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Abstract: Pose accuracy is one of the most important problems in the application of parallel robots.
In order to adhere to strict pose error bounds, a new kinematic calibration method is proposed, which
includes a new pose error model with 60 error parameters and a different kinematic parameter error
identification algorithm based on L-infinity parameter estimation. Parameter errors are identified by
using linear programming to minimize the maximum difference between predictions and workspace
measurements. Simulation results show that the proposed kinematic calibration has better kinematic
parameter error estimation and fewer pose errors when measurement noise is less than kinematic
parameter errors. Experimental results show that maximum position and orientation errors, respec-
tively, based on the proposed method are decreased by 86.48% and 87.85% of the original values
and by 14.32% and 18.23% of those based on the conventional least squares method. The feasibility
and validity of the proposed kinematic calibration are verified by improved pose accuracy of the
parallel robot.

Keywords: kinematic calibration; parallel robot; parameter estimation; error model; pose accuracy

1. Introduction

Parallel robots have higher carrying capacity, greater structural rigidity and better
dynamic response than traditional serial robots. Parallel robots have been widely applied in
motion simulators, machine tools and medical devices. The pose accuracy of parallel robots
is required to be higher and higher in the fields of motion simulation [1,2], mechanical
manufacturing [3,4] and surgery [5,6]. The pose accuracy of parallel robots is one of the
most important performance measures in the above fields.

The pose accuracy of parallel robots is affected by geometric errors [7–11] and nongeo-
metric errors [12–16]. Geometric errors are mainly caused by manufacturing tolerances and
assembly errors. Nongeometric errors might result from clearance, friction, deformation,
and so on. Previous studies have shown that geometric errors are the dominant factor
leading to pose inaccuracy of parallel robots. It is important for parallel robots to promote
pose accuracy in practical application. Pose accuracy improvement in parallel robots is
divided into accuracy analysis, synthesis and kinematic calibration.

Accuracy analysis evaluates whether the pose performance of parallel robots meets
the design specifications and identifies sensitive factors affecting pose accuracy based on
geometric error. An analytical method for the forward and inverse error bound analyses of
a Stewart platform was developed by Kim et al. [17]. The relationship between the Stewart
platform pose errors and the joint space errors is characterized by the kinematic error model.
The forward and inverse error bound are obtained by solving two eigenvalue problems.
Comprehensive accuracy modeling and analysis of a new type of lock-or-release mecha-
nism was proposed by Ding et al. [18]. Two accuracy models were established and verified
by Monte Carlo simulation and an experiment designed to influence factor sensitivities,
and results show that the manufacturing tolerances of a lead screw are the most significant
influence factor. Accuracy analysis of a parallel positioning mechanism with actuation

Machines 2022, 10, 436. https://doi.org/10.3390/machines10060436 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines10060436
https://doi.org/10.3390/machines10060436
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0001-5874-1395
https://doi.org/10.3390/machines10060436
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines10060436?type=check_update&version=1


Machines 2022, 10, 436 2 of 20

redundancy was investigated by Ding et al. [19]. The effects of input uncertainty, compo-
nents stiffness and redundant limbs were addressed; mean value and standard deviation
of the pose errors were computed by optimal Latin hypercube sampling algorithm.

Accuracy synthesis optimally allocates component tolerances of parallel robots under
different assembly indices according to the design specification. Accuracy synthesis of a
multi-level hybrid positioning mechanism was studied by Tang et al. [20]. Three types
of error influence factors are considered in the error model, and the error boundary of
the multi-level hybrid positioning mechanism is obtained by using the vector set theory
and a linear algebra method. Accuracy synthesis was performed based on a nonlinear
optimization algorithm. A comprehensive methodology for implementing the required
pose accuracy of a 4-DOF parallel robot was presented by Huang et al. [21]. In this work, all
possible geometric errors were separated as either identifiable or unidentifiable geometric
errors. The unidentifiable geometric errors were restrained by tolerance design and assem-
bly. Pose accuracy in the whole workspace was achieved by a linear and real-time error
compensator. A systematic tolerance design method of parallel link robots was proposed
by Takematsu et al. [22]. The standard deviations of the kinematic motions of the end
effector were represented by the tolerance values of all joints and links. A suitable set the
tolerance values for all joints and links was determined using an optimization algorithm.

