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Abstract: Operational optimization is essential in modern industry and unsuitable operations will
deteriorate the performance of industrial processes. Since measuring error and multiple working
conditions are inevitable in practice, it is necessary to reduce their negative impacts on operational
optimization under the case-based reasoning (CBR) framework. In this paper, a local density-based
abnormal case removal method is proposed to remove the abnormal cases in a case retrieval step, so
as to prevent performance deterioration in industrial operational optimization. More specifically, the
reasons as to why classic CBR would retrieve abnormal cases are analyzed from the perspective of
case retrieval in industry. Then, a local density-based abnormal case removal algorithm is designed
based on the Local Outlier Factor (LOF), and properly integrated into the traditional case retrieval
step. Finally, the effectiveness and the superiority of the local density-based abnormal case removal
method was tested by a numerical simulation and an industrial case study of the cut-made process
of cigarette production. The results show that the proposed method improved the operational
optimization performance of an industrial cut-made process by 23.5% compared with classic CBR,
and by 13.3% compared with case-based fuzzy reasoning.

Keywords: data-driven; operational optimization; case-based reasoning; local outlier factor;
abnormal case removal

1. Introduction

Frequent changes in operating conditions require the operating settings to change
accordingly and appropriately, and unsuitable settings will bring about performance
deterioration and disqualified products [1]. Therefore, operational optimization plays an
essential role in industrial production since it ensures process safety and enhances economic
benefit [2–4]. Generally, there are two kinds of operational optimization methods: model-
based methods and data-based methods. In particular, the model-based methods firstly
build a process model with some basic operational laws, such as material conservation
and energy conservation, and then construct a constrained optimization problem with the
pre-established process model [5,6]. On this basis, global optimal solutions are obtained
with some optimization algorithms, such as sequential quadratic programming (SQP) [7],
the genetic algorithm (GA) [8], and particle swarm optimization (PSO) [9]. Although
model-based methods have been successfully applied to many fields, their shortages
are inevitable when the industrial process is extremely complex. In fact, it is difficult
to build an accurate model if the process is featured by a large scale, long procedure,
and changeable environments [10]. Moreover, it is challenging to select an appropriate
optimization algorithm to balance the efficiency and the accuracy of a certain operational
optimization problems [11].

In response to the drawbacks of model-based methods, data-based methods–which
are free from prior knowledge on process mechanisms [12]–have attracted much attention
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in both the academic and industrial community [13]. For example, Wang et al. designed
an adaptive moving window convolutional neural network to extract useful information
from the process time-series data, based on which the optimal decision is made according
to the expected operational indices [14]. Ding et al. integrated the reinforcement learning
strategy with Case-Based Reasoning (CBR) so that the optimal operational indices for
a large mineral processing plant can be easily found [15]. Overall, data-based methods
benefit from various kinds of sensors installed in modern industry, and they can make
optimal decisions using plentiful historical data and operational experience.

Among the data-based methods, CBR does not rely on any process mechanism knowl-
edge, so it is suitable for operational optimization problems where it is difficult to establish
accurate process models. In detail, CBR solves the operational optimization problem by
referring to previous operating experience, and it has been successfully applied to many
processes. For example, Li et al. developed a principal component regression-based case
reuse method under the CBR framework [16]. To be specific, the developed method could
learn valuable experience from historical production data and finally obtain the global
optimal operating settings for a coking flue gas denitration process. Ding et al. integrated a
multi-objective evolutionary algorithm into the classic CBR, and the modified CBR was
then employed to optimize some operating indexes of the largest hematite ore processing
plant in western China [17]. Basically, since CBR could work out the optimal operating
settings for certain conditions with some successful cases (also named historical optimal
cases or case base), requirements of safety and stability are automatically satisfied for the
acquired settings [18]. This is another advantage of CBR when it is employed to solve
operational optimization problems in industry.

