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Abstract: Robust and precise vehicle detection is the prerequisite for decision-making and motion
planning in autonomous driving. Vehicle detection algorithms follow three steps: ground segmenta-
tion, obstacle clustering and bounding box fitting. The ground segmentation result directly affects the
input of the subsequent obstacle clustering algorithms. Aiming at the problems of over-segmentation
and under-segmentation in traditional ground segmentation algorithms, a ground segmentation
algorithm based on Gaussian process is proposed in this paper. To ensure accurate search of real
ground candidate points as training data for Gaussian process, the proposed algorithm introduces
the height and slope criteria, which is more reasonable than the use of fixed height threshold for
searching. After that, a sparse covariance function is introduced as the kernel function for calculation
in Gaussian process. This function is more suitable for ground segmentation situation the radial
basis function (RBF). The proposed algorithm is tested on our autonomous driving experimental
platform and the public autonomous driving dataset KITTI, compared with the most used RANSAC
algorithm and ray ground filter algorithm. Experiment results show that the proposed algorithm can
avoid obvious over-segmentation and under-segmentation. In addition, compared with the RBF, the
introduction of the sparse covariance function also reduces the computation time by 37.26%.

Keywords: autonomous driving; ground segmentation; sparse covariance; Gaussian process regression

1. Introduction
1.1. Background

Autonomous driving technology is rapidly developing, which has been attributed to
advances in the sensor, communications and computer industries [1–7]. As the first step in
autonomous driving, the results of environmental perception systems directly affect the
subsequent motion planning and decision making. An environment perception system
based on 3D-LiDAR aims to extract the point cloud of the target object from the disordered
input point cloud, which includes ground segmentation, obstacle point cloud clustering
and bounding box fitting [8–11]. The results of ground segmentation are irreversibly
inputted to subsequent steps for processing in the environmental perception system, and
affected the clustering and bounding box fitting process [12,13]. Therefore, the accuracy of
ground segmentation is crucial for the environment perception system and autonomous
driving technology.

In ground segmentation algorithms, the accuracy of ground segmentation is usually
compromised by two incorrect segmentation situations: over-segmentation and under-
segmentation [1,5]. Over-segmentation means that obstacle points that do not belong to
the ground are divided into the ground points. This type of incorrect segmentation will
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reduce the possibility of obstacle detection, and result in the lack of obstacle points. Under-
segmentation means some ground points are divided into obstacle points, and this type of
incorrect segmentation will affect the vehicle’s judgment of the drivable area. Therefore, the
optimization of the ground segmentation algorithm is to avoid these two types of incorrect
segmentation situations [9].

1.2. Related Work

Commonly used ground segmentation algorithms are divided into two methods:
surface-based methods and line-based methods. The surface-based method considers the
shape of the ground, regarding it as a plane or a curved surface. In this method, a certain
number of ground candidate points are selected to complete the fitting of the plane or
curved surface. Depending on whether the ground is regarded as the plane or curved
surface, the fitting algorithm used is different. When the ground is regarded as a plane,
the random sampling consistency (RANSAC) algorithm and its improved algorithms are
mainly adopted [14–18]. Qiu et al. proposed an iterative fitting method of datum surface
based on prior distribution information; this strategy can avoid the concentration of initial
frame sampling points in a small range, and effectively improve the efficiency of sampling
iteration [15]. Li et al. also chose to optimize the sampling point selection process. They
introduced the normal distribution transformation (NDT) to convert a certain number of
points into NDT cells, and then divided these into planar cells and non-planar cells. In
the subsequent sampling process, only those belonging to planar cells were selected to
fit [16]. Obviously, the biggest defect of this type of algorithm is that the fitting accuracy is
too poor for the ground with changes. Therefore, it is more reasonable to treat the ground
as a surface, and then select enough points to fit the surface. B. Douillard et al. used the
Gaussian process incremental sample consensus (GP-INSAC) algorithm to complete the
curved surface fitting, which first uses the INSAC algorithm to complete the selection of
the initial ground candidate points, and then uses the Gaussian process to complete the
ground parameter estimation [17]. In this way, fitting the entire ground plane poses a large
computational burden. Therefore, the line-based methods are proposed.