Kinematic calibration achieves an inverse kinematic model that more closely matches
the actual system in all possible configurations. In general, kinematic calibration can be
divided into four steps: error modeling, pose measurement, parameter identification and
error compensation. Kinematic calibration can be classified into two categories: external
calibration and self-calibration. Kinematic calibration of a Stewart platform was presented
by Zhuang et al. [23]. Kinematic error parameters of the Stewart platform were identified
using the Gauss–Newton algorithm, and the kinematic error parameters of each leg were
solved independently. However, precise pose measurement needs be performed in this
approach. Daney [24] established a complete kinematic model of the Gough platform
and a unified kinematic parameter identification scheme, and presented an original kine-
matic calibration method based on the above principle. The accuracy of the Hexapode 300
was experimentally improved by 99% using the original kinematic calibration. A novel
identifiable parameter separation method for kinematic calibration of a 6-DOF parallel
manipulator was proposed by Hu et al. [25]. The method can reduce the number of kine-
matic error parameters in the identification model and improve the convergence of the
parameter identification algorithm by simple and direct measuring. A systematic kinematic
calibration method of a 6-DOF hybrid polishing robot was presented by Huang et al. [26].
Ill-conditioning of the identification Jacobian was dealt with by establishing a linear re-
gression model and implementing kinematic error parameter estimation and pose error
compensation using a linear least squares algorithm and Liu estimator. A new error model
based on a dimensionless error mapping matrix for kinematic calibration of a 5-axis parallel
machining robot was proposed by Luo et al. [27]. Kinematic error parameters are unified
into the same unit in the error model and are identified by an iterative least squares proce-
dure based on full pose measurement with a laser tracker. A comprehensive error model for
kinematic calibration of a non-fully symmetric parallel Delta robot was presented by Shen
et al. [28]. Variations of the parallel Delta robot components and geometric parameters
were considered in the error identification model, and the variations were identified by a
least squares algorithm.

Kinematic error parameter identification in kinematic calibration can be treated as the
best approximation of measurement data. Large amounts of research have been reported on
kinematic error parameter identification based on various identification algorithms [29–32].
A novel geometric calibration of industrial robots was presented by Wu et al. [33]. The
design of experiments was proposed and added to the conventional kinematic calibration
procedure. The additional step is performed before pose measurement in order to obtain
a set of optimal measurement poses that ensure the best robot positioning accuracy after
kinematic calibration. A dedicated geometric parameter identification algorithm was de-
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scribed, and the identification procedure was divided into two steps. These two steps were
repeated iteratively to achieve the desired geometric parameter identification accuracy. A
robust kinematic calibration of serial robots based on separable nonlinear least squares was
proposed by Mao et al. [34]. The optimal geometric parameter identification problem was
converted into a separable nonlinear least squares problem by using the distinctive charac-
teristic of the MDH model. Kinematic calibration of industrial robots based on distance
measurement information was presented by Gao et al. [35]. A novel extended Kalman filter
and regularized particle filter hybrid identification algorithm was adopted to identify the
kinematic parameters of the linearized error model. The algorithm solved the problem with
traditional optimization algorithms of being easily affected by measurement noise in high-
dimension identification. However, there is little in the literature on reduction of the impact
of measurement noise by selecting optimal measurement poses in kinematic calibration. In
order to compare the different pose measurement schemes, several observability measures
were presented in [36–40] and were used to choose an optimal pose measurement scheme.
These measures are not directly related to the pose accuracy of kinematic calibration. A new
industry-oriented performance measure is presented in [33] with the intent of ensuring the
best robot positioning accuracy after geometric error compensation.

The least squares algorithm has been universally used to identifying kinematic error
parameters of parallel robots from pose measurements. Kinematic error can be identified,
analyzed and corrected to minimize the sum of squares of the difference between measured
errors and computed errors. Although this algorithm is mathematically convenient and
can achieve better average pose accuracy in a parallel robot workspace, it may result in
pose accuracy not being evenly distributed in the workspace and may even lead to large
pose errors outside of the subset.

In order to improve the uneven distribution of pose accuracy and to reduce large
pose error, a new kinematic calibration method for parallel robots is presented based on
L-infinity parameter estimation and applied to the spacecraft docking motion simulation
system. The paper is organized as follows: An inverse kinematic model of the parallel robot
is described, and a forward kinematic solution is presented in Section 2. A pose error model
for kinematic calibration is established in Section 3. A new kinematic parameter error
identification algorithm based on L-infinity parameter estimation is proposed in Section 4.
Simulations and experiments are performed, and the results are shown in Section 5. Finally,
some conclusions are given in Section 6.

