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Abstract: A rotor that can realize individual blade pitch control was designed. This paper focuses on
finding the trend of helicopter vibration loads after applying multiple high-order harmonic control.
The Glauert inflow model was introduced to calculate the induced velocity of rotor blades in a rotor
disk plane, and the Leishman Beddoes (L-B) unsteady dynamic model was employed to calculate
the aerodynamic forces of each section of a rotor blade. It was found that the influence of each high-
order harmonic control on individual blade vibration load reduction is similar in different advanced
ratios. After these calculations, the genetic algorithm was used to calculate the best combination of
amplitude and phase of the higher order harmonic under a specific flight state. Under the effect of
high harmonic input, the vibration loads of the hub could be reduced by about 65%. These results
can be theoretically applied to design control law to reduce helicopter vibration loads.

Keywords: helicopter; individual blade control; vibration control; optimal state; genetic algorithm

1. Introduction

Dynamic loads at helicopter rotor hubs are one of the main vibration sources of
helicopters. Reducing rotor vibration loads is an important approach to helicopter vibration
suppression. Centrifugal pendulums, double-wire pendulums and other passive dynamic
vibration absorbers were installed on helicopters in the past to reduce rotor vibration
loads [1]. With the continuous development of computer technology, sensing technology
and control technology, active control methods have become a research hotspot. These
methods mainly include high-order harmonic control (HHC), individual blade control
(IBC), active flap control (AFC) [2], active torsion control (ATC) [3] and active control of
structural response (ACSR) [4].

Individual blade control used to reduce helicopter vibration loads has been investi-
gated and proven successful in recent literatures, which is a new method developed from
HHC. HHC reduces vibration load components corresponding to the passing frequency of
the rotor system by applying an excitation to the non-rotating ring of the swashplate [5].
However, IBC is more precise than HHC in theory, which can individually apply HHC to
targeted blades. It can replace the traditional helicopter swashplate on the structure, as
shown in Figure 1.

Between 1977 and 1985, the Ham team at the Massachusetts Institute of Technology
(MIT) conducted an early experimental study of IBC [6,7]. In 2001, Sikorsky and NASA
carried out a full-scale wind tunnel test to find the influence of IBC on the vibration level
of a UH-60 helicopter [8]. In 2008, a group of German scientists headed by Fuerst applied
practically on the basis of single blade control and proposed the concept of an electro-
mechanical-actuator (EMA) rotor system [9]. In an EMA, a servo motor is installed in each
arm of the rotor system to reduce rotor vibration loads. An EMA system implements the
first-order periodic pitch control of the blades and high-order harmonic control of a single
blade through the servo motor motion control. In September 2015, the DLR completed the
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first wind tunnel test of its Multiple Swashplate System. During these tests, the potential
of this new active rotor control system to effectively reduce noise, vibrations and power
consumption using several IBC strategies was successfully demonstrated on two different
model rotors without using actuators in the rotating frame [10].
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Figure 1. Helicopter individual blade control.

Genetic algorithm (GA) is a random search method derived from the evolutionary
law of “survival of the fittest, survival of the fittest” in the biological world [11]. It has
been widely used in combinatorial optimization, signal processing, machine learning
and other fields [12–14]. The genetic algorithm regards the solution set of the problem
as a population, and continuously uses genetic operators to combine individuals in the
population to generate a new generation of candidate solution sets and selects the best
solution from the population according to certain criteria during the iteration process, until
the convergence condition is satisfied [15,16].

Although the researchers have conducted much experimentation on IBC, the number
of tests that can be performed at that time is limited and finding the parameters of optimal
amplitudes and phases of multiple harmonics to reduce vibration loads in this limited
number of trials is difficult and expensive. The purpose of the study is to analyze the
influence of IBC on helicopter hub vibration loads reduction. This study gives some
analysis details on how to calculate the influence of IBC on hub vibration loads. This study
presents the optimum control of selective order harmonics and their combinations in order
to reduce helicopter hub vibration loads.