The line-based methods mainly consider the scanning characteristics of LiDAR. In this
method, the ground is divided into different segments according to the preset angle, and
then each segment is divided into different small bins according to the distance [19–30]. By
judging the spatial features or other features of the points in each bin, the reference ground
height of each bin is obtained to establish the distinction between ground points and non-
ground points. Him et al. examined the height difference and slope in different bins to
quickly determine the ground height; this algorithm is simple and efficient, but the fitting
effect is strongly affected by the fixed height difference thresholds or slope thresholds,
which are too sensitive to height changes, and easily leads to over-segmentation [19].
Chen et al. introduced the Gaussian process into this type of algorithm. Compared with
the previous GP-INSAC algorithm to fit the entire ground plane, the Gaussian process
is simplified to one dimension and is only used to fit the ground reference line within a
segment [20]. Luo et al. calculated the probability that each bin belongs to the ground,
and proposed a ground segmentation algorithm based on the occupancy probability grid,
which has a good segmentation effect on various types of road surfaces [22]. P. Narks et al.
designed a segmented fitting strategy, which has better adaptability to slope conditions [23].

In summary, this paper proposed a robust ground segmentation algorithm based on
Gaussian process, which adopts the technical route of line-based method. Firstly, we divide
the ground coordinate system into several segments, all points in the Cartesian coordinate
system are mapped to a certain bin in a segment. After that, ground real points are searched
in each segment according to height and slope criteria, which are used as training data for
the Gaussian process. Finally, the reference ground height of each bin in the segment is
obtained through Gaussian process regression to complete the ground segmentation. The
flow chart of this paper is shown in Figure 1.
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There are two main contributions in this paper:

(a) We design height and slope criteria to search for in the initial ground points selection
stage. Different from RGF, the proposed algorithm only finds enough ground points
for the subsequent training of Gaussian process parameters, so it can have stricter
screening conditions. Compared with the RGF algorithm, it can effectively prevent
over-segmentation.

(b) We introduce a Gaussian process based on a sparse covariance function for ground ref-
erence height estimation. The introduction of sparse covariance makes the description
of the ground more reasonable and computationally more efficient.

The remainder of the article is organized as follows. In Section 2, we detail our initial
point searching method, and the derivation of the Gaussian process and the definition of
the sparse covariance matrix are put in Section 3. Section 4 shows the segmentation result
of our algorithm on the KITTI dataset and on the autonomous driving algorithm verify
platform, which are compared with the RANSAC algorithm and the algorithm proposed in
the literature [19]. The last section summarizes the paper, and gives the insufficiency of the
paper and the future development direction.

2. Raw Data Pretreatment and Ground Candidate Points Selection
2.1. Raw Point Cloud Downsample

Usually, a velodyne 64-line LiDAR that scans a frame can obtain more than
100,000 laser points, while a 16-line LiDAR with fewer beams scans a frame to obtain
more than 60,000 laser points. Therefore, the acquired raw point cloud requires downsam-
pling, that is, a group of points in a certain space is simplified into one point by calculation,
so as to reduce the computational burden of processing subsequent data. In this paper, the
commonly used voxel grid downsampling algorithm is directly selected for processing the
raw data before the coordinate projection of point cloud, and the result of downsampling
is shown in Figure 1. It can be seen that the number of points in the original point cloud
is significantly reduced after downsampling, while the height and distance information
are not lost. After downsampling, all points will be projected into polar coordinated
for processing.