2. Kinematic Model

A parallel robot model is composed of a moving platform, a base, and six identical
hydraulic cylinders with variable lengths, as shown in Figure 1. The moving platform’s
position relative to the base can be controlled by varying the length of the six hydraulic
cylinders. The parallel robot has six DOF. The base coordinate system OB-xyz is located
in the center of the base. The mobile coordinate system OP-xyz is attached to the center
of the moving platform. All vectors and matrices will be denoted in bold letters. The
two coordinate systems OB-xyz and OP-xyz can be related to each other through a vector
q =

[
x y z φ θ ψ

]T that describes the pose of the moving platform by its position
(longitudinal (x), lateral (y) and vertical (z) displacements) and its orientation (Roll (φ),
Pitch (θ) and Yaw (Ψ) angles). Thus, the position of the moving platform can be expressed
by a position vector t as

t =
[
x y z

]T (1)

and the orientation of the moving platform can be expressed by a rotation matrix R as

R =

cos ψ cos θ cos ψ sin θ sin φ− sin ψ cos φ cos ψ sin θ cos φ + sin ψ sin φ
sin ψ cos θ sin ψ sin θ sin φ + cos ψ cos φ sin ψ sin θ cos φ− cos ψ sin φ
− sin θ cos θ sin φ cos θ cos φ

 (2)
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where φ, θ, and ψ are three Roll, Pitch and Yaw (RPY) angles chosen with respect to the
x-axes, the y-axes and the z-axes, respectively, of the base coordinate system OB-xyz.
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Figure 1. The parallel robot.

2.1. Inverse Kinematics

Referring to Figures 2 and 3, ui is the unit vector along the ith hydraulic cylinder
direction, and li is the length of the ith hydraulic cylinder; ai is the position vector from
OP to Ai and is represented in the mobile coordinate system OP-xyz, and bi is the position
vector from OB to Bi and is represented in the base coordinate system OB-xyz. A vector
chain equation can be expressed as

liui = Rai + t− bi i = 1, 2, . . . , 6 (3)
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The vector chain equation is derived for the perfect (no errors) parallel robot. The
length of the ith hydraulic cylinder can be computed from

li = fi(R, t) =
√
(Rai + t− bi)

T(Rai + t− bi) i = 1, 2, . . . , 6 (4)

and the measured length of the ith hydraulic cylinder can be obtained by

si = li − l0,i i = 1, 2, . . . , 6 (5)

where l0,i is the initial length of the ith hydraulic cylinder.

2.2. Forward Kinematics

The forward kinematics of the parallel robot compute the moving platform pose
when the measured hydraulic cylinder lengths are given and the kinematic parameters
are known. Although the inverse kinematics for the parallel robot can be expressed in a
closed form, forward kinematics offer no analytical solution. Mapping the pose using the
hydraulic cylinder lengths is complicated to solve (Equation (4)). Numerical methods are
often employed to solve the forward kinematics for parallel robots. The following method
for the forward kinematics of a parallel robot is based on the Newton–Raphson algorithm.

For solving the forward kinematics of a parallel robot, a vector function is defined
to describe the difference between the estimated hydraulic cylinder length sei and the
measured hydraulic cylinder length sai.

f =

 f1
...
f6

 =

s2
e1 − s2

a1
...

s2
e6 − s2

a6

 (6)

The Newton–Raphson algorithm can be stated as:

(1) Measure sai, and select an initial guess for the pose, q.
(2) Compute sei based on q.
(3) Form f.
(4) If qTq < tolerance1, exit with q as the solution.

(5) Compute the partial derivative matrix J = ∂f
∂q such that Ji,j =

∂ fi
∂qj

.
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(6) Obtain update δq by solving Jδq = −f.
(7) If δqTδq < tolerance2, exit with q as the solution.
(8) Update q by q = q + δq and go to step (2).

The accuracy and rate convergence for the Newton–Raphson algorithm depend on
several factors. The algorithm rapidly converges if the initial guess is in the neighborhood
of the solution, and the algorithm is fairly robust with the choice of the initial guess. If
the second order terms are large, this first order approach will not be accurate, and the
algorithm will converge very slowly. The existence of the Jacbian inverse is required in
step (6), and thus the moving platform may not be near a singularity configuration. If
convergence problems arise, or if speed is of paramount importance, the forward kinematics
may require a different algorithm, such as those presented in [41–44].

3. Error Model

The kinematic parameters of the parallel robot might be different from those in the
design specification due to imprecision in manufacturing and assembly of the joints and
the initial length of the hydraulic cylinders. The difference will lead to pose error of the
moving platform. An error model relating the kinematic parameter errors to the pose errors
is derived in this section.

A vector differential error model is obtained by performing the following differentia-
tion for Equation (3) as

δliui + liδui = δRai + Rδai + δt− δbi i = 1, 2, . . . , 6 (7)

where δli is the length error of li, δui is the deviation vector of ui, δR is the deviation matrix
of R, δai is the position error vector of ai, δt is a deviation vector of t, and δbi is the position
error vector of bi.

