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Abstract: Resource-constrained product general assembly lines with complex processes face signifi-
cant challenges in delivering orders on time. Accurate and efficient resources allocation of assembly
lines remain a critical factor for punctual order delivery, full use of resources and associated customer
satisfaction in complex production systems. In order to quickly solve the order-based dynamic
resource allocation problem, in this paper a metamodel-based, multi-response optimization method
is proposed for a complex product assembly line, which has the characteristics of order-based pro-
duction, long working time of processes, multiple work area re-entry and restricted operator quantity.
Considering the complexity of the assembly line and the uncertainty of orders, the correlation be-
tween system performance indicators and resource parameters is investigated. Multiple metamodels
are constructed by the Response Surface Methodology to predict and optimize the system perfor-
mance. The adequacy of the constructed metamodels is verified and validated based on the bootstrap
resampling method. Under the condition of ensuring the throughput demand of the assembly line,
the desirability function is applied to simultaneously optimize the multi-response, and the resource
allocation solution is generated. The method in this paper can be used to rapidly adjust the resource
configuration of the assembly line when considering the order changes.

Keywords: metamodel; order-driven assembly; resource configuration; simulation

1. Introduction

Aerospace products are typically complex products based on a discrete manufacturing
system. Considering the specificity of the product’s use, small batches are made according
to customer orders [1]. Aerospace products are generally high-value products that are not
suitable for long-term storage, such as rockets and satellites. The demand for aerospace
products is unstable due to their special purpose. Because product performance can be
directly affected by long-term storage, manufacturers are required to deliver products
strictly according to customer order requirements. It indicates that the manufacturer needs
to strictly control the throughput of the product assembly line without either advanced or
delayed deliveries.

The general assembly process of a kind of aerospace product consists of many par-
allel assembly workstations with a re-entry process and resource constraints. There are
many resource constraints, such as operators, workstations and transportation. Especially
regarding operators and workstations, there are only more than a dozen operators in the
assembly line, but there are nearly 100 workstations overall. Its production mode is nei-
ther a traditional assembly flow line [2] nor a pulsating line [3], where the products flow
through the fixed stations with regular operators at each station. The operator resource
of the assembly line is made up of a certain number of master and auxiliary operators,
who work together to complete the assembly tasks of a workstation. The station number is
far greater than the number of operators. The operators should change their station after
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completing the jobs on the current station. Because of large volume and weight with exten-
sive parts, aerospace products always have a longer manufacturing cycle and a complex
assembly process. The duration of the processes at a workstation may be minutes, hours
or days. Due to the long process time of some works, there are several large areas with
multiple parallel workstations. Re-entry during the assembly process is more common due
to process requirements and long working-time processes. The above-mentioned resources
of product assembly line should be changed in time to ensure that production capacity
meet the customer’s requirements.

For such an aerospace products assembly line, fast and reasonable adjustment of
production resource configuration is indispensable to ensure the order delivery time and
decrease the waste of resources. Traditionally, simulation methods are often used to solve
such problems. But the time spent on iterative simulation becomes longer and longer as the
complexity of the model increases [4]. Metamodel methods are favorited by scholars and
practitioners for their rapidity and accuracy in solving resource allocation problems [5].
Digital Twin is also a popular method to solve production resource allocation problems [6].
Its core is models and algorithms for optimization and prediction. Compared to traditional
simulation and metamodel approaches, Digital Twin pays more attention to real-time
performance. In this paper, considering the assembly resources adjusted by month for
the aerospace product, we use the second-order response surface metamodel method to
predict the complex system performance under different resources configurations in an
aerospace product line. The stability of the metamodel output is verified by the bootstrap
resampling method. The resource allocation scheme satisfying the throughput target of
orders is quickly obtained based on the desirability function.

The remainder of the paper is organized as follows. Section 2 reviews the methods
in solving resource configuration problems. Section 3 explains the basic scenario of the
problem and proposes solution ideas. Section 4 constructs a second-order response surface
metamodel for the case assembly line and applies the desirability function for resource
allocation. Section 5 concludes and gives an outlook on future works.

2. Literature Review
2.1. Simulation-Based Method for Resource Configuration of Manufacturing Systems

Simulation is the process of building visible models of real systems for experimental
study of real systems [7]. Especially when different system configurations or processes need
to be validated [8], simulation is a significant tool for modelling and analyzing the true
performance of manufacturing systems. It has functions such as identifying and dealing
with bottlenecks in manufacturing plants, predicting plant capacity, observing machine
operating efficiency and so on [9–12].