2.2. Point Cloud Coordinate Projection

A frame of point cloud collected by LiDAR at time k is defined as Pk = {p1, p2 . . . pn},
where n is the ID sequence of all points in current frame, and pn = (xn, yn, zn) represents
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the space coordinates of this point in a Cartesian coordinate system. The method in [19]
is adopted to establish a polar coordinate system as shown in Figure 2. The segment Si is
determined by the formula:

Si =

[
arctan(xt, yt)

φ

]
(1)

where i = {1, 2, . . . s}, s represents the total number of segments. The φ is the angle defined
for different types of LiDAR. In Figure 2, bule area is one segment, each segment is divided
into multiple bins, which is determined by the distance and represented as green and
orange area in Figure 2. Therefore, the point pn = (xn, yn, zn) in a Cartesian coordinate
system can be presented as pn =

(
rn, zn, Si, Bj

)
, where rn represents the distance from the

LiDAR, zn represents the height, Si represents the ID of segment, and Bj represents the ID
of bin, where j = {1, 2, . . . m}, m represents the total number of bins in one segment. So
far, each point in the Cartesian coordinate system will be projected into a certain bin in a
certain segment according to the projection rules. Therefore, we only need to estimate the
height of each bin in each segment and then perform height regression to complete the
ground segmentation in every segment.
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2.3. Ground Candidate Point Selection

The purpose of selecting ground candidate points in each segment is to obtain the
ground height conference curve, obtain the ground reference height for each bin and use
the reference height filter out possible ground points in each bin. In the current bin, if the
lowest point is a ground point, then points within a certain distance above this point are
likely to be ground points. If the lowest point is not a ground point, then there is no ground
point. Therefore, this process must guarantee that all candidate points are real ground
points and have a reasonable spatial distribution. In every segment, the difference between
the front and rear bins is mainly in the height and slope. Therefore, reasonable height and
slope criteria based on different scan model can select points that are most likely to be the
ground points.

Figure 3 shows three LiDAR scan models in one segment, and each point is the lowest
point of its bin. Figure 3a shows model 1, which is without obstacles in the current segment.
In model 1, the height and slope different between the bins is small. Figure 3b shows
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model 2, which shows the existence of obstacles with a high height. Generally, such
obstacles are vehicles, trees, etc., and the ground plane after the obstacle is not scanned.
Figure 3c shows model 3, which shows obstacles with a lower height. Unlike model 2, this
type of obstacle is lower, and the ground is still scanned further away from the obstacle.
Because the road boundary extraction is not considered in this paper, the points on the
steps are still regarded as ground points.
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The height and slope criteria are defined as the height difference ∆h between the
front and rear points in the current segment below the threshold hz, and the slope below
the threshold kz. Once the criteria are not met, it is determined that an obstacle has been
scanned, the details of which are shown in Figure 3b,c. On this basis, the search process of
initial ground points is as follows:

1. Determine the first datum point a in current segment, which is the yellow point
in Figure 3. The first datum point a needs to meet the height ha lower than the threshold
hinitial . The hinitial is the limit ground value calculated from the LiDAR installation height h
and the ground limit slope kthreshold under urban working conditions. When the point is
higher than the hinitial , it cannot be the ground point. The bin where the first datum point a
located is Ba.

2. Check whether the lowest point in Ba+1 satisfies the height criterion and slope
criterion; if so, the point in Ba+1 becomes the new datum point. Continue to check the point
in the next bin. This process is then repeated until there is a point that does not satisfy the
height and slope criteria.

3. When the height and slope criteria are not satisfied at bin Ba+b, it indicates that
there are obstacles in the current bin. If the height has been trending upward until the end
of the traversal, the situation is model 2; otherwise, the situation is model 3.

4. When the situation is model 2, the search is stopped, and the point in bin Ba+b is
regarded as end point, which is the black point in Figure 3b. When the situation is model 3,
set the point where the height drops as a new datum point, and continue to search until
the end.

Through the above steps, the ground points can be successfully screened out. However,
due to gaps in the LiDAR scan, not every bin has a laser point, and for these missing bins,
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we still need to estimate its ground reference height. At the same time, due to the need to
ensure that each point is a ground point, the height and slope criteria will set more stringent
judgment conditions, which leads to the misjudgment of ground points in some bins as
obstacle points. Therefore, a curve fitting algorithm needs to be employed to estimate the
ground reference height for each bin in each segment.