The deviation vector δui can be expressed as

δui = ∆ui ui =

 0 −δuiz δuiy
δuiz 0 −δuix
−δuiy δuix 0

uix
uiy
uiz

 (8)

where ∆ui is a skew symmetric matrix of δui.
Let δω be the angular error vector of the nominal RPY angles φ, θ and ψ, and be

represented in the base coordinate system. The angular error vector δω can be expressed as

δω =

δωx
δωy
δωz

 =

− sin ψδθ + cos ψ cos θδφ
cos ψδθ + sin ψ cos θδφ
− sin θδφ + δψ

 (9)

The skew symmetric matrix of δω can be written as

∆ω =

 0 −δωz δωy
δωz 0 −δωx
−δωy δωx 0

 (10)

The deviation matrix δR can be given by

δR = ∆ωR =

 0 sin θδφ− δψ cos ψδθ + sin ψ cos θδφ
− sin θδφ + δψ 0 sin ψδθ − cos ψ cos θδφ

− cos ψδθ − sin ψ cos θδφ − sin ψδθ + cos ψ cos θδφ 0

R (11)

Substituting Equations (8) and (11) into Equation (7) yields

δliui + li∆ui ui = ∆ωRai + Rδai + δt− δbi i = 1, 2, . . . , 6 (12)
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Let a’
i = Rai, Equation (12) can be rewritten as

δliui + li∆ui ui = ∆ωa’
i + Rδai + δt− δbi i = 1, 2, . . . , 6 (13)

Equation (13) can be expressed in matrix form as

[
I ∆T

a’
i

][ δt
δω

]
=
[
ui li∆T

u’
i
−R I

]
δli
δui
δai
δbi

 i = 1, 2, . . . , 6 (14)

where I is 3× 3 unit matrix, ∆a’
i

is a skew symmetric matrix of a’
i, and ∆u’

i
is a skew

symmetric matrix of ui.
Equation (14) can be rewritten as

JΩi
δΩ = Jiδpi i = 1, 2, . . . , 6 (15)

where
δΩ =

[
δtT δωT]T

=
[
δx δy δz δωx δωy δωz

]T (16)

represents the pose error of the parallel robot, and the following matrices, JΩi
and Ji are the

inverse and forward error mapping components defined as

JΩi
=
[
I ∆T

a’
i

]
(17)

Ji =
[
ui li∆T

u’
i
−R I

]
(18)

and
δpi =

[
δli δuix δuiy δuiz δaix δaiy δaiz δbix δbiy δbiz

]T (19)

represents the kinematic parameter errors in the individual vector chain.
Considering all six vector chains, Equation (14) can be expressed in the following

matrix form 

I ∆T
a’

1
I ∆T

a’
2

I ∆T
a’

3
I ∆T

a’
4

I ∆T
a’

5
I ∆T

a’
6


[

δt
δω

]
=



J1
J2

J3
J4

J5
J6





δp1
δp2
δp3
δp4
δp5
δp6

 (20)

Equation (20) above can be rewritten as

JΩδΩ = Jpδp (21)

where JΩ represents the inverse error mapping matrix of the parallel robot, Jp represents
the forward error mapping matrix, and δp represents the kinematic parameter errors for all
the vector chains. The vector δp contains 60 linearly independent error parameters, and the
jth element of the vector can be denoted as δpj.

The pose error of the parallel robot can be computed by

δΩ = Jδp (22)

where
J =

(
JT

ΩJΩ

)−1
JT

ΩJp (23)

is defined as the error Jacobian matrix for the parallel robot, and its condition number will
be used to choose the optimal pose measurement configurations.
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The relationship between the pose errors of the parallel robot and the kinematic
parameter errors is described by Equation (22). It is a linear equation in terms of the
unknown kinematic parameter errors, which can be identified based on L-infinity parameter
estimation once the pose errors of the parallel robot are measured.

4. Calibration Method

The least squares fit is universally used to identify kinematic parameter errors from
measurement data in kinematic calibration. Kinematic error can be identified, analyzed
and corrected to minimize the sum of squares of the difference between measured errors
and computed errors. Thus, for a parallel robot using a control model compensated with
kinematic parameter errors and measuring a number of poses in its workspace, nothing
can be said of its accuracy at any one pose. If the sample of poses measured represents an
unbiased sample of the workspace, the mean squares errors of the parallel robot at these
poses is minimized. That is, the least squares fit does not minimize or bound the pose error
between the measured pose errors and the computed pose errors based on the error model
at a single pose.

The parallel robot is used with the spacecraft docking motion simulation system, so its
pose accuracy will be evaluated not on the basis of average error of all poses on a simulated
trajectory, but based on the error of each pose of a simulated trajectory meeting a given
accuracy specification. In order to achieve the given accuracy requirement at any one pose
in the whole workspace, a different kinematic parameter error identification algorithm
based on L-infinity parameter estimation is selected. It identifies kinematic parameter
errors of the parallel robot by minimizing the maximum difference between measured pose
errors and computed pose errors based on an error model and can bound large pose errors
and equalize pose errors across the workspace. Unknown kinematic parameter errors of
the error model (Equation (22)) can be identified by the following formulation based on
L-infinity parameter estimation:

min max|δΩi| (24)

where δΩi is computed by

δΩi = δΩm
i − δΩc

i i = 1, 2, . . . , n (25)

δΩm
i is the measured pose error, δΩc

i is the computed pose error based on Equation (22),
and n represents the number of measurement poses in the workspace of the parallel robot.

