracking methods are mainly divided into two categories, one is a filter algorithm, and
the other is a deep learning algorithm. Using the Particle Filter method, based on particle
distribution statistics [10]. First, the tracking target is modeled, and a similarity metric is
defined to determine the degree of matching between the particles and the target. In the
process of target search, it will sprinkle some particles according to a certain distribution
(such as uniform distribution or Gaussian distribution), count the similarity of these par-
ticles, and determine the possible position of the target. Although this method is fast, it
easily reduces the accuracy and stability of tracking. Using deep learning methods, and
using deep learning to train the network model, the obtained convolution feature output
performance is applied to the correlation filtering tracking framework, to obtain better
tracking results [11]. This method obtains better eigenvalues, and improves the accuracy
and stability of tracking, but at the same, time it also brings an increase in the amount
of calculation.
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Due to the floating and undercurrents of the water, many USV control systems have
been proposed. Among the non-Al methods, [12] proposed the use of proportional-integral-
derivative controller to control the motion of the USV. By establishing the three-degree-of-
freedom kinematics and dynamics model of the USV, the heading tracking controller was
designed based on the output feedback control method. In addition, [13] also proposed a
sliding mode control method based on Kalman filter for the heading control of the water
jet propelled USV in the horizontal plane. With Nomoto model, a heading controller based
on sliding mode control is designed and the Sigmoid function is introduced to improve the
traditional exponential approximation rate.

In the Al method, ref. [14] proposed an alternative navigation system when there is
no global positioning system (GPS). USV uses the simultaneous localization and mapping
framework to perform relative navigation with respect to the surrounding coastline and
uses B-spline to parameterize coastline features for effective map management. A planning
algorithm based on deep reinforcement learning was proposed to find the shortest collision
avoidance path for USVs [15]. Solutions in target tracking against various certainties (such
as light changes, different scenes, or occlusion of targets) have been proposed according to
the surveyed literature.

A TensorFlow framework for moving object detection was proposed [16]. The pro-
posed method is based on convolutional neural networks (CNN) target tracking algorithm
for robust target detection. The dynamic frame rate optimization and selection of adaptive
parameters according to the scene and content of the input video were proposed [17].
A general algorithm was proposed to estimate the perspective image area occluded by
the object [18]. By connecting the real environment and the perspective space, the two
coordinate spaces create a flexible object tracking environment.

When these algorithms are applied to vehicles, they face more challenges. An object
tracking algorithm for UAVs using robust multi-collaborative tracker is proposed [19],
which can provide additional object information and modify the short-term tracking model
in time. In short-range maritime surveillance, X-band maritime radar is used to capture
objects in an extended area with different intensities [20]. Combining the position, shape,
and appearance of the target, multiple kernel correlation filters are proposed to track a
single target in a real marine radar.

According to the above-surveyed literatures, the tracking methods developed today
have insurmountable problems, such as the target of Kernelized Correlation Filter cannot be
recovered after being completely occluded [21], there are many false positives in the target
tracking of Tracking-Learning-Detection Tracker [22], and the Median Flow Tracker will fail
in the case of moving drastically [23]. However, most of the current deep learning research
has only a single neural network as the framework of artificial intelligence, and the use of a
single neural network can easily cause target tracking and identification failure. This paper
uses two parallel neural networks to share feature parameters to discuss improving the
accuracy and recall of target tracking. In addition, in this paper, the use of self-made USVs
combined with software systems were used to improve the current target tracking systems
of USVs, which are mostly the shortcomings of traditional methods. This research predicts
that the proposed Siamese architecture can improve the common target tracking problems
in the previously proposed methods. Among them, the stability and accuracy of the system
will be verified through changes in light, changes in viewpoint, and changes in obstructions.
In terms of application to USV, this paper will use two different waters for testing: a large
and bright swimming pool, and a narrow pond with a complex environment. Since the USV
produced in this study is a catamaran, it is expected to overcome the environmental gap.

To meet the above requirements, the system will have three modes. The first mode is a
360-degree fixed-way cruise. The 360-degree platform of the camera mounted on this USV
will make a circle in 60 s and take a photo every five seconds. Therefore, it will be used
to stitch the panorama to ensure the entire domain is being monitored by the system. The
second mode is to search for a suspicious target, grab the center of mass through the feature
frame extracted by the algorithm, and calculate the gap to control the motor to feedback
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and follow the target. The third mode is to maintain a safe distance from the target and
follow at a constant speed. After a while, the buzzer will give a warning and emit a laser
light to warn the object. This research can be said to create a new hardware design and
algorithm development for the USV field.