A simulation-based method can find the resource configuration that gives the ideal
performance by changing the resource parameters in the model [13–15]. Imseitif et al. [16]
established a serial manufacturing line model in Simul8 software. They studied the impact
of multiple resource factors on throughput, such as the cycle time of workstations, the
length of a manufacturing line and the capacity of internal buffers through simulation.
A simulation-based method for port capacity assessment and expansion planning was
proposed in [17], which can associate a capacity value to a given resource configuration. The
method pointed out the optimal resource configuration for a given expected throughput.
For an electric device re-manufacturing system, Calvi et al. [18] presented a simulation
model in Simio software with an activity-based costing method to evaluate different system
configurations. The model analyzed the impact of configurations (e.g., resources and
workstations) on system throughput, resource utilization and equipment costs.

Recently, more and more scholars have integrated metaheuristic algorithms into
simulation to analyze the resource allocation problem of the production line, so as to
predict and optimize system performance [19,20]. For the resource configuration of the
reconfigurable manufacturing systems, Diaz et al. [21] proposed a simulation method
based on the Non-dominated Sequential Genetic Algorithm (NSGA-Il) to get the optimal
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allocation of work tasks and workstations. Yegul et al. [22] studied the resource allocation
problem of electric vehicle component production lines. A simulation optimization method
based on a Simulated Annealing algorithm was used to solve configuration problems
of nine resources, such as the number of machines and workers at workstations that
maximize annual profit. For a water heater production line [23], an integrated simulation
and metaheuristic algorithm (Genetic Algorithm and Particle Swarm Optimization) method
was proposed to obtain the optimal buffer allocation.

However, the simulation model must be verified after establishment [6]. It may take
several iterations to obtain the optimal resource allocation solution when the optimization
algorithm is integrated into the simulation model. Because the simulation itself may take a
long time to run, iterative simulation will consume a lot of time.

2.2. Metamodel-Based Method for Performance Prediction and Resource Configuration

Metamodels are mathematical approaches used to approximate simulation models.
Especially when the simulation cost is expensive due to the complexity of the model, it is
helpful to use the metamodel [24]. The metamodel can capture the input/output relationship
of simulation models and generate predictive value faster than simulation models [25–27].
When the number of possible solutions is too large, it is impractical to evaluate all possible
solutions, making it necessary to use a metamodel-based method [28,29].

The most popular metamodel-based method is the Response Surface Methodology
(RSM) [4,30–32]. Azadeh et al. [33] optimized the performance of a steelmaking plant
based on a second-order RSM metamodel, where the effect of four factors (e.g., the number
of converters and mixing machines) on plant capacity was studied. For the problem of
assigning buffers in a production line, Nuñez-Piña et al. [34] found the optimal output
values through the construction of a predictive four-order RSM metamodel. In their
work, the relationship among the number of buffer slots, the number of workstations
and the production rate is studied. In order to solve the buffer allocation problem for
unreliable and unbalanced production lines, Motlagh et al. [35] developed a second-order
RSM metamodel of throughput. The parameters are workstation operating time and buffer
capacity. The NSGA-Il and the Non-dominated Sequential Genetic Algorithm (NRGA) were
applied to maximize the capacity and minimize the cost of an automotive body rear-floor
production line.

The other metamodel methods are also used for production resource allocation [36–39].
In order to predict the production throughput of surface mount technology production
lines, Li et al. [40] presented a Symbiotic Organism Search Algorithm-based Support Vector
Regression metamodel considering the production line configurations, which include the
printed circuit broad board type, machine configurations and so on. Facing the buffer allo-
cation problem, an Artificial Neural Network (ANN) metamodel was applied to establish
the decision support system for searching the optimal buffer allocation solution [41]. A
Kriging metamodel was established with three input variables (e.g., solid mass fraction
in the reactor, enzymatic load and hydrolysis reaction time) to analyze the production of
bioethanol in [42].

The most important advantage of a metamodel-based method is to approximate and
replace expensive simulation models, making optimization faster [43]. However, when
training metamodels, a certain number of observations (training set) are obtained through
simulation model experiments, which is time consuming because of the larger size of the
training set [44].

Considering the complexity of order-based complex production systems, this paper is
committed to solving the resource allocation problem of such systems using the metamodel-
based method. There are two contributions of this paper: (1) It provides decision support for
such assembly lines with re-entry, long processes, personnel constraints, etc. A metamodel-
based, multi-responses optimization method is used to optimize resource configuration
considering the delivery time of an order, which can also analyze and predict the system’s
performance. (2) A complex aerospace product general assembly line in real life with
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extremely unbalanced working time of processes is used to verify the approach for dynamic
resource allocation based on the order requirement.