Conventionally, CBR includes the following steps: (1) Case retrieval; (2) Case reuse;
(3) Case revision; and (4) Case retention [19]. Among them, case retrieval is one of the most
important steps and its task is to retrieve the most useful cases from the pre-established
case base to solve the target problem [20,21]. Currently, the majority of case retrieval is
based on similarity [22], which is typically measured by various kinds of distances, such as
the Euclidean distance, the Mahalanobis distance, the cosine angle distance, etc. [23]. How-
ever, similarity fails to consider the significance among different dimensions. Therefore,
reference [24] employs the weighted Mahalanobis distance to measure the similarity, and
reference [25] designed a new similarity measurement that combined the Euclidean distance
and the cosine angle distance. To improve the accuracy of case retrieval facing nonlinearity,
Li et al. introduced a new similarity index that can transfer traditional distance-based simi-
larity into their corresponding Gaussian forms by Gaussian transformation [26]. In terms
of industrial operational optimization, the Euclidean distance or the weighted Euclidean
distance is adopted to calculate the similarity between two cases in most previous studies.
Usually, the weights are allocated based on experience, and the allocation requires prior
knowledge about the studied process. Moreover, the accuracy of case retrieval would be
decreased if the process data include measuring error. Therefore, Zhang et al. utilized
fuzzy logic to select the most suitable cases from a case base, and then obtained the global
optimal solution for the target problem in an oil refinery [18].

Although plenty of works have improved the accuracy of case retrieval, it is still
difficult to guarantee the quality of retrieved cases when applied to complex industrial
processes when only using distance-based similarity. Firstly, measuring error is unavoidable
in historical data [27], so it is hard to build the case base accurately. Secondly, industrial
processes often run in many working conditions [28], so it is difficult to ensure the distance-
based case retrieval would only retrieve cases from the same working conditions as the
target problem. In this paper, these wrongly retrieved cases are named as abnormal
cases because they are not helpful for the target problem. Furthermore, applying the
operational settings of abnormal cases to the target problem is hazardous and may result
in performance deterioration and disqualified products, or even stall the production of
subsequent processes. Therefore, a local density-based abnormal case removal method is
proposed in this paper to remove the abnormal cases in the case retrieval step, and finally
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to improve the performance of CBR for industrial operational optimization. The main
contributions of this paper are summarized as follows:

(1) The reason why historical cases in low-density areas should not be included in the
case reuse step is analyzed from the perspective of safety and reliability requirements
in industrial operational optimization problems.

(2) A novel abnormal case removal method, which could effectively remove the abnormal
cases before case reuse, is proposed on the basis of the Local Outlier Factor (LOF), and
properly integrated into the case retrieval step.

(3) The effectiveness and superiority of the newly proposed local density-based abnormal
case removal method is verified by a numerical optimization case study and an
industrial operational optimization case study.

The rest of this paper is organized as follows. Some preliminaries of the CBR frame-
work and the distance-based similarity measurements are briefly reviewed in Section 2,
then the motivations, principles, and procedures of the local density-based abnormal case
removal method are systematically presented in Section 3. Section 4 exhibits the opera-
tional optimization results of a numerical case study and an industrial case study. Finally,
conclusions are given in Section 5.

2. Preliminaries

In this section, some basic knowledge on the CBR framework and the distance-based
similarity measurements is introduced. Unlike the model-based methods, CBR solves the
target problem with several related cases stored in the case base. To be specific, the case
base should be constructed with as many historical cases as possible. Each case consists of
a problem description and a case solution. Figure 1 gives the basic framework of CBR (also
known as the CBR cycle).
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It could be seen from Figure 1 that case retrieval is the first step of the CBR cycle.
The task of case retrieval is to retrieve several valuable cases from the constructed case
base. Supposing the number of retrieved cases is fixed as k, the retrieved cases are the
first k cases with the most similar problem descriptions to the target problem. After the
case retrieval step, the case reuse is performed to obtain a suggested solution according
to the retrieved cases. If the suggested solution is not applicable to the target problem,
the suggested solution needs revising to adapt to the target problem. In the last step, the
experience of solving this target problem is stored to update the case base, which enable
CBR to constantly learn during the CBR cycle.
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In general, CBR solves the target problem by learning from historical cases with similar
problem descriptions to the target problem. Therefore, case retrieval is the foundation of
CBR, and the retrieval accuracy directly affects the performance of CBR [29–31]. In previous
studies, most case retrievals are based on distance-based similarity. Table 1 lists five most
commonly used distances for similarity measurement in CBR.