3. Gaussian Process Regression Based on Sparse Covariance Function for
Ground Segmentation
3.1. Gaussian Process

The Gaussian process is a learning method based on Bayesian statistical knowledge,
which combines with the strong ability of the kernel method to process nonlinear informa-
tion. A typical Gaussian process in function space can be defined as:

f (x) ∼ GP(m(x), K(x, x′)) (2)

GP represents a Gaussian process, m(x) and K(x, x′) presented the mean function
and the covariance function of the Gaussian process respectively, where the more detailed
definition is:

m(x) = E[ f (x)] (3)

K(x, x′) = E[( f (x)−m(x))( f (x′)−m(x′))] (4)

The E represents math expectation, and define a linear regression model with standard
white Gaussian noise ω as:

y = f (x) + ω (5)

where ω belongs to N
(
0, δ2

n
)
, and N represents the gaussian distribution. In fact, the essence

of Gaussian process regression is to use the function f (x) obtained by the Gaussian process
to find the expected value of y, which can be defined as:

E(y) = E[ f (x) + ω] = E[ f (x)] = φ(x)TE[w] = 0 (6)

cov(yj, yi) = E(yj, yT
i )

= E[( f (xj) + ωj)( f (xi) + ωi)]

= E[ f (xj) f (xi)
T ] + E(ωjωi) = K(xj, xi) + σ2

n

(7)

where the cov represented the covariance function, and the y in Formula (5) can be
regarded as a Gaussian distribution, which can be expressed as:

y ∼ N(0, K(x, x′) + σ2
n I) (8)

The I represents the identity matrix. Therefore, the training set y and testing set y′

satisfy the following relationship:[
y
y′

]
∼ N(0,

[
K(x, x) + σ2

n I K(x, x′)
K(x, x′) K(x′, x′)

]
) (9)

The K(x, x) is the covariance matrix between points which belong to training data,
the K(x, x′) is the covariance matrix between training data and testing data, and the
K(x′, x′) is the covariance matrix between points which belong to testing data. All of these
covariance matrixes can be calculated through covariance function which is selected by
prior information. After that, the probability edge distribution from the probability joint
distribution can be presented as:

y′
∣∣x, y, x′ ∼ N(E(y′), cov(y′)) (10)

E(y′) = E(y′
∣∣∣x, y, x′) = K(x′, x)[K(x, x) + σ2

n I]
−1

y (11)

cov(y′) = K(x′, x′)− K(x′, x)[K(x, x) + σ2
n I]
−1

K(x, x′) (12)
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It can be seen from the Formulas (11) and (12) that the prediction result of Gaussian
process regression is completely characterized by its mean function and covariance function.
Since the mean value of the Gaussian process regression model is assumed to be 0 for
reducing the computational burden, the quality of the final prediction result is related to the
selection of the covariance function. However, the calculation of the covariance function is
very complicated, and the kernel function can greatly simplify the calculation process.

The commonly used kernel function is the RBF, which can be mapped to infinite
dimensions, has few parameters, is easy to choose, and has good anti-interference ability
against noise in the data. The expression of RBF kSE is:

kSE(d) = σ2
f exp(− d2

2l2 ), d =
∣∣x− x′

∣∣ (13)

The σ2
f in Formula (13) represents the coefficient, and the l represents the scale factor,

d represents the Mahalanobis distance between training data and test data. Therefore, it
uses a reasonable kernel function to curve fit the training points, and then it completes the
estimation and regression of the ground height in each segment, a process called Gaussian
process regression (GPR).