In order to analyze the effect of higher-order harmonics on the hub load, a new rotor
is designed, as shown in Figure 2. The new rotor does not change the basic structure of the
original rotor. An actuator is added to the variable-pitch tie rod. The actuator includes a
motor, a spring and a rod, which can be seen in Figure 3. The lower surface of the rod is in
the shape of a sine curve, so the high-order harmonic pitch control can be applied to the
blades when the motor rotates at a fixed speed. In this paper, the optimal states are obtained
through the GA method, which could be used to guide the design of actuator parameters.
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2. Calculation Method
2.1. Rotor Blade Airfoil Aerodynamics

This paper ignores the impact of IBC on original trimming of the helicopter. The
individual pitch control superimposes the higher-order harmonic pitch on the basis of
the rotor collective pitch control and cyclic pitch control. When a helicopter is flying
forward steadily, the angle of attack (AoA) of the rotor blade airfoil is determined by
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the manipulated variable, the blade twist, the flapping adjustment coefficient and the
higher-order harmonic pitch, shown as Equation (1).

θ(t, r) = θ0 + θ1c cos(Ωt) + θ1s sin(Ωt) + θwr + A2 cos(2Ωt + ϕ2) + A3 cos(3Ωt + ϕ3) + . . . (1)

where θ is the pitch angle of the blade. r is relative radius of blade section position. A2 and
A3 represent the amplitudes of the 2nd and 3rd harmonic. ϕ2, ϕ3 are the phases of the 2nd
and 3rd harmonic.

The flow angle of the blade airfoil depends on the relative air flow velocity and
direction, as shown in Figure 4.
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Parameters shown in the figure can be obtained from flowing formulas.

∅ = arctan(uP/ut) (2)

uP = V sin αs − v− r
.
β−V cos αs cos ψ sin β (3)

ut = Ωr + V cos αs sin ψ (4)

where ∅ is the angle of the wind speed and ψ is the azimuth of the blade. uP and ut are the
vertical and lateral components of wind speed.

The flow field of a helicopter rotor is very complex. The method, proposed by Glauert,
was used to calculate the inflow air velocity in the hub plane [17]. The induced velocity is
expressed as a superposition of the uniform term and the periodic variation of the radius
along the radial direction, shown as Equation (5).

v(r, ψ) = v0(1 + Kxrcosψ) (5)

In the formula, the inducing speed v0 is the non-uniform coefficient which can be
calculated from uniform inflow model (v0—induced velocity at the rotor disc center, calcu-
lated by the momentum theory). Kx is the uneven coefficient, which is different in various
theories. This article is based on the recommended values of Coleman, Feingol and Stempin,
as shown in Equation (6).

Kx =

√
1 + (λ/µ)2 − |λ/µ| (6)

The aerodynamic model proposed by Leishman and Beddoes is used to calculate the
airfoil aerodynamics [18]. This model takes into account the delay effect of aerodynamic
load response caused by dynamic stalls, and it also takes into account the different con-
ditions of the aerodynamic environment (attachment flow, trailing edge separation and
leading-edge separation), which accounts for the compressibility of the air flow, the lift loss
caused by separation of the airfoil trailing edge and the leading edge.
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2.2. Response Solution

The rotor blade is analyzed as an elastic beam [19–21]. Hamilton’s variational principle
is used to derive the system equations of motion, which can be expressed as

δΠ =
∫ t2

t1
(δU − δT − δW)dt = 0 (7)

where δU, δT, and δW are the virtual variation of strain energy, kinetic energy and the
virtual work done by external forces. The variations can be written as

δUi =
∫ R

0

x (
Eεxxδεxx + Gεxηδεxη + Gεxζ δεxζ

)
dηdζdx (8)

δTi =
∫ R

0

x
ρs

⇀
V i·δ

⇀
V idηdζdx (9)

δWi =
∫ R

0

(
LA

u δu + LA
v δv + LA

w δw + LA
φ δφ

)
dx (10)

where εxx is axial strain, and εxη and εxζ are engineering shear strains. Ξηζ is rotating
deformed blade coordinate system. LA

u , LA
v , and LA

w are the distributed airloads in the x, y, z
directions, respectively, and LA

φ is the aerodynamic pitching moment about the undeformed
elastic axis.