Table 1. The most commonly used distances for similarity measurement in CBR.

Name Formula

Euclidean Distance D(X1, X2) =
√
(X1 − X2)(X1 − X2)

T

Mahalanobis Distance D(X1, X2) =
√
(X1 − X2)

T ∑−1(X1 − X2)

Cosine angle Distance D(X1, X2) =
X1X2

T

‖X1‖‖X2‖

Manhattan Distance D(X1, X2) =
N
∑

i=1

∣∣X1,i − X2,i
∣∣

Chebyshev Distance D(X1, X2) = max
(∣∣X1,i − X2,i

∣∣), i = 1, · · · , N

As shown in Table 1, several distances can be applied to measure the similarity be-
tween two cases. Under the CBR framework, great attention has been paid to measure the
similarity between the target problem and historical problems in the case base. However,
due to the complexity of industrial processes, it is still hard to choose an appropriate similar-
ity index that only retrieves valuable cases when facing gross measuring error and multiple
working conditions. Therefore, it is necessary to develop an abnormal case removal method
so as to obtain the most valuable cases in industrial operational optimization.

3. Methods
3.1. Analysis of Case Retrieval in Industrial Operational Optimization

To improve product quality and enhance economic benefits, operational optimization
has been widely implemented in industrial processes. CBR can find the optimal operational
settings by learning from the historical optimal operational settings in the case base, so it
has been widely studied in the industrial operational optimization community. Suppose
that there are k cases overall retrieved from the case base, and Xi(i = 1, 2, · · · , k) and
Yi(i = 1, 2, · · · , k) represent the problem descriptions and the optimal solutions of the ith
retrieved case, respectfully. Under the CBR framework, the suggested solution Ỹt of the
target problem Xt can be determined as follows:

Ỹt =

k
∑

i=1
S(Xi, Xt)Yi

k
∑

i=1
S(Xi, Xt)

(1)

where S(Xi, Xt) represents the similarity between the target problem Xt and the problem
description of the ith historical case Xi. In fact, the suggested solution Ỹt is a weighted sum
of historical optimal solutions. Concretely, k historical cases are selected by the case retrieval
step according to their similarity to the target problem. Moreover, Equation (1) shows that
the weight of the suggested solution is only determined by the similarity between the target
problem and the problem description of the selected historical case. In other words, the
case retrieval step not only provides some helpful candidates for the suggested solution,
but also determines their weights in the suggested solution. Hence, the accuracy of case
retrieval is vital to the performance of industrial operational optimization.

Since CBR assumes that similar problem descriptions always have similar case solutions [32],
most of the previous studies tend to discover the most similar cases to the target problem.
Although the classic case retrieval methods have been proved effective in many fields, the
accuracy of case retrieval is still inevitably affected by measuring error and by multiple working
conditions. As a result, not all retrieved cases are helpful for solving the target problem. The
concrete reasons are as follows.
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(a) Accuracy of case retrieval would be influenced by the measuring error

Industrial data are collected by various kinds of sensors installed in the factory. Since
perturbations and noises are inevitable in industrial processes, measuring error is naturally
introduced in the case base. Consequently, the descriptions of historical cases are not
accurate. For the ith case, its measured description X̂i can be represented as follows:

X̂i = Xi + Wi (2)

where Xi and Wi are the accurate description and the measuring error of the ith case,
respectively. Considering the measuring error in its corresponding measured description,
the true Euclidean distance between Xi and Xt are calculated as follows:

D(Xi, Xt) =

√((
X̂i −Wi

)
−
(
X̂t −Wt

))((
X̂i −Wi

)
−
(
X̂t −Wt

))T (3)

Then the similarity between Xi and Xt can be calculated as follows:

S(Xi, Xt) =
1

1 + D(Xi, Xt)
(4)

Obviously, the measuring error in industrial data would degrade the accuracy of case
retrieval and make it hard to evaluate the importance of historical cases in solving the target
problem. Therefore, it is necessary to eliminate negative impacts from historical cases that
have gross measuring error.