Equation (22) is rewritten in terms of the kinematic parameter errors at the ith mea-
surement pose as

δΩc
ki =

60

∑
j=1

J j
kiδpj k = 1, 2, . . . , 6 (26)

The total number of identification equations will be six times the total number of
measurement poses. The index assigned to the identification equations will be w, and it
can take values between 1 and 6n. Substituting Equations (25) and (26) into Equation (24),
the following is obtained:

min max

∣∣∣∣∣δΩm
w −

60

∑
j=1

J j
wδpj

∣∣∣∣∣ w = 1, 2, . . . , 6n (27)

Equation (27) is subject to no restrictions. The L-infinity parameter identification
problem can be converted to a linear programming problem with the introduction of the
variable z, thus the following is obtained:

min z =
60

∑
j=1

Ojδpj + y (28)
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subject to

y +
60

∑
j=1

J j
wδpj ≥ δΩm

w w = 1, 2, . . . , 6n (29)

y−
60

∑
j=1

J j
wδpj ≥ −δΩm

w w = 1, 2, . . . , 6n (30)

y = max

∣∣∣∣∣δΩm
w −

60

∑
j=1

J j
wδpj

∣∣∣∣∣ w = 1, 2, . . . , 6n (31)

The variable y represents the absolute value of the maximum discrepancy between
the measured pose errors and the computed pose errors based on the error model in the
above linear program, and O represents a 1 × 60 zero vector. The unknown kinematic
parameter errors can be identified by minimizing the variable z. The above linear pro-
gramming problem can be solved by using the simplex method [45]. For identification
of 60 kinematic parameter errors, it is expected to measure the poses that are located near
or at the boundaries of the workspace, which can provide sufficient pose error vectors to
expand the parameter space of the error model (Equation (22)). At least 30 measurement
poses are required in kinematic calibration of the parallel robot.

5. Simulations and Experiments
5.1. Model Verification

In order to verify the pose error model derived in Section 3, a numerical simulation
scheme is designed and performed by computer programs. The nominal kinematic param-
eters and the assumed kinematic parameter errors are listed in Tables 1 and 2, respectively.
The procedure can be described as follows:

1. Select a set of desired poses evenly distributed in the workspace.
2. Compute the measured lengths of the six hydraulic cylinders by using inverse kine-

matics with the nominal kinematic parameters in Table 1.
3. Actuate the parallel robot to the selected poses in sequence with the measured lengths

of the hydraulic cylinders, and compute the actual poses by using forward kinematics
with the actual kinematic parameters (the nominal kinematic parameters plus the
assumed kinematic parameter errors in Table 2).

4. Compute the actual pose errors, namely, subtract the selected poses from the actual poses.
5. Compute the pose errors by using the pose error model with the nominal kinematic

parameters, the lengths and the unit vectors of the hydraulic cylinders, and the
kinematic parameter errors.

6. Draw the contrasting curves of the position error and the orientation error for the
above numerical simulation results in Figures 4 and 5.

Table 1. The nominal kinematic parameters.

aix (mm) aiy (mm) aiz (mm) bix (mm) biy (mm) biz (mm) lix (mm) liy (mm) liz (mm)

1 1394.7 122.0 0 2049.3 3038.5 0 −654.6 −2916.5 3091.2

2 −591.7 1268.8 0 1606.8 3294.0 0 −2198.5 −2025.2 3091.2

3 −803.0 1146.8 0 −3656.1 255.5 0 2853.1 891.3 3091.2

4 −803.0 −1146.8 0 −3656.1 −255.5 0 2853.1 −891.3 3091.2

5 −591.7 −1268.8 0 1606.8 −3294.0 0 −2198.5 2025.2 3091.2

6 1394.7 −122.0 0 2049.3 −3038.5 0 −654.6 2916.5 3091.2
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Table 2. The assumed kinematic parameter errors.

δaix (mm) δaiy (mm) δaiz (mm) δbix (mm) δbiy (mm) δbiz (mm) δlix (mm) δliy (mm) δliz (mm)

1 0.90 −0.09 0.84 −0.18 −0.72 −0.97 0.69 0.36 −0.39

2 −0.54 −0.96 0.48 0.79 −0.59 0.49 0.05 −0.24 −0.62

3 0.21 0.64 −0.65 −0.88 −0.60 −0.11 −0.59 0.66 −0.61

4 −0.03 −0.11 −0.19 −0.29 0.21 0.86 0.34 0.05 0.36

5 0.78 0.23 0.87 0.63 −0.46 −0.07 0.68 0.42 −0.39

6 0.52 0.58 0.83 −0.98 −0.61 −0.16 −0.96 −0.14 0.08

The following conclusions can be summarized from Figures 4 and 5.