For the i-th blade, the virtual energy expression in Equation (7) is written in the
discretized form such that

δΠi =
∫ ψF

ψI
[

N

∑
j=1

(
δUj − δTj − δWj

)
]dψ = 0 (11)

Using the notation
∆j = δUj − δTj − δWj (12)

The blade is discretized into a number of beam elements. There are six degrees of
freedom at each element boundary node. The elemental nodal displacement vector is
defined as

qT
j =

[
u1, v1, v′1, w1, w′1, φ1, u2, v2, v′2, w2, w′2, φ2

]
(13)

Using appropriate shape functions, the elemental variation in energy ∆j can be written
in the following matrix form as

∆j = δqT
j

(
[M]j

..
qj + [C]j

.
qj + [K]jqj − {F}j

)
(14)

where [M]j, [C]j [K]j and {F}j are (blade) elemental mass, damping, stiffness and load matrices.
By assembling elemental matrices, the total energy can be expressed as

δΠi =
∫ ψF

ψI
δqT([M]

..
q + [C]

.
q + [K]q− {F})dψ = 0 (15)

The above formula can be transformed into the following finite element equation of
the motion of the blade.

[M]
..
q + [C]

.
q + [K]q = {F} (16)

The modal superposition method is used in the case study to calculate the blade
response. The modal superposition method refers to expressing the response of the struc-
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tural system as a linear superposition of the natural modes of each order according to the
inherent characteristics of the structural system [22–24], as shown in Equation (17).

Y(t) =
N

∑
i=1

yiγi(t) = φγ (17)

where φ is modal matrix of the blade. φ was derived from the [M], [C], [K] in Equation
(16) by using the EIG function in matlab.

The blade system has a large degree of freedom, and it is impossible to superimpose
the modes of all orders. It is necessary to perform modal truncation, and so a certain degree
of calculation accuracy will be lost. Since the rotor vibration loads are mainly concentrated
in the low frequency part and magnitudes of high frequency components are low, the
high-order modal response amplitudes are small, and the modal truncation has little effect
on the response results, so the method can satisfy the calculation needs.

2.3. Hub Loads

The hub loads can be obtained by the superposition of the loads at the root of each
blade, as shown in Equation (18). Figure 5 shows the positional relationship of each
force direction.
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

Fx(ψ) =
N−1
∑

i=0

[
Fxb
(
ψ + 2π

N × i
)

sin
(
ψ + 2π

N × i
)
− Fzb

(
ψ + 2π

N × i
)

cos
(
ψ + 2π

N × i
)]

Fy(ψ) =
N−1
∑

i=0
Fyb
(
ψ + 2π

N × i
)

Fz(ψ) =
N−1
∑

i=0

[
Fzb
(
ψ + 2π

N × i
)

sin
(
ψ + 2π

N × i
)
+ Fxb

(
ψ + 2π

N × i
)

cos
(
ψ + 2π

N × i
)]

Mx(ψ) = e·
N−1
∑

i=0

[
−Fyb

(
ψ + 2π

N × i
)

sin
(
ψ + 2π

N × i
)]

My(ψ) = e·
N−1
∑

i=0

[
Fxb
(
ψ + 2π

N × i
)]

Mz(ψ) = e·
N−1
∑

i=0

[
−Fyb

(
ψ + 2π

N × i
)

cos
(
ψ + 2π

N × i
)]

(18)

where e is flap and lag hinge offset of the blade. The loads of the blade are obtained
by integrating the loads of each blade profile in the spanwise direction, as shown in
Equation (19). Fxb

Fyb
Fzb

 =
∫ R

e
Fbdr (19)

The loads Fb can be written as Equation (20).

Fb = FbA + FbI (20)

where FbA is the aerodynamic load which can be written as Equation (21), and FbI is inertial
loads, which refers to [14].