(b) Accuracy of case retrieval would be influenced by the multiple working conditions

Industrial processes always run in many working conditions, which leads to some
undesirable results if the number of retrieved cases is not appropriate. That is to say, not
only the similarity S(Xi, Xt) but also the number k have an impact on the accuracy of case
retrieval. Therefore, an appropriate parameter k is crucial for the success of industrial
operational optimization under the CBR framework. However, for a particular process,
there are different numbers of historical cases in different working conditions, suggesting
that the case base is imbalanced. There are a larger number of cases in common working
conditions and a smaller number of cases in uncommon working conditions. Therefore, it
is easy to retrieve enough cases from a common working condition, yet difficult to do the
same from an uncommon working condition. Since the parameter k is fixed as a constant
in classic CBR, it may perform well for some working conditions but perform poorly for
others. The reason why classic CBR has a different performance in different working
conditions is that some irrelevant cases from other working conditions may be retrieved if
the target problem belongs to uncommon working conditions. Thus, the suggested solution
may be inapplicable.

In summary, both the measuring error and the multiple working conditions would
decrease the accuracy of case retrieval, which is going to affect the performance of opera-
tional optimization under the CBR framework. To decrease the negative impact from these
abnormal cases, a local density-based abnormal case removal method for the case retrieval
step is proposed in the following subsection.

3.2. Local Density-Based Abnormal Case Removal

Most of the previous studies on case retrieval have only focused on similarity mea-
surement, while the distribution of retrieved cases was neglected. The goal of case retrieval
is, in essence, to search the case base for valuable cases in order to solve the target problem.
In Section 3.1, the reasons as to why abnormal cases commonly exist in industry are thor-
oughly analyzed. Consequently, the retrieval results may not be reliable and the accuracy
of case retrieval needs enhancing. In contrast to the model-based methods, CBR directly
uses the operational information in retrieved cases, so the accuracy of retrieved cases is
vital to the performance of CBR. In another words, abnormal cases are harmful for the
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industrial operational optimization, so they must be removed before the case reuse. In
this paper, it is believed that the distribution of retrieved cases can reflect their reliability.
By eliminating low-reliability cases, the quality of the retrieved cases can be significantly
enhanced. Figure 2 presents a demonstration of the relationship between the distribution
and the reliability of cases.
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As shown in Figure 2, the retrieved cases are not uniformly distributed in the whole
space. Moreover, the accurate descriptions of historical cases are uncertain due to the
existence of measuring error. In this paper, the measuring error is assumed to follow the
Gaussian distribution. With a certain confidence level, accurate descriptions of historical
cases lie in dashed circles centered in their corresponding measured descriptions. Since
the similarity is usually calculated according to the measured descriptions, cases with
the highest similarity are not necessarily the most helpful cases for the target problem.
However, there exist some overlaps in the area with high-density cases, showing cases in
the high-density area have higher reliability than other cases since the accurate descriptions
are more likely to lie in the overlaps. Therefore, although cases in the low-density area may
have a higher similarity to the target problem, they should not proceed to the case reuse
step due to their lower reliability.