1. Pose errors vary at different locations in the workspace. The pose errors are affected
not only by kinematic parameter errors, but also by the pose of the parallel robot.

2. Pose errors computed by using the pose error model are basically consistent with the
actual pose errors.



Machines 2022, 10, 436 11 of 20

Therefore, the proposed pose error model is verified to be correct and to represent the
kinematic parameter errors of the parallel robot.

5.2. Identification Simulations

Kinematic parameter error identifications were simulated with various kinematic
parameter errors, measurement noise levels and pose configuration sets. The actual co-
ordinates of the feature points of the moving platform were measured by a coordinate
measuring machine, and the actual poses of the parallel robot were computed. Three
kinematic parameter error sets were given, with the assumed kinematic parameter errors
obtained from normal distributions with variances of 0.01 mm (set I), 0.1 mm (set II) and
1 mm (set III). These kinematic parameter error sets are shown in Tables 3–5, respectively.
Gaussian noise with variances of 0.0001 mm, 0.001 mm, 0.01 mm and 0.1 mm was added
to the coordinate measurements of the feature points of the moving platform to simulate
measurement noise. Four different pose sets were used in the identification simulations.
Pose set 1 contains 32 random poses. Pose set 2 contains 24 poses based on a full factorial
exploration of the six pose variable limits. Pose set 3 contains 32 poses selected from the
workspace using a coordinate exchange algorithm for optimal experimental design. Pose
set 4 contains 64 poses selected using a coordinate exchange algorithm.

Table 3. The assumed kinematic parameter errors with variances of 0.01 mm.

δaix (mm) δaiy (mm) δaiz (mm) δbix (mm) δbiy (mm) δbiz (mm) δlix (mm) δliy (mm) δliz (mm)

1 0.0538 0.1834 −0.2259 0.0862 0.0319 −0.1308 −0.0434 0.0343 0.3578

2 0.2769 −0.1350 0.3035 0.0725 −0.0063 0.0715 −0.0205 −0.0124 0.1490

3 0.1409 0.1417 0.0671 −0.1207 0.0717 0.1630 0.0489 0.1035 0.0727

4 −0.0303 0.0294 −0.0787 0.0888 −0.1147 −0.1069 −0.0809 −0.2944 0.1438

5 0.0325 −0.0755 0.1370 −0.1712 −0.0102 −0.0241 0.0319 0.0313 −0.0865

6 −0.0030 −0.0165 0.0628 0.1093 0.1109 −0.0864 0.0077 −0.1214 −0.1114

Table 4. The assumed kinematic parameter errors with variances of 0.1 mm.

δaix (mm) δaiy (mm) δaiz (mm) δbix (mm) δbiy (mm) δbiz (mm) δlix (mm) δliy (mm) δliz (mm)

1 −0.0022 0.4847 −0.2434 0.1174 −0.0713 0.3533 −0.3444 0.0103 0.1747

2 0.3480 0.4883 0.0272 −0.4717 −0.2347 −0.3357 0.7433 −0.1947 0.2366

3 −0.0608 0.2810 −0.2419 −0.4434 −0.4498 0.1544 −0.0561 −0.0620 0.4488

4 0.0922 0.0626 0.5021 −0.2544 0.2203 0.2641 −0.0771 0.0682 −0.3687

5 −0.3630 0.0332 0.2284 0.8176 −0.2109 0.0592 −0.0261 −0.6113 −0.1388

6 −0.5675 0.2658 −0.2808 0.0317 −0.1722 0.0960 −0.1898 0.1549 0.2338

Table 5. The assumed kinematic parameter errors with variances of 1 mm.

δaix (mm) δaiy (mm) δaiz (mm) δbix (mm) δbiy (mm) δbiz (mm) δlix (mm) δliy (mm) δliz (mm)