2. Materials and Methods

Deep learning is applied to improve the conventional object recognition and tracking
for an autonomous USV. The hierarchical control architecture is shown in Figure 1. It can
be divided into high-level control and low-level control. The environmental variables
will be transmitted to the robot through wire or wireless via their respective sensors in
the remote section. However, the wireless signal on the water is not stable enough for
the Al model to deploy remotely to control the USV via wireless communication. The
centralized architecture is adopted in this paper (wire communication). The remote Al is
placed onboard the USV as edge computing to avoid abnormal communication between
local and remote.

Remote | AI Communication Local | Robots

|
i |
I
Tl i ‘_' pomexe i Environment
Behavior Control i Wl/:_e\s,ss Mobile Robot
©

|
A |
I
I

Centralized Architecture: Wire communication
Distributed Architecture: Wireless communication

Figure 1. The hierarchical control architecture diagram.

The high-level control of behavior is shown in Figure 2. The information obtained
by the sensor can be planned by reasoning first, or it can be divided into four behaviors:
goal-seeking, obstacle avoidance, trajectory tracking, and formation keeping. Perform
low-level robot behavior control. The task of formation keeping is to maintain a constant
pose between the USV and target for object recognition and tracking.

Planning

>
Reasoning

Goal
Seeking

Obstacle
Avoidance

Low-Level

Coordination Pose Control

Trajectory
Tracking

Formation
Keeping

Figure 2. Architecture of high-level control vehicle.
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2.1. Robot System

According to previous studies, there is a huge difference between monohull and cata-
maran used for USV [24-26]. Due to the design of the wave-piercing body, the catamaran
has the advantages of being relatively stable, lighter overall, high capacity, and not easy to
capsize. The hulls on both sides are also relatively slender, and the resistance of the water
flow is reduced during sailing, so the speed is increased, and the accuracy of target tracking
can be greatly improved. This paper refers to the control method proposed by Qiang
Zhu [27]. The hull adopts a catamaran design and uses twin propellers as the power source.
Since the USV is manufactured by the author, the rest of the parts will use the Fusion
360 integrated 3-dimensions (3D) design. The tail of the fuselage is equipped with two sets
of parallel power propellers, which can achieve movement by adjusting the running speed
and direction of the twin propellers. The USV hull design is shown in Figure 3. The power
components of this USV are placed at the bottom of the aft end of the hull, so the motor
will be submerged underwater.

I
—

—\

PR

Figure 3. USV envisioned design drawing.

2.2. Algorithm

The target tracking and response system based on deep learning is applied to USV. In
order to avoid image loss, cruise and image stitching are used to improve the accuracy of
target tracking, and a new Siamese network method is adopted. After the system starts,
it will automatically navigate to search and detect the most panoramic view. The overall
system diagram is shown in Figure 4.

coTTTTTTTT T N Classification
|( Perception Module \| Sensing Module o Place
I ) ) : * object
I Substance || Image | image Camera ‘ ‘ t
| | Classification | Stitching | |
\ 7

/_::::::::::__::::::__:::::__\

Motion Control Module |
: 1. Data Management

(
|
| — , | L GPU
I Navigation _Ipose - . 2. Trainin “

‘ . g the model
i Ultrasound controller } usv ‘—1—’ Environment Data Logger

3. Model validation

(a) (b)

Figure 4. Overall system diagram as (a) system module; (b) system data training and classification.
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2.2.1. Feature-Based Panoramic Image Stitching

This system uses feature point detection as the benchmark for splicing. Feature point
detection refers to the method of finding the feature points in the image based on the
brightness, color, gradient, and other information of the image. In image alignment, feature
point detection can be used to obtain feature points of two images, and then the alignment
can be completed by matching these feature points. Common feature point detection
methods such as: Harris Corner Detection, and Scale Invariant Feature Transformation
(SIFT) [28-30]. As well, this system adopts SIFT method to carry on the detection, the flow
chart is shown in Figure 5.

4 N\
Scale space extreme
value detection

|

Key point location
scale determination

Y J
]
p
Key point direction
determination
]
Feature vector
generation
N J

Figure 5. SIFT feature vector generation steps.