Another issue that impacts the accuracy of case retrieval is the multiple working
conditions of industrial processes. For a target problem that lies on the edge of a working
condition, its nearest neighbors probably include cases from other working conditions.
Obviously, these cases will not help to solve the target problem and should not be included
in the retrieved cases. This issue can be partly solved by assigning different number
of retrieved cases to every working condition, but it requires identifying the working
conditions in advance and setting a different k parameter for every working condition.
Consequently, it demands more priori knowledge and becomes much more complicated.
Considering the working condition identification problem can be transformed into a classic
classification problem, the K-Nearest Neighbors (KNN) classifier believes that the target
problem belongs to the working condition that the majority of its nearest neighbors belongs
to. That is to say, the number of retrieved cases from other working conditions is less
than the number of retrieved cases from the working condition that the target problem
belongs to. Since all retrieved cases belong to the same neighborhood, cases from other
working conditions are more likely to be in the low-density area, so they can be identified
by calculating the density of retrieved cases.

To conclude, measuring error and multiple working conditions are two inevitable
problems affecting the accuracy of case retrieval and degrading the performance of CBR.
Therefore, developing an abnormal case removal method is urgent and necessary. Since
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cases in a high-density area are more reliable than those in a low-density area, the latter
should be removed from the retrieved cases. In this subsection, a local density-based
abnormal case removal algorithm is designed based on the Local Outlier Factor (LOF),
which is a common index showing how isolated a data point is comparing with its nearest
data points. The LOF of historical case Xi is defined as follows:

LOF(Xi) =
1
m

m

∑
q=1

lrd(Xq)

lrd(Xi)
(5)

where m is an adjustable parameter; lrd(Xq) and lrd(Xi) stand for the local reachability
density of case Xq and Xi, respectively; Xq is the qth similar cases in the retrieved cases.
Particularly, the lrd(Xi) can be represented as follows:

lrd(Xi) =

(
1
m

m

∑
q=1

D(Xi, Xq)

)−1

(6)

where D(Xi, Xq) is the Euclidean distance between Xq and Xi.
As shown in Equation (5), LOF reflects the average ratio of lrd(Xq) to lrd(Xi). There-

fore, a bigger LOF indicates a smaller local density, and the corresponding case should
be removed. Normally, the threshold of LOF is determined after the whole dataset has
been analyzed, while in this paper, the threshold of LOF can be adaptively adjusted. To
automatically eliminate the retrieved cases in a low-density area, the threshold of the local
density-based abnormal case removal algorithm is designed as follows:

ξ = µ + α

√
∑k

i=1(X(i)− µ)2

k− 1
(7)

where α is an adjustable parameter of the threshold ξ, and µ is the average LOF of the
retrieved cases, which can be calculated as follows:

µ =
1
k

k

∑
i=1

LOF(Xi) (8)

In this paper, k is optimized according to the mean absolute error of the training set; m
and α are optimized determined by orthogonal experiments. With the optimal parameter k,
m, α, pseudo-codes of the designed local density-based abnormal case removal algorithm
are shown in Algorithm 1.

Algorithm 1: Local density-based abnormal case removal

Input: k retrieved cases; optimal parameter m, α

Output: The retrieved cases without abnormal cases
1 Calculate the local density of every retrieved case according to Equation (6)
2 Calculate the LOF of every retrieved case according to Equation (5)
3 Calculate the threshold of the retrieved cases according to Equations (7) and (8)
4 Remove the cases whose LOF are higher than the threshold

With the aforementioned local density-based abnormal case removal algorithm, proce-
dures of the industrial operational optimization are as follows:

Step 1: construct the case base with history data;
Step 2: for a target problem, select k most similar cases from the case base and construct

the original retrieved cases Ci = {Xi, Yi}(i = 1, · · · , k);
Step 3: employ the local density-based abnormal case removal algorithm to remove wrongly

retrieved cases;
Step 4: acquire the suggested solution for the target problem according to Equation (1);
Step 5: revise the suggested solution, if necessary;
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Step 6: store it in the case base after the target problem is solved.

4. Case Studies

In this section, the effectiveness and the superiority of the designed local density-
based abnormal case removal method were validated by two case studies. Firstly, a
numerical simulation was designed, where case descriptions were featured with multiple
working conditions and measurement error. Then, an industrial case study, whose data
were collected from a cut-made process of cigarette production, was designed to show
the effectiveness and the superiority of the abnormal case removal method in industrial
operation optimization under the CBR framework. In these case studies, the proposed
method was compared with classic CBR and case-based fuzzy reasoning in which the fuzzy
membership function and its parameters were determined according to their ability to
resist measuring error [18]. The concrete hardware and software are as follows: Intel(R)
Core (TM) i5-4590, ROM 8 GB, Windows 10 professional.