1 1.7119 −0.1941 −2.1384 −0.8396 1.3546 −1.0722 0.9610 0.1240 1.4367

2 −1.9609 −0.1977 −1.2078 2.9080 0.8252 1.3790 −1.0582 −0.4686 −0.2725

3 1.0984 −0.2779 0.7015 −2.0518 −0.3538 −0.8236 −1.5771 0.5080 0.2820

4 0.0335 −1.3337 1.1275 0.3502 −0.2991 0.0229 −0.2620 −1.7502 −0.2857

5 −0.8314 −0.9792 −1.1564 −0.5336 −2.0026 0.9642 0.5201 −0.0200 −0.0348

6 −0.7982 1.0187 −0.1332 −0.7145 1.3514 −0.2248 −0.5890 −0.2938 −0.8479
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For each simulation, kinematic parameter errors were identified using L-infinity
parameter estimation based on the LINPROG function of the MATLAB Optimization
Toolbox. Kinematic parameter identification error was computed as the root mean square
value of the difference between the actual kinematic parameter errors and the identified
kinematic parameter errors. In order to evaluate the resulting pose accuracy improvement,
pose errors were computed before and after kinematic calibration by using the pose error
model given in the previous section in this paper. Position error was computed as the
maximum absolute value of the error along the x, y and z axes at 100 evaluation poses
randomly distributed in the workspace. Orientation error was computed as the maximum
absolute value of the error around the x, y and z axes at the same poses as above. All
identification simulations where the measurement noise level was less than the kinematic
parameter errors resulted in better kinematic parameter error identification and higher
pose accuracy.

The effects of pose selection on kinematic calibration are shown in Figures 6–8. Notice
that identification of kinematic parameter error obtained by using pose set 1 are consistently
worse than those obtained by using pose set 2, even though pose set 1 has more poses
than pose set 2. This shows that choosing the poses is more important than the number
of poses contained in the pose set. However, very little improvement can be obtained
once the number of poses exceeds a certain limit. For the rest of the discussions, kinematic
calibration using pose set 3 will be compared, since this pose set yielded good identification
results with only 32 poses.

The effect of measurement noise on kinematic calibration is shown in Figures 9 and 10.
Notice that pose accuracy improves as measurement noise is reduced, and kinematic
parameter errors are perfectly identified when measurement noise is close to zero. This
shows that measurement noise should be at least an order of magnitude lower than the
desired pose accuracy.
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5.3. Comparison Experiments

The experimental system mainly consisted of a parallel robot, a three-dimensional
coordinate-measuring machine and six standard spheres. The experimental system for
kinematic calibration based on L-infinity parameter estimation is shown in Figure 11.
Pose measurement of the parallel robot was done with a precise three-dimensional co-
ordinate measuring machine, model 3000i manufactured by STAR Tech. The measuring
machine has a point repeatability of 0.010 mm and a length accuracy of 0.016 mm in the
1.2 m × 1.2 m × 1.2 m measuring range. Three of these spheres were fixed at three specific
locations of the moving platform, and the other three were fixed at three specific base
locations. On this basis, pose measurement of the parallel robot was developed, which
mainly measured the distances from three standard spheres on the moving platform to
three standard spheres on the base by the coordinate-measuring machine. Then, the poses
were computed using these distances, as shown in Figure 12. It is worth mentioning that
the kinematic calibration experiments were performed in a limited area due to the length
measurement limitation of the coordinate-measuring machine.
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The comparison experiments of kinematic calibration were performed using the con-
ventional least squares algorithm and the proposed L-infinity parameter identification
algorithm. The two results were compared according to the following four indicators:
(1) maximum error, (2) range of error, (3) average error and (4) root mean square error.
According to the pose error model, full pose measurement is needed to solve kinematic
parameter errors in the two kinematic calibrations. The full pose could be obtained by
using a mobile, flexible triad coordinate measuring machine. On the foundation of the
abovementioned identification simulations, a measured pose selection rule was determined
to make the comparison more effective and to better carryout the experiment: 32 measure-
ment poses based on pose set 3 were chosen to cover the whole workspace by using the
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union of a full factorial exploration and a coordinate exchange algorithm in the comparison
experiments. Meanwhile, 24 verification poses evenly distributed in the workspace of the
parallel robot were also collected to validate pose accuracy improvement in the experiment.

Pose error measurement and kinematic parameter error identification were accom-
plished by using the original 32 pose errors at the measurement poses listed in Table 6.
Then a new round of pose measurement was performed to evaluate pose accuracy after
the two kinematic calibrations. The pose errors at verification poses based on the two
kinematic calibrations were obtained and are shown in Figures 13 and 14, and the four pose
error indicators before and after kinematic calibration are listed in Table 7. The maximum
position error after kinematic calibration by using conventional least squares algorithm
was 1.0980 mm, and the maximum position error after kinematic calibration by using the
proposed L-infinity parameter identification algorithm was 0.9408 mm. The maximum
orientation errors were 0.1037 and 0.0848 degree, respectively. The maximum position error
based on least squares was reduced by 84.22%, and the maximum position error based
on L-infinity was reduced by 86.48%. The maximum orientation errors were reduced by
85.14% and 87.85%, respectively. The range of position error based on least squares is
reduced by 85.76%, and the range of position errors based on L-infinity was reduced by
87.01%. The range of orientation errors were reduced by 87.67% and 88.99%, respectively.
The percentage reductions of average error and root-mean-square error for a conventional
least squares algorithm were almost identical at 83.37% and 83.42%, respectively. The
percentage reductions of average error and root-mean-square error for the L-infinity pa-
rameter identification algorithm was similar to the conventional least squares algorithm.
The two errors were 85.29% and 85.34%, respectively. Clearly, both kinematic calibrations
can improve pose accuracy, while kinematic calibration based on the L-infinity parameter
identification algorithm is much better than the conventional least squares algorithm. This
verifies that the proposed kinematic calibration based on the L-infinity parameter identifi-
cation algorithm is effective and can achieve strict bounds on the pose errors produced by
the parallel robot.