3. Problem Statement and Method Description
3.1. Assembly Process of Aerospace Products

In the face of unstable orders and strict delivery requirements, the resource-constrained
aerospace product assembly system requires rapid adjustment of resource allocation. Our
goal is to find a reasonable resource allocation solution while ensuring on-time delivery
of orders.

In the aerospace product assembly line, workers are usually classified into two types
based on skill level: master operator (MO) and auxiliary operator (AO). The MO can
complete the work of the AO, but the AO cannot complete the work of the MO. Because
of the special requirements of the assembly line, there is an upper limit for the number of
master and auxiliary operators in the general assembly workshop, which are Am workers
in total.

The basic assembly process of the aerospace product studied in this paper is shown in
Figure 1, including assembly, testing, repair, painting, and measurement, etc. In the figure,
Zi (Zi ≥ 1) indicates the number of workers required to complete the process, Mi (Mi ≥ 1)
is the minimum number of master operators required, and Am is much smaller than the
sum of Zi. Processes in a dashed box are completed at the same station in the same area.
The working time required by the process has been written in the process flow. From the
process flow, we can see that the working time of the dry process can be up to several days.
For example, the working time of process 10 is seven days and that of process 25 is four
days. The rest of the process operating time is basically measured in minutes. In addition,
the sum of long processes working-hours accounts for 97.2% of the total assembly working
hours. There are multiple tests, measurements and repairs in the whole assembly process.
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Figure 1. The assembly process of case product.

A typical assembly line layout for the aerospace product studied is shown in Figure 2.
There are a number of areas, such as the manual assembly area, automatic assembly area,
quality control area, special process area, measurement area, packing area, finishing area
and parts warehouse. In the figure, the arrow is the logistics route of the assembly process
according to the process flow. Si (Si ≥ 1) indicates the number of stations in each area. In
order to reduce the impact of long working hours on production efficiency, some parallel
workstations (Si ≥ 2) have been configured in areas where working hours are too long
according to process requirements. The logistics road map shows that there are re-entries in
the quality control area, special process area and measurement area. There are three types
of transfer tools in the general assembly line, which are AGV-1, AGV-2 and trolley.
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3.2. Metamodel-Based, Multi-Response Optimization Method

The metamodel represented by the RSM method has the function expression, which
can directly optimize under feasible constraints. The ANN metamodel can only predict the
output based on the input, which requires the addition of other optimization algorithms to
find the optimal solution. Moreover, the RSM has many important advantages for solving
resource configuration problems. It allows the use of statistical tools to evaluate the fitness
of the approximated RSM metamodel. A small number of experiments can reveal the influ-
ence of factors (input variables) and their interactions on system performance. The RSM is
quite effective with a limited number of design variables [38]. In this paper, considering
the prediction and optimization achieved simultaneously, the second-order RSM meta-
model that takes into account interactions between resources is chosen. Multiple response
metamodels are used to analyze, predict and optimize system performance indicators.

A simulation optimization method based on multiple RSM metamodels is proposed
to solve the problem of order-oriented rapid resource allocation. In order to obtain the
resource allocation solution that meets the demand of the order, we should optimize
multiple responses simultaneously. The response surface metamodel ym of the performance
indicator m is built as shown in Equation (1).

ym = εm + ∑ θm
i xi + ∑ ∑ βm

ij xixj (i, j = 1, 2, · · · , n; i ≤ j; m = 1, 2, · · · , m ) (1)

where xi, xj denotes the resource factor. There are n resource factors and m performance
indicators selected. For the response ym, εm is the random error with zero mean and σ2

variance. θm
i , βm

ij are the coefficients of xi and xixj, respectively.
The individual desirability dw of the response ym is calculated as shown in Equation (2).

dm =
((

ym
′ − Lm

)
/(Tm − Lm)

)wm (2)

where ym
′ is the predicted value of response, ym, Lm is the lowest value for response, ym,

Tm is the target value of response and ym. wm is the weight corresponding to the response.
Therefore, the objective is to maximize the composite desirability value (D), as shown

in Equation (3), where the throughput response meets the target demand and the remaining
response values are maximized. The D ranges from 0 to 1, and the closer to 1, the better the
resource allocation solution is.

max D = (w1+w2+···+wm)
√

d1
w1 ·d2w2 · · · · ·dmwm =

∑ w
√

∏ dw (m = 1, 2, · · · , m) (3)

The constraints are as follows:

NM + NA ≤ Am (4)
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Si ≤ Sim (5)

NA ≥ 0 (6)

NM ≥ max{Zi} (7)

y1 ≥ Q1 (8)

where NM is the number of MO and NA is the number of AO, Sim is the maximum number of
workstations in the corresponding area i and y1 is the response of throughput. Equation (4)
demonstrates that the sum of the number of MO and AO cannot exceed the upper limit
number of workers in the workshop. Equation (5) shows that the number of workstations
in area i is less than or equal to the maximum number of workstations limited in that
area. Equation (6) means that the number of AO is non-negative. Equation (7) denotes
that the number of MO is not less than the maximum number of workers to complete the
entire assembly process. The minimum number of workers to complete the entire assembly
process is the maximum value of the number of workers required to complete each process.
Equation (8) represents that the response–throughput needs to meet the order demand Q1.