4.1. Numerical Simulation

In this numerical simulation, 120 operating points were generated with MATLAB
2019A to simulate the characteristics of multiple working conditions and measurement
error of industrial data. Particularly, two working conditions were generated with different
centers and deviations (the deviations followed Gaussian distribution to simulate the mea-
surement error in industry). In detail, every working condition consisted of 60 operating
points, and the centers of working condition 1 and working condition 2 were set as (1, 1)
and (−1, −1), respectively. In addition, standard deviations of the two working conditions
were both set as 0.5. It should be noted that the operating points with larger deviation from
their corresponding centers were considered as operating points with gross error, and they
should be removed before the case reuse. Figure 3 shows the distribution of the generated
dataset, which can perfectly reflect the characteristics of industrial data.
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to evaluate the performance of the designed abnormal case removal method with the se-
lected optimal parameters. The concrete evaluation criterion was Mean Absolute Error 
(MAE). 
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Figure 3. Distribution of the generated dataset.

As shown in Figure 3, the operating points lying on the edge of working condition 1
and working condition 2 were considered as operating points with gross error in this
study. Moreover, the case solutions of working condition 1 and working condition 2 were
designed as Equations (9) and (10), respectively.

Y1(i) = 0.2(x1(i)− 1)2 + 0.3(x2(i)− 1)2 + (x1(i)− 1) + 4 (9)
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Y2(i) = −0.2(x1(i) + 1)2 + 0.5(x2(i) + 1)− 4 (10)

Their parameters were designed differently to reflect diverse operating experience in
different working conditions. Furthermore, Equations (9)–(12) were designed as quadratic
polynomials to represent the nonlinearity in the operating experience. For operating points
with gross error, their measured descriptions were heavily deviated from their accurate
descriptions. Consequently, their case solutions are less helpful for operational optimization
than those of normal cases. For this reason, the case solutions of working condition 1 and
working condition 2 with gross error were designed as Equations (11) and (12), respectively.

Y1e(i) = 0.2(x1(i)− 1)2 + 0.3(x2(i)− 1)2 + (x1(i)− 1) + 8 (11)

Y2e(i) = −0.2(x1(i) + 1)2 + 0.5(x2(i) + 1)− 8 (12)

In this numerical simulation, 60 operating points were randomly chosen from the
generated dataset as a case base, while the rest of 60 operating points were equally divided
into two datasets. To be specific, the first was used as training dataset to pick out the
optimal parameters including k, m, and α, and the last was chosen as a testing dataset to
evaluate the performance of the designed abnormal case removal method with the selected
optimal parameters. The concrete evaluation criterion was Mean Absolute Error (MAE).

MAE =

n
∑

i=1

∣∣∣Yi −Yi,suggested

∣∣∣
n

(13)

where n is the number of cases in the testing dataset. Yi and Yi,suggested are the optimal
solution and the suggested solution of the ith cases, respectively.

Since k is a crucial parameter for case retrieval and its value directly affects the
performance of CBR, sensitivity analysis was firstly carried out to find the best parameter k.
Figure 4 presents the MAE of the training dataset when k changed from 1 to 15.
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As shown in Figure 4, the tendency of MAE firstly decreases with k changing from 1 to
6, and then generally increases with k changing from 6 to 15. The minimal MAE was 0.1896
when the parameter k was chosen as 6. Therefore, the number of retrieved cases was set as
6 both in classic CBR and the improved CBR with the proposed abnormal case removal
method. In addition, in order to find out the best parameters m and α for the abnormal case
removal algorithm, orthogonal experiments were designed with the training dataset. In
particular, the parameter m was set from 1 to 5 while the parameter α was set from 0.2 to
2.2. Table 2 shows the MAE of the training dataset with different combination of parameter
m and parameter α.
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Table 2. MAE of the training dataset with different parameter combination. Bold shows the
optimal number.