3.2. Gaussian Process Regression Based on Sparse Kernel Function for Ground Segmentation

However, in the actual ground segmentation process, the RBF does not perform well,
it mainly because of the huge amount of computation it requires. Moreover, considering the
characteristics of ground segmentation—that is, in the absence of obstacles, the height of
adjacent bins on the ground will not change significantly—we introduce a sparse covariance
function to reduce the amount of computation while maintaining the regression accuracy,
which is presented as kSSE. The expression for the sparse covariance function can be
presented as:

kSSE(d) =

{
σ2

f [
2+cos(2π d

l )
3 (1− d

l ) +
1

2π sin(2π) d
l ] if d < l

0 if d ≥ l
(14)

The difference between introduced sparse covariance function and the RBF is that the
Mahalanobis distance is added as a judgment. When the Mahalanobis distance between the
samples is greater than the scale factor l, they are independent of each other, which means
the kernel function is 0. When the Mahalanobis distance d is less than the scale factor l,
the weight of the influence factor can be assigned by the distance between the two points.
Since a certain bin is basically only affected by nearby bins, the sparse covariance function
is well suited for ground segmentation in a physical significance.

Remark 1. The pseudo-code of proposed algorithm is shown in the Algorithm 1. For ease of
expression, we define several functions. The function LocationTranslation Transaltion represents
the process of point cloud coordinate projection in Section 2.2, and Ss and Bm represent the
total number of segments and bins, respectively. In this paper, Ss is set to 120, and the bin is
divided according to the scanning characteristics of LiDAR. Within the scanning range of 20 m,
one segment is divided into 100 bins, where the center point distance in adjacent bins is 0.2 m, and
in the scanning range of 20–50 m, the remaining regions in the current segment are divided into
60 bins. Therefore, the Bm in this paper is set to 160. The judge function represents the process of
ground candidate point selection, which is explained in detail in the Section 2.3. The points filtered
by the criteria proposed in Section 2.3 are stored in the Pinitial ground points for Gaussian process
calculation. Function model represents the reference ground curve result which calculates by the
Gaussian process (GP) in Section 3.1. kSSE represents the sparse covariance function introduced by
Formula (14) and the GPR represents the ground point regression which uses curve fitting result
calculated by Gaussian process in each segment, while the Hre f erence represents reference regression
height of the ground, and PGround represents the final ground point set.
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Algorithm 1 Ground segmentation based on Gaussian process regression with sparse
covariance function

Input : Pk, δ2
f , l, φ, Hre f erence, kssE

Output :PGround
1 : LocationTranslation : Pk(x, y, z)⇒ Pk(r, z, S, B)
2 : for i = 1 : Ss
3 : for j = 1 : Bm
4 : Pinitial ground points = Pinitial ground points ∪ judge(Pj(r, z, Si, B))
5 : end
6 : model = GP(Pinitial ground points, δ2

f , l, kssE)

7 : PGround = GPR(model, Hre f erence)

8 : end

4. Experiments and Analysis

KITTI dataset is the most commonly used autonomous driving evaluation dataset
currently, which collects a large number of pictures, point clouds and IMU data in urban
and rural environments. The KITTI dataset provides point cloud data collected by a 64-line
LiDAR, and annotated with the vehicle type and its location as real ground. Therefore,
we use the KITTI dataset to verify the feasibility of proposed algorithms. The code is
implemented by MATLAB 2020a on a laptop with Ryzen 4800H CPU and 16 GB RAM.

In addition to the KITTI dataset, we also use our own autonomous driving exper-
imental verification platform to verify the applicability of the algorithm in the campus
environment which contains the slope and intersection conditions. Our environmental per-
ception equipment consists of a Velodyne VLP-16 Lidar and AVT Mako G503C monocular
industrial-grade camera, which are mounted on a chassis that can be controlled and all
calculation work is done by an industrial computer, which equipped Intel Xeon E3-1275 v5,
and NVIDIA GTX 2080s graphics card, 32 GB RAM. The unmanned driving experimental
platform is shown in Figure 4.
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4.1. Hyperparameter Acquisition