The metamodel-based, multi-response optimization method is shown in Figure 3.
There are two main processes, i.e., multiple-response surface metamodels’ construction
and multi-responses optimization. For an order-driven complex product assembly system,
a simulation model is built to reflect the real system. It is known that not all changes
of system performance caused by changes in resources are directly perceived. Because
resource factors with insignificant effects can be ignored in production control, the variables
that have a major impact on system performance must be identified by sensitivity analysis.
Based on the resource constraints of the assembly system, the correlation between multiple
resource factors and system performance responses is investigated through the simulation
data obtained by DOE. Then, the metamodels are constructed and validated. The multi-
responses optimization is shown on the left side. After receiving an order with product
quantity Q0 and the delivery time in months, we need to split the order on the basis of each
month and get the target value Q1 of the throughput response. To obtain the value of D
and the optimal resource allocation scheme, we apply the desirability function to optimize
multiple responses. Finally, the optimal resource configuration is sent to the assembly line.

1 
 

 

Figure 3. Metamodel-based, multi-response optimization method.
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4. Case Study
4.1. Simulation Model of the Assembly Line

As shown in Figure 4, through process modelling, data collection and stochastic
distribution fitting of process time, a discrete event simulation model of the aerospace
product general assembly line is built in Anylogic software (8.7.6, the Anylogic Company,
Chicago, IL, USA).
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The established simulation model is verified by the following work. (1) The model
check function provided by Anylogic is performed to ensure the logic and structural
correctness of model. (2) The manual check of generated simulation model in Anylogic
is also carried out one by one to affirm that the simulation model is consistent with the
exact one constructed through a traditional method by a simulation expert. (3) After the
debugger completes the logic correction, the Anylogic animation is used to check the
material flow and operational rules of the system, particularly for reasonableness under
the various settings of input parameters. (4) The visual tool of Anylogic is applied to show
real-time data of several key indicators and to ensure that the variations of the indicators
are reasonable.

The system performance data is collected from the simulation model during the steady-
state operation period after warm-up. To ensure the accuracy of the simulation data, the
simulation is repeated 10 times for each experiment. The average value of the 10-times
results is taken as the final data of this experiment. Each simulation is run for a year with
8 working hours per day and 5 days per week.

4.2. Sensitivity Analysis and DOE of Resource Factors

In this paper, the influence of various resource factors on system performance indi-
cators is investigated through sensitivity analysis. Sensitivity analysis is an uncertainty
analysis technique that studies the influence of a certain change of relevant factors on a key
indicator or a group of key indicators from the perspective of quantitative analysis [45].
Using the control variable method, the resource parameters are changed one by one in the
simulation model, whereas other factors are kept in their initial state. The system perfor-
mance data is collected to analyze the positive or negative impact of each factor. Since the
purpose of this paper is to meet the order demand while maximizing resources utilization,
the impact of resources on system throughput should be analyzed. After the sensitivity
analysis, the factors that have main effects on the general assembly line performance are
determined as follows:
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• the number of master operators x1;
• the number of total operators x2;
• the number of quality-control workstations x3;
• the number of packaging workstations x4;
• the number of finishing workstations x5.

In order to better capture representative groups among all resource combinations and
to appropriately reduce the number of experiments, the level ranges of the studied resource
factors are shown in Table 1, where −1 refers to the lowest level, +1 refers to the highest
level and 0 refers to the middle level.

Table 1. Factor Level of Assembly Resources.

Level x1 x2 x3 x4 x5

−1 4 14 1 1 2
0 9 17 2 2 8
1 14 20 3 3 16

A DOE method is used to address the selection of independent factors and investigate
how to choose the level combination of independent factors suitable for the target. The
commonly used DOE methods are usually factorial design, Central Composite Design
and Box-Behnken Design [40,46]. The choice of the appropriate DOE method depends on
the function under study, the metamodel used, and the limitations of the problem [37].
Considering the resource factor level and the sample size comprehensively, a complete
35 factorial design with two centers is chosen to study the overall factor influence of the
general assembly line. This would require a simulation running for a total of 243 different
design points.