MAE m=1 m=2 m=3 m=4 m=5

α = 0.2 0.1858 0.2378 0.1937 0.1984 0.2070
α = 0.4 0.1872 0.2380 0.1622 0.2001 0.1948
α = 0.6 0.1870 0.2078 0.1651 0.1675 0.1526
α = 0.8 0.1742 0.1967 0.1671 0.1475 0.1521
α = 1.0 0.1741 0.1930 0.1956 0.1457 0.1470
α = 1.2 0.1647 0.2032 0.1950 0.1458 0.1478
α = 1.4 0.1935 0.2016 0.1882 0.1541 0.1478
α = 1.6 0.1930 0.2018 0.1873 0.1893 0.1602
α = 1.8 0.1859 0.1840 0.1840 0.1877 0.1877
α = 2.0 0.1797 0.1896 0.1896 0.1896 0.1896
α = 2.2 0.1896 0.1896 0.1896 0.1896 0.1896

As shown in Table 2, the minimal MAE of the training dataset was 0.1457 when the
parameter m and α were set as 4 and 1, respectively. The reason as to why m and α could
influence the MAE of the training dataset were analyzed as follows:

(1) Supposing the parameter m was fixed as a constant, if the selected parameter α was
too small, it would result in a lower threshold ξ and more normal cases would be
removed by mistake in the retrieved cases. This would increase the MAE.

(2) Supposing the parameter m was fixed as a constant, if the selected parameter α was
too big, it would result in a larger threshold ξ and more abnormal cases would be
preserved in the retrieved cases. This would increase the MAE.

(3) Supposing the parameter α was fixed as a constant, if the selected parameter m was
too small, fewer nearest neighbors would be included in the calculation of LOF. This
would make the LOF more vulnerable to uncertainty so as to increase the MAE.

(4) Supposing the parameter α was fixed as a constant, if the selected parameter m was
too big, more nearest neighbors would be included in the calculation of LOF. This
would reduce the distinguish ability of LOF so as to increase the MAE.

In the end, the best parameters of the designed abnormal case removal algorithm were
set as k= 6, m= 4 and α= 1, respectively. With the aforementioned parameter combination,
the testing dataset was finally used to show the effectiveness and the superiority of our
method. Additionally, Cauchy fuzzy membership function was selected for the case-based
fuzzy reasoning and its optimal parameters were 0.725 and 0.837, based on its performance
against measuring error. The concrete fuzzy membership functions evaluation method
and parameters optimization method can be found in reference [18]. Figure 5 presents the
concrete results.

According to Figure 5, it can be found that the set values of our method are closer to
their corresponding optimal set values than that of the other two methods. Specifically,
there are overall five operating points (marked with red boxes) in which our method outper-
formed the classic CBR and case-based fuzzy reasoning. As an average, the abnormal case
removal method improved the setting accuracy in the testing dataset by 20.3% compared
with classic CBR, and by 8.5% compared with case-based fuzzy reasoning. The reason
why our method can obtain better results is that some abnormal cases retrieved by the
classic case retrieval step could be removed with Equations (5) and (7). By eliminating
these abnormal cases whose LOFs are higher than the threshold, the impacts of these cases
can be removed in the case reuse step, thus improving the quality of the retrieved cases.
Naturally, the MAE of the testing dataset would be decreased, and the performance of
operational optimization would be improved under the CBR framework.
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4.2. Operational Optimization of an Industrial Cut-Made Process of Cigarette Production

In this case study, the designed abnormal case removal method was tested with
industrial data collected from a cut-made process of cigarette production. In this production,
the operator aims to keep the moisture content of leaf-silk close to the desirable value,
and the operational optimality has an impact on the quality of cigarettes. Specifically, the
studied cut-made process includes the following three procedures: (1) the leaf-silk drying
procedure, (2) the blending procedure, and (3) the spicing procedure. Since many operating
experiences were stored in the production data, the set value of the moisture content of
the leaf-silk drying procedure could be determined with historical optimal cases. Table 3
presents the basic structure of historical cases for the operational optimization of cut-made
process of cigarette production.