As shown in Formula (14), there are some quantities that need to be obtained through
training in advance in the kernel function, which are called hyperparameters. Calculating
hyperparameters in real-time for each frame of LiDAR data is a heavy burden on the
computer. Therefore, it is more reasonable to calculate it in advance, which adapts to as
many ground shapes as possible for Gaussian process. In the sparse covariance function,
the hyperparameters are δ2

f and l. For curve fitting based on Gaussian process, the scale
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factor l affects the complexity of the curve. When l is smaller, the curve is more complex.
In addition, σ2

f affects the confidence interval, which represents the fault tolerance of the
model. Therefore, in the ground reference height curve model in this paper, the physical
meaning corresponding to l is the complexity of the ground curve in each segment. For
a more convenient expression during next derivation process, all hyperparameters are
denoted by θ = {θ1, θ2, θ3 . . . θn}. The most commonly used method is to convert the
maximum a posteriori solution of θ into the solution of the maximum marginal likelihood
function p(θ|y, X) by Bayes theorem; the solution processes are as follows:

p(θ|y, X) =
p(y|X, θ)p(θ)

p(y|X)
(15)

log p(θ|y, X) = −1
2

yT(K + σ2
f I)
−1

y− 1
2

log |K + σ2
f I| − n

2
log 2π (16)

∂L(θ)
∂θi

= −1
2

trace(Σ−1 ∂Σ
∂θi

)− 1
2

yTΣ−1 ∂Σ
∂θi

Σ−1y (17)

where the L(θ) = log p(θ|y, X), ∑ = K(x, x) + δ2
f I. The trace represents the trace of the

matrix. Then it uses the conjugate gradient method to solve the best value, and finds
the direction of the gradient drop, and the value drops to convergence after repeating
iterations. We select 500 frame point cloud data in the KITTI dataset to get the best
parameters in this paper, which includes different pavements in city roads. Figure 5 is
the fitting result of randomly selected six frames of data, which shows that this parameter(

δ2
f = 0.159, l = 9.04

)
can better adapt to various types of ground with little fluctuation.

4.2. The Verification Effect of the Algorithm on the KITTI Dataset

In the verification experiment based on the KITTI dataset, four datasets were selected
for processing, which total more than 1000 frames of point cloud data. The most used
RANSAC algorithm and the Ray Ground Filter (RGF) algorithm proposed in [19] were used
as comparison. In this paper, we evaluate the performance of ground segmentation using
the ability resist over-segmentation and under-segmentation. Currently, there is no labeled
open-source dataset which is used to evaluate the ground segmentation effect; many papers
rely on visual effects to compare the effects of algorithms [15,22]. Therefore, the ground
segmentation effect in this paper will be reflected by the ratio of ground points to all points
in a frame of data. Figure 6 show the ratio of ground points of 2011_09_26_drive_0018 and
2011_09_26_drive_0051 respectively, and their common feature is that they all have a certain
slope. It can be clearly seen that due to the existence of slopes, the ratio of ground points
in the RANSAC algorithm has always been very low, which indicates that the RANSAC
algorithm has always been in a state of under-segmentation. The proportion of ground
points of RGF and the proposed algorithm is higher than that of the RANSAC algorithm,
but the ratio of ground points of the RGF algorithm is always higher than that of the
proposed algorithm, so the results need to be further analyzed.

Figure 7 shows the segmentation results for one of the frames in dataset
2011_09_26_drive_0018, the ground points are shown in red, and the non-ground points are
shown in green. It can be seen from Figure 7a that the RANSAC algorithm does not have
the ability to describe the ground fluctuation, and obvious under-segmentation occurs at
Section A and Section B. The more intuitive comparison between Section C and Section
D in Figure 7 is shown in Figure 8, which shows the RGF has obvious over-segmentation
where there are obstacles. Table 1 shows that the proportion of ground points after the
frame is divided by three types of algorithms. It can also be seen that the RGF algorithm
has over-segmented. The reason is the RGF algorithm must set a relatively loose slope
threshold and height threshold to ensure enough acquisition, which inevitably leads to the
insensitivity of the RGF algorithm to height. The proposed algorithm relies on the strong
regression ability of the Gaussian process, and the slope threshold and height threshold can
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be set stricter. Therefore, the proposed algorithm can both describe the undulating ground
to prevent under-segment and prevent over-segmentation.
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Figure 6. The ratio of ground points in two KITTI dataset. (a) The ratio of ground points in
2011_09_26_drive_0018. (b) The ratio of ground points in 2011_09_26_drive_0051.