FbA =

 −dQ
dL cos ω′

dL sin ω′

 (21)

where dQ and dL are the drag and lift of blade profile, and ω′ is the angular displacement
of the profile.

3. Case Study

The model established in Section 1 can be used to calculate the hub loads of traditional
single-rotor helicopters and is not applicable to new configuration helicopters such as
coaxial helicopters. A helicopter with a 3-bladed main rotor is adopted in the case study
as an example [25]. The rotor parameters of the helicopter are shown in Table 1 and blade
properties of each section are listed in Table 2, in which r means radial station, EIf is flap
stiffness, EIl is lag stiffness, GJ is torsional stiffness, M is blade sectional mass and YG is
chordwise blade c.g. location. In the studied case, the influence of different amplitudes and
phases of different harmonic components of IBC and their combinations was analyzed.

Table 1. Parameters of the main rotor.

Number of
Blades Radius Blade Chord Rotor Rotational

Speed
Shaft Angle

of Attack
Flap and Lag
Hinge Offset

3 5.25 m 0.35 m 40.5 rad/s −4◦ 0.475 m
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Table 2. Properties of the blade section.

r
m

EIf
×103

N.kg

EIl
×103

N.kg

GJ
×103

N.m2

M
kg/m

YG
m

r
m

EIf
×103

N.kg

EIl
×103

N.kg

GJ
×103

N.m2

M
kg/m

YG
m

0.445 4500 1100.0 250 25 0 3.59 7.95 420.5 11.1 5.02 −0.0038
0.475 400 350.0 1000 25 0 3.634 7.98 414.0 11.2 6.68 0.112
0.505 770 490.0 1250 15 0 3.754 7.98 414.0 11.2 6.58 0.112
0.525 9350 885.0 2200 105 0 4.173 7.91 399.6 11.2 7.59 0.204
0.545 64 320.0 2000 100 0 4.35 7.85 395.6 12.8 8.36 0.237
0.565 66 330.0 34 38.65 0 4.39 8.50 477.4 12.8 8.67 0.181
0.585 55.6 250.0 27.3 16.15 0 4.41 7.71 482.3 12.8 8.59 0.0183
0.625 51.6 186.5 21.7 8.55 0 4.44 10.04 530.8 12.8 9.64 0.0093
0.665 50.7 134.5 19.3 8.15 0 4.49 17.75 623.7 12.8 15.07 0.0096
0.705 52.00 134.5 19.3 7.75 0 4.61 17.75 623.7 12.8 14.36 0.0133
0.745 52.10 96.9 21.2 10.10 0 4.623 17.75 623.7 12.8 14.92 0.0096
0.795 47.00 104.5 22 7.15 0 4.64 21.43 820.7 19 20.16 −0.0021
0.815 48.50 115.4 22.1 6.80 −0.0017 4.665 13.45 622.5 19 21.26 0.033
0.885 38.64 132.9 18 6.25 −0.0021 4.705 14.49 1020.9 19 21.09 −0.002
0.955 21.77 329.9 17.9 6.82 0.007 4.77 22.60 1288.6 19 17.74 −0.0172
1.025 10.21 555.2 8.2 6.73 −0.0148 4.8 23.53 2301.2 25.7 19.60 −0.0215
1.165 10.31 552.8 8.2 8.50 −0.314 4.855 7.57 730.4 9.9 6.11 0.0054
1.235 7.72 646.1 6.8 8.22 −0.175 4.875 7.80 791.7 9.9 11.55 0.0026
1.305 6.49 703.3 7.9 7.73 −0.189 4.89 8.20 995.3 6.6 5.33 −0.0188
1.375 5.92 585.0 8.8 6.99 −0.144 4.95 8.20 995.3 6.6 5.48 −0.016
1.515 7.81 560.4 9.8 6.95 −0.0067 4.99 8.50 998.7 6.6 6.05 −0.015
1.605 7.71 447.5 10.6 6.51 0.0052 5.03 8.19 966.0 5.1 4.20 −0.0141
1.635 7.61 406.2 11.1 6.41 0.0102 5.07 6.46 809.5 4.9 3.84 −0.088
3.276 7.61 406.2 11.1 6.67 0.0102 5.15 6.46 809.5 4.9 3.69 −0.125
3.396 7.58 413.2 11.1 4.90 −0.0056 5.25 6.46 809.5 4.9 3.69 −0.125

3.1. Model Validation

According to the above rotor parameters and sectional blade properties, the modal fre-
quency of the blade during rotating state was obtained and compared with the calculation
results in [16]. The results are shown in Table 3.