Table 3. Structure of historical case for the operational optimization of cut-made process.

Case Description Case Solution

Average ambient temperature at the drying machine

The optimal set value of leaf-silk drying machine in
production line A

Average ambient moisture at the drying machine

Average leaf-silk moisture content of production line B

Average leaf-silk moisture content of production line C

Tobacco stems moisture content

Expanded leaf-silk moisture content

Blending time

Average ambient temperature at spicing

Average ambient moisture at spicing

After data preprocessing, a total of 200 cases were extracted for having valuable
operating experience from the production data. Then, 100 cases were randomly chosen
from the 200 cases as the case base, while the rest were equally divided into two datasets.
The first was used as training dataset while the last was chosen as testing dataset. Similar
to the numerical simulation, MAE was chosen to evaluate its operational optimization
performance, and an orthogonal experiment was conducted to find the best parameter
combination for the abnormal case removal algorithm and CBR. By trial and error, the best
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parameters of the proposed abnormal case removal algorithm were set as k = 8, m = 5
and α = 0.6, based on which the operational optimization performance in the training
dataset was improved by 22.3% compared with classic CBR. Furthermore, the Gaussian
membership function was selected, and the optimized parameters were displayed in Table 4.
Figure 6 exhibits the set values provided by these methods for the industrial cut-made
process in the testing dataset.

Table 4. Optimized parameters of Gaussian membership function in the industrial case study.

Case Description Optimized Parameters

Average ambient temperature at the drying machine 0.4317
Average ambient moisture at the drying machine 0.3811

Average leaf-silk moisture content of production line B 0.5302
Average leaf-silk moisture content of production line C 0.3529

Tobacco stems moisture content 0.4173
Expanded leaf-silk moisture content 0.5513

Blending time 0.5556
Average ambient temperature at spicing 0.4098

Average ambient moisture at spicing 0.4885
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As shown in Figure 6, CBR with the designed abnormal case removal method (our
method) can obtain better results in the operational optimization of moisture content of
leaf-silk drying machine in production line A. In particular, overall, there are six operating
points (marked with red boxes) in which our method outperformed the classic CBR and
case-based fuzzy reasoning. This is due to some abnormal cases being removed by the
proposed case removal method in the case retrieval step. Furthermore, the influence of
multiple working conditions was not considered in the case-based fuzzy reasoning, and
thus the performance of CBR with the designed abnormal case removal method was better.
In summary, the MAE of classic CBR in testing dataset was 0.034 and the MAE of case-based
fuzzy reasoning was 0.03, while the MAE of our method in the testing dataset was 0.026.
The proposed abnormal case removal method improved the MAE by 23.5% compared
to classic CBR, and by 13.3% compared to case-based fuzzy reasoning. Therefore, the
effectiveness and the superiority of the local density-based abnormal case removal method
was proven, and it is suitable for the operational optimization of industrial processes.
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5. Conclusions

This paper proposed a local density-based abnormal case removal method for the
industrial operational optimization problem. Particularly, the reason as to why abnormal
cases should be removed from the case set retrieved by traditional method was analyzed
in view of the safety and reliability requirements of industrial operational optimization.
Then, historical cases whose LOF exceeded the corresponding threshold were removed
by the designed local density-based abnormal case removal algorithm. The simulation
results showed that, compared with classic CBR, the local density-based abnormal case
removal method could improve the performance of operational optimization by 20.3% in
the numerical case and 23.5% in the industrial case study, while improving the performance
of operational optimization by 8.5% in the numerical case and 13.3% in the industrial case
study compared with case-based fuzzy reasoning. In this paper, the calculation of local
density increased computation cost, thus, how to obtain the local density of retrieved cases
with lower computation burden would be an interesting topic in the future.
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