In the scale space extreme value detection, the Gaussian convolution kernel is applied
due to its scale invariance. It detects the key points in the SIFT algorithm. The images
are convolved using Gaussian filters at different scales, and then continuous Gaussian
blurring of the image differences is used to find the key points. The key point is based on
the maximum and minimum values of difference of Gaussians (DoG) at different scales:

L(x,y,0) = G(x,y,0) *1(x,y), M)

1 2,2 2

_ = (Y7 /20
G(x,y,0) 57g2¢ , 2)
D(x,y,0) = L(x,y,kic) — L(x,y,kjo), 3)

where L(x, y, 0) is the image of the original image I(x, y) convoluted with Gaussian mask
G(x, y, 0), L(x, y, 0) is the DoG image. The maximum and minimum values in the DoG
image are defined as key points as

mxy) = (Lx+1y) —Lx—1y) 2+ Loy +1) — Loy —1)% @

1Lxvy—1)—L(x,y+1)
L(x—1,y)—L(x+1,y)’

where the magnitude and orientation of the key point are m (x, y) and 0 (x, y) respectively.
Each adjacent pixel is added to the histogram of the key point according to its magnitude
and direction, and the direction of the maximum value in the final histogram is the direc-
tion of the key point. Each extracted point will have three pieces of information: scale,
coordinates, and direction. To improve the stability of the registration of selected points,
each point is represented by 4 X 4, a total of 16 seed points, each point contains 128 data,

0(x,y) = tan™

©)
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and the SIFT feature vector represented by the result is 128 dimensions. In this way, an
image feature descriptor is generated for image feature matching, and the SIFT feature
vector is no longer interfered by changes in direction and angle.

With these feature vectors, it is necessary to perform subsequent key point matching
on the key points. The identification of the target is completed by the comparison of key
point descriptors in the two-point set. The similarity index of the key point descriptor with
128 dimensions is used as follows:

Ri = (ri1,Tia,- - -, Ti128), (6)

Si = (Si1,Si2, - - -,Si128), ()

d(R;, S;) = ®)

where R; is the key point descriptor in the reference image, S; is the key point descriptor in
the observation image, and d (R;, S;) is the two similarity measures of the arbitrary reference
image and observation image. The key point matching can be conducted by exhaustive
method, but it will take too much time, so the data structure of the K-dimensional tree (K-d
tree) is used to complete the search instead [31,32]. K-d tree is a binary tree in which each
leaf node is a k-dimensional point. All non-leaf nodes can divide the space into two half
spaces as a hyperplane. The content of the search is based on the key points of the target
image, and the original image feature points that are closest to the feature points of the
target image and the second adjacent original image feature points are searched.

2.2.2. Siamese-Based Target Tracking

Target tracking is to analyze the image sequence to calculate the position of the moving
target in each frame of the image. Then, correlation matching is performed according to the
characteristic values related to the moving target to obtain the complete trajectory of the
target. The system uses a single target tracking method. The single target tracking (STT)
method can predict the size and position of the target in subsequent frames. The basic task
flow is shown in Figure 6 [33,34].

' N

Enter the initialization target box
. vy

l

Generate many candidate frames
(next frame)

v

Extract the features of these
candidate boxes

A 4

Score each candidate box

v

Determine the final goal frame
A J

Figure 6. Basic structure and steps of STT system.
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According to the above process, the first frame is selected in the movie, and then a lot
of to-be-selected frames are generated in the next frame, and the feature values of these
frames are extracted and scored. To adapt to changes in the appearance of the target and
prevent drift in the tracking process, it is necessary to update the model approximately
every frame. However, the past performance of the target is still important to the tracker. If
it is continuously updated, it may lose the appearance information of the past performance
and introduce too much noise. A combination of long and short-term updates can solve
this problem. Therefore, the three steps of forgetting, updating, and output are added to
the neural unit. The method of selecting the prediction results is generally divided into two
categories: selecting the best one among multiple prediction results, using all the predicted
values to weight the average, and then selecting.

Since the framed object may not be the relevant training set, it is impossible to track
each frame of detection. Therefore, this paper needs to use deep learning to solve the
above STT problem. This paper uses the Siamese region proposal network (SiamRPN)
method to solve [35-37]. It can use large-scale images for offline end-to-end training. In
general, this structure includes a Siamese subnetwork for feature extraction and a region
proposal subnetwork. The candidate region generation network includes classification and
regression. This network architecture is shown in Figure 7.

positive negative

—7

Template
Frame

[}
|
17x17 z:k o
X X : one grou
1
1
1
1

RIS Classification k groups
Dle:tection Branch dx dy dw dh
rame A \ == s e e e e e 2
N\ , L
| @
! T
| |
22522 <256 : :
I 17 x 17 x 4 e
I one grou
‘ ' ! —
255119553 : Regression i F groups
L __20x20x256 Branch ]
Siamese Network Region Proposal Network Output

Figure 7. The main neural network framework of SiamRPN: the blue part is the Siamese subnet used
for feature extraction, the green part is the regional proposal subnet, and the orange part is the final
output result. There are two branches in the figure, one for classification and the other for regression.