Table 3. The mode frequencies.

Mode Calculation/Ω Reference/Ω

1st flap 1.03 1.03
2nd flap 2.90 2.81
3rd flap 5.32 5.24
1st lag 0.54 0.58
2nd lag 4.56 4.76

1st torsion 3.47 4.13
2nd torsion 11.26 12.81

Then, the parameters were substituted into the model established in Section 1 to obtain
the hub loads. The result is subjected to FFT transformation, and the 3/rev vibration loads
obtained is compared with the results calculated by Heffernan using uniform inflow when
the helicopter flew at a speed of 56.4 m/s [26,27]. The comparison result is shown in
Figure 6. The calculation results differ by about 10%. The calculation model is credible.
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3.2. Influence of Harmonic Phases and Amplitudes

In order to analyze the influence of amplitudes and phases of high-order harmonics on
the vibration loads of the hub, the vibration load parameter Fvh is defined. Fvh is given by

Fvh = (Max(Fx(ψ))−Min(Fx(ψ))) + (Max(Fy(ψ))−Min(Fy(ψ)))
+(Max(Fz(ψ))−Min(Fz(ψ)))
+(Max(Mx(ψ))−Min(Mx(ψ))) + (Max(My(ψ))
−Min(My(ψ))) + (Max(Mz(ψ))−Min(Mz(ψ)))

(22)

Fvh0 is used to represent the baseline vibration loads without IBC. Fv, which is the
ratio of Fvb to Fvb0, can represent the impact of IBC on the vibration loads of the hub. Fv is
given by

Fv =
Fvh

Fvh0
If Fv is less than 1, it means the IBC algorithm with the selected amplitudes and phases

are beneficial to vibration loads reduction; otherwise, vibration loads will become greater
than those of the baseline model and IBC algorithm fails, which is adverse.

At first, some specific amplitudes of the harmonic were selected and kept unchanged
in the analysis. The phases were changed from 0◦ to 360◦ with 30◦ spacing. Results for
when the helicopter was flying under the speed of µ = 0.26 (advance ratio) are shown
in Figure 7.

It can be seen in Figure 7 that the vibration load ratio changed significantly with the
variety of phases of second order harmonics. They all decreased firstly, then increased as
the phases increased. The vibration loads became minimum when phase angles of the
second order harmonics reached about 150◦. It can be seen from Figure 7 that under the
action of the second order harmonic with an amplitude of 0.3◦ and a phase of 150◦, the
vibration load was less than 50% of the original.
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Similarly, some specific phases of the harmonics were selected and kept unchanged in
the analysis in order to investigate the impact of harmonic magnitudes on vibration loads
reduction under IBC.

The phases investigated in the analysis changed from 0◦ to 0.3◦. When the helicopter
was flying at the advance ratio µ = 0.26, the vibration loads were calculated, the results of
which are shown in Figure 8.
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It can be seen in the figure that the vibration loads decrease first and then increase as
the amplitudes of the second and third harmonics increase. Also, the figures show that
the minimum vibration loads with IBC vary with both the amplitudes and phases of the
harmonics applied.

3.3. Optimal States

Due to the complexity of the calculation of the helicopter hub loads, it is difficult
to directly obtain the relationship between the vibration loads and the amplitudes and
phases of each harmonic, so it is impossible to directly obtain the optimal parameters.
So, the genetic algorithm is used to find the harmonic state when the vibration load is
minimal [28,29]. The calculation process is shown in Figure 9.
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Figure 9. The process flow of a genetic algorithm.