Figure 9 shows the segmentation results for one of the frames in dataset
2011_09_26_drive_0051. It can be seen the RANSAC algorithm has obvious under-
segmentation for the ground with a certain height fluctuation, which means the ground is
not a perfect plane. In the real situation, the Section A, Section B and Section C in Figure 9a
are with slope; it is hard to describe this kind of ground plane through RANSAC. The result
of RBF representation is that it can be well adapted to slope conditions, which benefit from
its slope and height threshold settings in each segment. Therefore, in the RGF algorithm, a
larger height and slope threshold needs to be used for ground segmentation. This is why



Machines 2022, 10, 507 12 of 17

significant over segmentation occurs in areas with obstacles, such as shown in Section D
and Section E. From the proposed algorithm segment result, it can be clearly seen that its
ground description ability is better, and the ground presents a certain undulation, which
is very important to avoid over-segmentation. The ground reference height in each bin is
derived from the result of Gaussian process regression.
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Figure 7. Comparison of segmentation result of three types of algorithms in dataset
2011_09_26_drive_0018. (a) RANSAC algorithm. (b) RGF algorithm. (c) Proposed algorithm.
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Table 1. Statistics of ground points and non-ground points in Figure 7.

Method Ground Points Non-Ground Points Ratio of Ground Points

RANSAC 23,316 13,219 63.82%
RGF 30,306 6213 82.99%

Proposed 29,396 7133 80.47%
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Table 1 shows the ratio of ground points in the segmentation results of the three types
of algorithms in Figure 7, and Table 2 shows the ratio of ground points in the segmentation
results of the three types of algorithms in Figure 9. The number of ground points obtained
by the RGF algorithm are more than the actual number of ground points, which means RGF
shows obvious over-segmentation, while RANSAC shows obvious under-segmentation.
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Table 2. Statistics of ground points and non-ground points in Figure 9.

Method Ground Points Non-Ground Points Ratio of Ground Points

RANSAC 15,844 37,869 29.56%
GPF 20,545 31,064 39.91%

Proposed 16,416 278,561 37.08%

The time-consuming result comparison is shown in Figure 10. Since the RANSAC
algorithm simply fits a random plane, it takes the shortest time, with an average time of
0.0358 s. In addition, the RGF algorithm takes into account certain ground fluctuations; the
average time-consuming is 0.1511 s, which is slightly higher than the RANSAC algorithm.
Compared with the RGF algorithm, the proposed algorithm has one more step, so it is
reasonable that the time consumption is higher than that of the RBF algorithm. Meanwhile,
the experimental conclusions of the literature [17] and literature [20] proved that the higher
time consumption is acceptable and can achieve the real-time performance of autonomous
driving. The average time consumption of the algorithm using the RBF function is 0.3483 s,
while the average time consumption of the proposed algorithm is 0.2184 s, and the time
consumption is reduced by 37.26%. This proved that the Gaussian process using sparse
covariance runs more efficiently than Gaussian process using RBF kernel function, which
means that compared with the traditional RBF kernel function, the introduced sparse
covariance function can effectively reduce the time consumption.

Machines 2022, 10, x FOR PEER REVIEW 15 of 18 
 

 

RGF shows obvious over-segmentation, while RANSAC shows obvious under-segmenta-

tion. 

Table 2. Statistics of ground points and non-ground points in Figure 9. 

Method Ground Points Non-Ground Points Ratio of Ground Points 

RANSAC 15,844 37,869 29.56% 

GPF 20,545 31,064 39.91% 

Proposed 16,416 278,561 37.08% 

The time-consuming result comparison is shown in Figure 10. Since the RANSAC 

algorithm simply fits a random plane, it takes the shortest time, with an average time of 