First, SlamRPN uses multi-scale testing to predict the change of scale to solve the
problem that the previous algorithm cannot estimate the size of the target. Because the
sliding window method is time-consuming, the system uses RPN to directly generate the
detection frame, which can greatly increase the generation speed. In addition, the anchor
technology is used to determine whether there is a recognized target in the fixed reference
frame, and how far the target frame deviates from the reference frame, so there is no
need for multi-scale traversal of sliding windows. In the network architecture of Figure 7,
the Siamese network uses the AlexNet network structures [38-40]. The Siam feature
extraction subnet has two branches, and the two branches share the same parameters in
the CNN. One is called the template branch, which receives the target patch as input in
the previous frame. The other is called the detection branch, which receives the target in
the current frame as input. ¢(z) is expressed as the output feature map of the template
branch in the twin sub-network 6 x 6 x 256. ¢(x) is expressed as the output feature map
22 x 22 x 256 of the detection branches in the Siamese network. The connection network
structure can be found that the template image and the search image are respectively
obtained by the Siamese network with 6 X 6 x 256 and 22 x 22 x 256 features, and then
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the template image features are respectively generated by a 3 x 3 convolution kernel
features 4 x 4 x (2k x 256) and 4 x 4 x (4k x 256). In particular, the feature channel has
been increased from the original 256 to 2k x 256 and 4k x 256. The reason why the number
of channels has increased by 2k times is that k anchors are generated at each point of the
feature map, and each anchor can be classified into the foreground or the background, so
the classification branch has increased by 2k times. Similarly, each anchor can use four
parameters as described, so the regression branch has increased by 4k times. At the same
time, the search image also obtains two features through a 3 x 3 convolution kernel, where
the number of feature channels remains unchanged. The RPN network architecture is
shown in Figure 8, and the anchor method diagram is shown in Figure 9.

Reshape |— Softmax

v

Reshape Proposal

r

Figure 8. The RPN architecture used in this SiamRPN.

The original image Sliding windows(3 x 3)‘

\

[ ]

‘ Sliding windows
center pixel

Anchor point of center pixel 1Scale: {3:2, 1:1, 2:3}‘

Figure 9. The anchor method architecture used in this SiamRPN.

The RPN network is divided into two lines [41] in comparison to the Kalman filter
approach with a self-learning RBFNN (Radjial Basis Function Neural Network) [42]. The
upper one uses softmax classification to make the anchors obtain positive and negative
classifications, and the lower one is used to calculate the bounding box regression offset
for the anchors to obtain an accurate proposal. The final Proposal layer is responsible for
synthesizing positive anchors and the corresponding bounding box regression offset to
obtain proposals, and at the same time eliminate proposals that are too small and beyond
the boundary. In Figure 9, there are nine rectangles in the anchor method and there are three
shapes in total. The aspect ratio of the schematic diagram in Figure 9 is {1:1,2:3,3:2}, and the
multi-scale method commonly used in detection is introduced. For the classification branch,
the 4 x 4 x 256 features of the 2k template image anchors are used as the convolution kernel
and the search image feature is convolved to generate the classification branch response
map 17 x 17 x 2k. The same is used in the regression branch, and the response map
generated after the convolution operation is 17 x 17 x 4k. Each point represents a vector of
size 4k, which is dx, dy, dw, and dh. The deviation between the anchor and ground truth is
measured, and the calculation formula of the response graph is as follows:

A§t€s><h><2k = [?(x)}cls.ko(Z)]cls’ (9)

AzsihXZk = [q)(x)]reg.[(l)(z)]regi (10)
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where [¢(z)]cs and [¢(2)]eg means that ¢(x) adds 2k classification channels and 4k regression
channels, respectively, and e represents the calculation of the correlation on the classifi-
cation branch and the regression branch. A% contains 2k channel vectors, each point in
it represents positive and negative excitation, which is classified by softmax loss. A™8
contains 4k channel vectors, each point represents the dx, dy, dw, and dh between anchor
and ground truth. The above is normalized by the Smooth L1 loss function as follows:

3
Lreg = ) _ smoothy1(5i], o), (11)
i=0
_ Ty—Ax _T-A
M m (12)

(13)

smoothpy(x,0) = { L

QN‘ )—qu‘ —

where Ay, Ay, Aw, Ay are the center point coordinates, length, and width of the anchor
boxes; Ty, Ty, Tw, and T}, are ground truth boxes. Lrgg is the final regression loss, J is the
coordinate standardization of the anchor, and smooth;;(x, ) is the Smooth L1 loss function.