Table 6. The pose errors at measurement poses before kinematic calibration.

δx (mm) δy (mm) δz (mm) δωx (deg) δωy (deg) δωz (deg)

1 0.7286 −6.3683 3.9254 −0.6993 0.0787 −0.5509

2 3.2461 3.7276 −4.6233 0.5205 0.1881 −0.4997

3 0.4247 −3.5500 5.2487 0.1637 −0.6549 −0.4653

4 7.1205 −0.7135 7.0661 0.6958 0.1667 0.1756

5 −3.8926 2.7736 0.3100 0.0440 −0.1890 0.1089

6 −5.4966 −1.8954 5.5656 −0.0239 −0.6302 −0.6266

7 5.4412 3.4634 1.3559 0.4299 −0.0097 0.6130

8 −6.0964 −1.3912 −4.8010 −0.3787 −0.4286 0.3274

9 −1.2509 2.7113 −4.1599 0.0023 0.5265 0.3404

10 −0.6286 3.0045 −1.2172 0.5702 −0.4103 −0.6106

11 −1.8018 −0.7148 3.6391 0.1103 −0.4934 0.5132

12 3.8494 −6.7218 4.7315 0.4917 −0.4334 0.6175

13 1.9224 −2.2985 4.2254 0.3415 −0.6399 0.6880

14 3.9698 −0.9706 −2.4738 0.1262 0.1956 0.51111
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Table 6. Cont.

δx (mm) δy (mm) δz (mm) δωx (deg) δωy (deg) δωz (deg)

15 6.2558 −3.1595 0.5891 −0.3521 −0.3026 0.4076

16 6.8226 −4.1999 −5.7218 0.2396 0.0594 0.0239

17 −4.2713 4.6767 −5.4127 −0.5823 0.2802 −0.4496

18 −5.0266 −0.8908 −5.0633 0.1826 0.0038 −0.1380

19 2.8939 5.6152 2.6436 0.2319 0.0555 −0.5112

20 −5.6668 −1.4413 0.0365 0.3290 −0.0723 −0.6564

21 0.4660 3.9291 −4.3042 0.5560 −0.5253 0.6242

22 0.5362 −1.3616 0.0340 0.6850 −0.0086 −0.2752

23 5.2368 4.4890 −4.9025 0.3843 0.5027 −0.2833

24 −0.1102 3.7296 −6.2188 0.1198 0.5322 −0.2306

25 −1.4090 −1.6372 5.0886 0.6089 −0.3189 −0.0414

26 2.5410 −3.9304 0.9656 0.1179 −0.4061 0.2140

27 3.5333 4.2317 6.2097 −0.6761 0.0966 −0.6644

28 0.3899 6.4896 2.8996 −0.5296 0.2028 0.4875

29 −2.0590 −2.3453 1.2815 0.5164 −0.1120 0.0882

30 −4.8685 2.5387 4.5868 −0.0171 −0.4096 0.5043

31 1.3284 −0.7669 5.4908 0.4912 0.6366 −0.2095

32 −3.2749 4.8440 7.0524 −0.4047 −0.5843 −0.0711
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Maximum error 6.9595 0.6977 0.9408 0.0848 1.0980 0.1037

Range of error 14.2670 1.4721 1.8534 0.1620 2.0313 0.1815
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6. Conclusions

A new kinematic parameter error identification algorithm for the kinematic calibration
of a parallel robot using L-infinity parameter estimation is developed in this paper. The
kinematic parameter error identification procedure is transformed into a linear program-
ming problem that computes kinematic parameter errors for a pose error model of a parallel
robot so that the maximum difference between the predictions and measurements across its
workspace is minimized. A strict bound on the pose errors produced by the parallel robot is
given in the kinematic calibration based on L-infinity parameter estimation. The experimen-
tal results show a 14.32% reduction in maximum position errors and a 18.23% reduction in
maximum orientation errors by using L-infinity parameter estimation compared to least
squares estimation. The comparison results show an 8.76% reduction in range of position
errors and a 10.74% reduction in range of orientation errors by using L-infinity parameter
estimation compared to least squares estimation. Therefore, this validates that the proposed
kinematic calibration method can effectively improve pose accuracy of the parallel robot
and determine the range of the pose error. It should be noted that this kinematic calibration
method can be used when pose measurement errors are tightly restricted and measurement
noise is low.
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