0.0358 s. In addition, the RGF algorithm takes into account certain ground fluctuations; 

the average time-consuming is 0.1511 s, which is slightly higher than the RANSAC algo-

rithm. Compared with the RGF algorithm, the proposed algorithm has one more step, so 

it is reasonable that the time consumption is higher than that of the RBF algorithm. Mean-

while, the experimental conclusions of the literature [17] and literature [20] proved that 

the higher time consumption is acceptable and can achieve the real-time performance of 

autonomous driving. The average time consumption of the algorithm using the RBF func-

tion is 0.3483 s, while the average time consumption of the proposed algorithm is 0.2184 

s, and the time consumption is reduced by 37.26%. This proved that the Gaussian process 

using sparse covariance runs more efficiently than Gaussian process using RBF kernel 

function, which means that compared with the traditional RBF kernel function, the intro-

duced sparse covariance function can effectively reduce the time consumption. 

 

Figure 10. Time consumption comparison of four algorithms on four datasets. 

4.3. The verification Effect of the Algorithm on the Autonomous Driving Algorithm Verification 

Platform 

Similarly, we selected two typical scenes of slope and intersection for segmentation 

and comparison in the campus environment, which can test the ability of the ground seg-

mentation algorithm to describe the ground. Figure 11 shows the segmentation results in 

the scene with slopes, and Figure 12 shows the segmentation results at the intersection. 

Figure 10. Time consumption comparison of four algorithms on four datasets.

4.3. The verification Effect of the Algorithm on the Autonomous Driving Algorithm
Verification Platform

Similarly, we selected two typical scenes of slope and intersection for segmentation
and comparison in the campus environment, which can test the ability of the ground
segmentation algorithm to describe the ground. Figure 11 shows the segmentation results
in the scene with slopes, and Figure 12 shows the segmentation results at the intersection.

From the segmentation results of the RANSAC algorithm in Figure 11 it can be seen
that because RANSAC does not have the ability to describe the slope, there is an obvious
under-segmentation phenomenon in Section A and Section B. For the RGF algorithm,
although the slope can be described, the segmentation failed in Section C. This is because
the RGF algorithm only relies on the height and slope criteria, and the robustness is poor.
Once the lowest point in a bin does not meet the criteria, there is no reference height in the
bin, resulting in inaccurate estimation.

Figure 12 shows the segmentation effect in the intersection scene. Similarly, the
RANSAC algorithm has obvious under-segmentation at section A, and for the RGF algo-
rithm, Section B is also under-segmented due to the threshold setting.
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Table 3 shows the proportion of ground points in the segmentation results of the three
types of algorithms in Figure 12. It can also be seen that RANSAC has serious under-
segmentation. Comparing the RGF algorithm and the proposed algorithm, it can be found
that in the case of no over-segmentation, the proposed algorithm obtains more ground
points, accounting for 63.51%.

Table 3. Statistics of ground points and non-ground points in Figure 11.

Method Ground Points Non-Ground Points Ratio of Ground Points

RANSAC 9605 7187 57.2%
RGF 10,168 6624 60.55%

Proposed 10,665 6127 63.51%

5. Conclusions

This paper proposes a robust ground segmentation algorithm for LiDAR based on
Gaussian process to reduce situations of over-segmentation and under-segmentation. The
ground reference height is accurately estimated by performing Gaussian process in each
segment. Firstly, we use the height criteria and the slope criterion to search for real
candidate ground points in each segment, and then use the candidate ground points as
training data for Gaussian process to calculate the ground reference height of each bin.
Finally, the extraction of ground points is done in each segment. Validation experiments on
KITTI dataset and autonomous driving platform proved that the proposed algorithm has
better resistance to over-segmentation and under-segmentation than traditional RANSAC
algorithm and RGF.

However, the algorithm proposed in this paper still has some deficiencies. The first
is that although a certain ground continuity is considered in the segment, the ups and
downs of the ground are still affected by adjacent segments. Second, the algorithm needs
to calculate the hyperparameters when the road situation has a significant change, this
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means the algorithm has poor adaptability to different types of ground. In fact, we could
calculate the hyperparameter during each frame process, but this would bring heavy
computation burden. Therefore, future work needs to further explore the adaptive problem
of hyperparameters to balance the adaptability and real-time performance of the algorithm.
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