Algorithm 1 is a key frame marking method, which can be used in the detection
and monitoring process of target tracking. In this paper, the tracking task is planned as a
one-shot detection task. This method limits the input structure and automatically discovers
features that can be generalized from new samples. That is to learn a learner net, which
corresponds to the similarity function in this paper, is trained through a supervised Siamese
network-based metric learning, and then reuses the features extracted by that network
for one-shot learning. This research regards the target tracking task as a combination
of one-shot object detection and few-shot instance classification. The former is a class-
level subtask used to find candidate frames similar to the target, and the latter is an
instance-level task used to distinguish targets and distractors. Target-guidance module
distinguishes the characteristics of the target and search area and their interaction with the
subject. Although the detector is focused on objects related to the target, the surrounding
background interference is ignored. To compensate for this, a few-shot instance classifier
is proposed. However, training directly from scratch is time-consuming and easily leads
to overfitting. Therefore, few-shot finetune is performed through model-agnostic meta-
learning, which enhances discrimination and further eliminates distractors. SiamRPN
elaborated on it from a theoretical point of view, in which the tracking framework is shown
in Figure 10.

R

1275812753
Template Frame

Regression
Branch

------------------------------------- |
v

22 x 22 x 256

25553259 54 3) 20 % 20 x 256 17 x 17 x 4k
| DetectionFrame 0000 bm—m—m e —— o )
Siamese Network Region Proposal Network

Figure 10. The tracking framework in SiamRPN.
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Algorithm 1 Keyframe detection

f, the frame of the input video stream;
MAM, the motion appearance mask of f;
MAM 4, the motion appearance mask of f — 1;
tstop, the temporal threshold for detecting stop;
| MAMg| denotes the total number of Is in
MAMf,'
Outputs: lf, the label of the keyframe;
ly=SPLIT
elseif IMAM| < IMAM; 4|
lr=]JOIN
else if IVIAMf " MAMf,l 75 0
ly=MOVE
else /*MAMf = MAMf,l >('/
stop-count < stop-count + 1
if stop-count > ts1p
ly=SPLIT

Inputs:

B A S o

Jury
e

In the detection part, according to this network architecture, the single sample de-
tection task can be shown as the red box. The initial frame of the template frame passes
through the convolutional layer in the RPN, and ¢(x)reg and ¢(x).s are used. In the detec-
tion part, the average loss function, the definition of the classification feature map and the
regression feature map formula are as follows:

1
min= " L(Z(p(xi W); (925 W)), 1), (14)

i=1
A e = { 5y, ) |, (15)
A e = { G5y S S o, dh®) | (16)

where (14) is the average loss function L, /; is the label, W is the weight of two networks,
and (¢ is the RPN operation. In (15), where i € [0, w), j € [0, h), I € [0, 2k). In (16), where
i€[0,w),jel0,h),pel0,k). With the defined equation, the following relational equation,
and the basis for selecting the best frame can be calculated:

x cls cls cls

e G/ T P (17)

* an an an an
ANC* = {(x{", yj", w[", hj )iewe”a}r (18)

K reg reg reg reg reg reg

REG* = {(x; 2yt dx S dy e dw, =, dhy )ieI,je],leL}’ (19)

x pro _pro _ pro 5 pro
PRO™ = {(x; Vi My )iel,jej,leL}’ (20)
xPT0 = x™ 1 dxlreg *wi”, (21)
ypro — yan + dylreg * han, (22)
w;ﬂo _ w;)ro % edw,/ (23)
hlpm _ h;ﬂ’O % edh,/ (24)

where the top k values in the positive score found in the classification score are CLS*. It is
found that the anchor box of the corresponding box is found to be ANC* and the predicted
regression value is REG*, and finally the regression value is converted to the regression box
PRO*. In the system, ®" represents the orbit generated by the anchor, and P™ is the bounding
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box that is finally returned. Then, the anchors that are too far from the center are discarded
to remove outliers, and then non-maximum suppression (NMS) is used to remove all
non-maximum frames to remove redundant overlapping frames. The intersection over
union (loU) and NMS formulas needed to select the best frame are as follows:

Area of Intersection
IoU = 2
ol Area of Union '’ (25)

(w+p)x(h+p) = %, (26)

where IoU is the union of the intersection ratio of the two box areas, which is used to
determine the pixel distance of the two boxes. In (26), w and h represent the width and
height of the target, and p represents the filling value equal to (w + h)/2. First, select a box
with the highest credibility, the rest of the boxes, and their IoU are greater than a certain
threshold, then remove them, continue to select a box with the highest score from the
unprocessed box, and repeat the above process to obtain the best.

3. Results

The target tracking currently used on USVs rarely uses Siamese neural network
architecture and most of them are single-hull structures. The overall effect of this research
is to achieve system integration, which includes three main modes: (1) fixed-way cruise
and 360-degree panoramic monitoring. (2) real-time target tracking and USV following.
(3) in the range Internal launch feedback module. To achieve the above objectives, this
section will mention all the specifications, circuit diagrams, and algorithm results adopted
by the system. The final product diagram and specification of the overall system are shown
in Figure 11.