At first, each individual is encoded as a 22-bit string. The first 10 bits represent the
amplitude of the high-order harmonic, and the last 12 bits represent the phase of the
high-order harmonic. The variation range of amplitude is 0–1◦. The phase variation range
is 0–360◦. The amplitude calculation accuracy is 1

210−1 = 0.00097 < 0.001, and the phase
calculation accuracy is 360

212−1 = 0.0879 < 0.1.
80 randomly generated individuals form the initial population, which is shown in

Figure 10. Then, the fitness evaluation of each individual is evaluated. The fitness is
reciprocal of Fv; that is, the smaller the vibration, the higher the fitness. Then, the top 50%
in fitness are selected to generate offspring for the next generation by crossing their string.
Some individuals also have mutations. After that, a new population is formed which will
be used in the next round of calculation. The GA parameters used in the calculation are
listed in Table 4.

Table 4. Parameters of the genetic algorithm.

Parameter Value

Number of chromosomes 22
Population size 80

Number of interactions 100
Crossover probability 0.8
Mutatin probability 0.1

selection rate 0.5
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The population after 100 generations of reproduction is shown in Figure 11. Figure 12
shows the variation of the optimal individuals in each generation. The trend chart of Fv
under each generation of optimal individuals is shown in Figure 13.
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It can be seen in Figures 10 and 11 that the initial population is randomly distributed,
the distribution is relatively scattered and the final population distribution is concen-
trated. The population appears to be small in Figure 10 because the optimal individual
data overlap.

Figure 12 shows that after 50 generations of evolution, the optimal individual in the
population is close to the final optimal value, indicating that the genetic algorithm can
quickly solve the optimal state in vibration control by IBC. As can be seen in Figure 13, 60%
of the vibration reduction effect can be achieved after 30 evolutions, and the final vibration
reduction effect can reach more than 65%.

The initial population is widely distributed, and the probability of new optimal
individuals generated by crossover is high. Therefore, in the first 10 iterations, the optimal
individual changes greatly, and the vibration load decreases rapidly. At the 50th generation,
with the generation of mutation, the first 10 bits of new individuals changed greatly, which
was manifested as a sudden change in the amplitude of the harmonic. Because of this, the
vibration load decreased rapidly once again. After that, the optimal individual did not
change much, and had little effect on the vibration load of the hub. After 10 iterations of
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data updates, the population tended to be stable, although the crossover probability was
relatively large, and it was difficult to generate new optimal individuals. Therefore, the
changes in amplitude and phase were very small or even unchanged. Correspondingly, the
vibration load of the hub changed little. The phase and amplitude of the optimal individual
in the population changed greatly at the 30th and 50th iteration, but the vibration load
of the hub decreased more at the 50th iteration compared with that at the 30th iteration,
indicating that the parameter sensitivity of amplitude was greater than the phase during
optimization, so the appropriate surface height difference (i.e., the amplitude of the second
order harmonic) is particularly important in the structural design of the actuator.

4. Conclusions

This article investigated the influence of IBC on helicopter hub vibration load reduction.
Not all states of amplitudes and phases could be used for reducing hub vibration loads.
The vibration loads could become even greater than those of a baseline system without IBC
for some control laws.

The parameters of the blade were simplified compared with reference. The blade
segments with similar parameters were merged together, which reduced the blade segments
and effectively shortened the calculation times during a large number of repeated iterative
calculations. By comparing the results of the characteristics of the blade in the original
text, it was found that the errors were very small, indicating that reducing the number of
segments of the blade was accurate.

The GA can quickly and effectively realize the solution of the optimal state. By
choosing appropriate parameters of amplitude and the phase of the second harmonic,
calculated by GA, the vibration load of the hub could be reduced by 65%.

For future work, the accuracy of the proposed method should be verified via experi-
mentation. It is necessary to analyze the influence of other harmonics—such as the third
harmonic—on the vibration load of the hub.
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