Monitor screen Monitor screen

Camera
MPU9250
Arduino UNO
Jetson Xavier NX

USV headlights

Laser module Ultrasonic sensor

(a) (b)
Figure 11. The USV as: (a) side view; (b) front view.

In order to estimate the difference between the USV’s travel route and the preset route,
as shown in Figure 12, this paper uses two different routes for comparison. Path one is an
arc-shaped curve, in which the trajectory with a straight line at the beginning can be used
to compare whether it can meet the preset value in a straight line. Path two is a route to
avoid obstacles and currents and is used to judge whether the USV can sail as usual under
different wind speeds. Among them, each path has four tests at different times. The record
of different trajectories path one and path two is shown in Figure 13. The green path is
the first test, the purple path is the second test, the light blue path is the third test, and the
dark blue path is the fourth test. In the four-day test, there was no wind and no water flow
on the first day, light breeze on the second day, weak water flow, strong wind, and strong
water flow on the third day, and light breeze but strong water flow on the fourth day.
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Figure 12. Two paths tested in established waters.
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Figure 13. T Four test routes and preset routes, listed as: (a) path 1; (b) path 2.

The route information obtained from the four tests on path one and path two will be
evaluated and verified with absolute trajectory error (ATE), as shown in Table 1. It can
be seen from this that although the catamaran has strong resistance to water currents, it
still has some continuous drop compared to static waters (path two). In the turning part,
the two routes will deviate slightly, which may be caused by the wind speed change at
that time or other underwater biological activities. It can be seen that the USV can fit as
accurately as possible under no wind or breeze, and it can be overcome even under strong
water flow. However, the performance is not satisfactory when encountering strong winds.
The second part of the algorithm part is a panoramic stitching method based on feature
comparison. The general method is to capture the feature points of two photos, and then
connect the corresponding points together. The following paper will show the detailed
stitching process step by step. This paper compares two pictures, and finally will provide
the final complete stitching picture. All the steps and derivative pictures of the splicing
method are shown in Figures 14-18.
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Table 1. Detailed specifications of the feedback module.

Trajectory Path1 Path2
Metric ATE
Test_1 3.745 4.045
Test_2 3.749 3.704
Test_3 7.341 19.363
Test_4 6.958 4.499
Avg. Err. 5.473 7.903

Figure 14. The original picture of feature-based image alignment. (a) Picture to the left after centering
the camera. (b) Picture to the right after centering the camera.

(@) (b)

Figure 15. Key points with the descriptors detected as in (a) Figure 14a. (b) Figure 14b.
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Figure 17. Homograph corresponding to the two photos, Figure 14b is rotated and deformed based
on Figure 14a.

Figure 18. Final corrected wide-angle image.

The first step is to find and filter the key points and corresponding points in the photo.
One can see the red circle in Figure 15. A key point will have four circles. The larger
the circle, the more obvious the feature. The second step is to perform feature matching.
There are many matching blue lines in Figure 16. Among them, this study only uses the
feature points that have the distribution ratio reaching the top 85% score. The third step
is Homography, which is a reversible transformation from the real projective plane to the
projective plane. The straight line is still mapped to a straight line under this transformation,
that is to say, the method of expanding the 3D plane to the plane. In the end, it is to merge
the pictures to achieve the goal. The picture obtained in actual navigation according to the
feature method is shown in Figure 17, and the picture obtained by synchronous stitching in
actual navigation is shown in Figure 18.

The wide-angle image obtained is shown in Figure 19. This paper takes up to 500 key
points and only selects the top 15% points for matchmaking.
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Figure 19. The picture obtained by synchronous stitching in actual navigation according to the
feature method.

The third part of the algorithm part is target tracking. This paper compares and ana-
lyzes SiamRPN, efficient convolution operators for tracking (ECO), continuous convolution
operators (C-COT), and DaiSiamRPN target trackers, and proves the reliability of using
SiamRPN. In addition, this paper will use the visual object tracking 2018 (VOT2018) and
object tracking benchmark 100 (OTB100) data sets for short-term target tracking comparison.
The evaluation index comparison in this section is used to discuss which tracker method
to choose. VOT2018 is divided into four items: accuracy, robustness, loss, and expected
average overlap (EAO) as the basis for verification and evaluation. The detailed calculation
standards are as follows:

1 Nrep
(i) = Y @i k), (27)
rep k=1
1 Noalid
i) = ®;(i), 28
Al = e X 90 28)
1 Nrep
pr(i) = 17— ) F(ik), (29)
rep k=1
R 1 N
¢ = Nhi — Nlo ZNs:N1u5Nhi ®N5, (30)
_|lanb]
Overlap score (0OS) = aUb[ 31)

where the accuracy rate refers to the average overlap rate of the tracker in the test, that
is, the IoU algorithm is used to compare the overlapping area of two rectangular boxes
divided by the total area of the two rectangular boxes. @,(i) is the definition of the average
accuracy of each frame, where ®;(i, k) represents the accuracy of the ith tracking in repeated
k frames. p4(i) is the average accuracy of the entire video. Robustness refers to the number
of failures of the test tracker. When the overlap rate of the rectangular frame is zero, it is
judged as a failure, so the higher the value, the better. In (29), the function F (i, k) is defined
as the number of tracking failures, and the measurement is repeated at the kth algorithm.
EAOQ is the expected value of the non-reset overlap of each tracker on the short-term image
sequence and is the most important indicator for evaluating the accuracy of the VOT target
tracking algorithm. Success means that if the conformance rate score is higher than a
certain value, it is regarded as a success. The higher the value, the better. @y is the average
coverage of the Ns in the video, and @(i) is the accuracy between the predicted frame and
the real frame. As the video frame increases, the average coverage value will decrease
because @(i) < 1. In (31), the bounding box obtained by the tracking algorithm is 4, and
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the box given by the ground-truth is b. When the OS of a frame is greater than the set
threshold, the frame is regarded as Success, and the percentage of all successful frames
to all frames is the success rate. The values of VOT2018 and OTB100 in each tracker are
shown in Tables 2 and 3, SiamRPN, ECO, C-COT, and DaiSiamRPN are compared. Target
tracking in actual navigation is shown in Figure 20.

Table 2. Evaluation of VOT2018 by the system.

Tracker Accuracy Robustness EAO
(pa(@) (pr()) (D)

SiamRPN 0.601 0.337 0.318

ECO 0.484 0.276 0.281

C-CoT 0.536 0.184 0.378

DaiSiamRPN 0.601 0.337 0.327

Table 3. Evaluation of OTB100 by the system.

Tracker Success (OS) Precision
SiamRPN 0.694 0.914
ECO 0.691 0.910
C-COT 0.671 0.898
DaiSiamRPN 0.658 0.881

In Figure 20, it can be seen that good results can be achieved in all stages of target
tracking, which improves the previous SiamFC problem. The SiamRPN selected in the
system is the best tracker under comprehensive comparison. The AlexNet training loss
as the backbone is shown in Figure 21. The blue line represents training, and the red line
represents validation.

Frame : 50

Frame @ 75 . Frame : 100

Figure 20. Target tracking of different scales in actual system navigation.

This study collected two different data sets: daytime and night. In these data sets,
two frames per second are used as tests, and several ships of different durations are used
for recording. Figure 22 is a database of different USV data during daytime and night. In
the daytime and nighttime data, it can be found that the red hull target tracking efficiency
is higher in the daytime data set. It may be because when the sunlight is too strong and the
hull is brighter, which will cause reflections, making the lens unable to obtain sufficient
feature values. In the night data set, the tracking efficiency of the white hull target is higher.
The USVs have searchlights that illuminated on the tracked object in low light conditions,
and the brighter the hull, the higher the feature variance can be obtained in contrast to the
background. The following will test and verify the daytime data set and night data set,
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respectively. Among them, the precision, recall, and F1 scores of the day data set and night
data set are shown in Table 4 below.

AlexNet loss
= Train
Validation

0.4 +

0.3 A
7
< 0.2

0.1 4

—
0.0 A
0 2 4 6 8 10
epoch

Figure 21. Target tracking of different scales in actual system navigation.

Table 4. Daytime and night data set evaluation.

Data Set Precision Recall F1 Scores
Daytime 0.85 0.61 0.711
Night 0.74 0.82 0.778

Figure 22. Different USV data sets during daytime and night.

The P-R curve can be obtained after the sum of the information obtained from the
data set as shown in Figure 23. The confusion matrix of the daytime data set and the
nighttime confusion matrix are shown in Tables 5 and 6, respectively. The receiver operating
characteristic (ROC) curve obtained through the sum of the two confusion matrices is shown
in Figure 24.
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Figure 23. P-R curve of the sum of information obtained by the data set.

Table 5. Confusion matrix of daytime in SiamRPN.

Day-Time Data Set Predicted
Positive Negative
Actual Positive 1250 782
cua Negative 221 575
Table 6. Confusion matrix of night in SiamRPN.
Night-Time Data Set Predicted
Positive Negative
Actual Positive 751 166
ctua Negative 263 323
ROC curve
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Figure 24. ROC curve of the data set.

According to the above result evaluation data, precision and recall can achieve good
results when the data sets are mixed. The area under the ROC curve is 0.72, which shows the
superior performance of this system. The difference between light and dark can be clearly
seen. In the daytime data set, the precision is higher, and the recall is lower, and in the night
data set, the precision is lower, and the recall is higher. As far as the hardware is concerned,
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this study has verified the stability and proved that the stability of the catamaran is better
than that of the monohull. In terms of software, SiamRPN, which has better accuracy and
real-time performance, was chosen.

4. Discussion

This research has achieved the use of a USV to navigate, avoid obstacles, and perform
target tracking, while achieving precise navigation, high accuracy of algorithm tracking,
and high vehicle following speed. It can be clearly seen from the results that the system has
significant improvements and enhancements to the above parts. In this section, it will be
divided into hardware, algorithm, and integration parts for detailed discussion.

In the hardware part, this paper uses the information of the three-axis accelerometer
and the three-axis gyroscope to compensate for the sensor in the system, which can improve
the reliability of the sensor on the wave surface. In Figure 12, the Z-axis movement of the
path before the compensation is too abrupt in the rotation stage, and the Z-axis movement
of the path after the compensation is relatively smooth in the rotation stage. In addition,
it replaced the monohull with Catamaran to improve stability and speed. Catamaran is
that the waterline area is small, the interference force of the waves is small, and it has
superior resistance in waves. In Figure 13, after the same use of the compensator, the
monohull will amplify the wave amplitude due to its own hardware shortcomings, causing
the information obtained by the sensor to be too extreme and lack reliability.

In the algorithm part, first, the system uses feature-based image stitching to expand
the original viewing angle of only 55 degrees to a wider area without missing important
information. In target tracking, this algorithm uses RPN so that it can instantly change the
circle frame and track accurately, which is the best method compared to the comprehensive
performance of ECO, C-COT, and DaSiamRPN. In the comparison between VOT2018 and
VOT2018-LT, the effectiveness of SiamRPN and DaSiamRPN in Accuracy, Robustness, and
EAQ is significantly higher than that of ECO and C-COT. For the indicators in OTB: Success
and Precision, SiamRPN performs better than DaSiamRPN. In addition, the effect of this
algorithm on the test set is excellent, and the AOU can reach 0.72.

In the integration part, the most challenging is to make immediate responses to
the sensing components and feedback components. It was originally expected that all
sensing components and feedback components were placed on Jetson Xavier NX, but in
experiments, it was found that if the target tracking algorithm and motor were activated,
the remaining GPIO pins could not provide enough current to drive. In this study, methods
such as pull-up resistors have been tried, and in the end, the use of dual control boards to
interact with each other was chosen to achieve the best efficiency. This system uses Arduino
and Jetson Xavier NX to communicate via USB using Python. The sensing component
obtains the value through Arduino and sends it back to the main control board Jetson
Xavier NX for judgment, correction, compensation, and response.

Other than our approach, various different approaches have been proposed as the use
of laser scanners as machine vision systems in Unmanned Aerial Vehicle (UAV) navigation
when compared with camera-based systems [43], autonomous robotic group behavior
optimization during the mission on a distributed area in a cluttered hazardous terrain [44]
and the machine vision systems to determine physical values of near distanced objects for
Unmanned Aerial Vehicle (UAV) navigation [45].

5. Conclusions

In this research, it is proposed to use SiamRPN as USV target tracking and IMU as
feedback to accurately locate ships and navigate fixed routes. This research is achieved
under a special USV and embedded system. Because the USV is lighter and faster, it can be
applied to the pursuit and rescue of smugglers. The main contributions of this paper are:
(1) Improve the slow and poor accuracy of target tracking on common vehicles. (2) Com-
bine IMU for dual-hull vehicles to improve deviated trajectories and wave undulations.
(3) Combining image stitching methods based on feature points to reduce blind angles of
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sight. The experimental results show that this research can achieve target tracking and
automatic navigation in different waters. Among the scheduled routes, this paper uses
Catamaran’s way to replace monohulls to improve stability and speed. The method of
image stitching is used to improve the problem of the blind angle of the viewing angle, so
that the USV will not lose important information. At present, due to the current problem
of the embedded system, two control boards are needed to meet all the requirements. In
the future, it can be towards adding multiple lenses or 360-degree lenses to reduce the
burden of algorithms and reduce other feedback sensors to reduce the current burden of the
control board. For a future work, (1) more experiments on system stability of USV should
be conducted over various water surface environments, (2) arbitrary multiple obstacles
experiments should be carried out, and (3) more specifications should be evaluated (e.g., the
duration to performs the tasks of object recognition and tracking on the water surface.),
(4) comparison between monohull and catamaran type vehicle and (5) experiment and
implement other control techniques to compare with the presented results.
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