4.3. Metamodel Construction Based on Second-Order RSM

A fully quadratic regression analysis is chosen to establish the second-order RSM
metamodels, as shown in Equation (1). There are seven second-order RSM metamodels
representing the system performance indicators studied, as listed in Table 2. Before its
application, the metamodel is tested for fitting to determine if it properly represents the
data of the simulation model. A key indicator of fitting is the R2 value, which evaluates
the internal data performance of the model [30]. The R2 value ranges from 0 to 1. The
higher the R2 is, the better the model is. And its value is calculated from the same data
used to construct the RSM metamodel. Because this paper studies the influence of multiple
factors on performance, it is a multivariate statistic. Thus, the adjusted R2 value is used to
measure the fitness from analysis of variance (ANOVA), excluding the influence caused by
the number of factors on the R2 value.

Table 2. Responses of System Performance Indicators.

Response Name Response Code Weights

Throughput y1 w1
Utilization of special process workstations y2 w2

Utilization of packaging workstations y3 w3
Utilization of finishing workstations y4 w4

Utilization rate of testing workstations y5 w5
Utilization rate of MO y6 w6
Utilization rate of AO y7 w7

The ANOVA results of the response throughput y1 are listed in Table 3. The F-value is
379.33 and the p-value is 0.000. The p-value is less than 0.05, indicating that the meta-model
is statistically significant at the 95% confidence level. The F-value is above the critical value
2.253. The larger the F-value, the higher the significance level of the model. In addition,
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the adjusted R2 value is 96.90%, indicating that the data fit well with the regression line.
Therefore, the fitness of the metamodel is supported by sufficient evidence. Thus, the
metamodel is accepted to determine the predicted optimal value for the throughput. The
metamodel of throughput response is shown in Equation (9).

y1 = (−79)− 1.01x1 + 13.5x2 + 72.4x3 − 10.3x4 + 28.74x5 − 0.411x1·x1 − 0.674x2·x2 − 41.63x3·x3 − 2.20x4
·x4 − 1.577x5·x5 + 0.169x1·x2 + 1.266x1·x3 + 0.549x1·x4 + 0.497x1·x5 + 2.15x2·x3
+0.54x2·x4 + 0.623x2·x5 + 1.02x3·x4 + 10.755x3·x5 + 0.637x4·x5

(9)

Table 3. ANOVA for Response Throughput.

Source DF Seq SS Adj SS Adj MS F-Value p-Value

Model 20 12,706,076 12,706,076 635,304 379.33 0.000
Error 222 371,807 371,807 1675 - -
Total 242 13,077,883 100% - - -

R2 97.16% - - - - -
R2(adj) 96.90% - - - - -

The main ANOVA results of the seven responses (y1 to y7) are shown in Table 4,
including the F-value, the p-value and the adjusted R2 value. It can be found that all
p-values are less than 0.05, all F-values are more than 2.253 and all the adjusted R2 values
are greater than 70%. Therefore, the metamodels of the responses y1 to y7 all satisfy the
acceptance conditions and can be used directly for subsequent optimization.

Table 4. The main ANOVA results of the responses y1 –y7.

Statistics y1 y2 y3 y4 y5 y6 y1

F-Value 379.33 79.25 31.36 87.05 159.21 292.86 51.39
p-Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000
R2(adj) 96.90% 86.61% 71.51% 87.67% 92.90% 96.02% 80.64%

4.4. Validation of Throughput Response Meta-Model

The fitness of the metamodel for the non-training data in the solution space should
be validated. This is because the R2 indicates how well the model fits the existing data
(training data set), but it does not measure how well the model fits the new data set. The
main methods to validate the metamodel’s fitness are the cross-validation method and the
bootstrap resampling validation method [25,40]. The cross-validation method is commonly
used when the data set is large. The bootstrap resampling validation method can be used
to measure the accuracy of the prediction model and also to evaluate the uncertainty of the
model, which is slightly more complex but more robust than cross-validation. The factors
in this study have a wide range of values and a huge solution space. The experimental
design only takes a small part of the solution space with a small data set. To better validate
the fitness of the metamodel, the fitted throughput RSM metamodel is validated using the
bootstrap resampling method.

The Root Mean Squared Error (RSME) and the Correlation Coefficient (R) are two
popular indicators to measure the performance of the metamodel [34].

(a) The Root Mean Square Error (RSME).

RSME =

√
∑n

i=1(Targeti −Outputi)
2

n
(10)

where n is the number of samples, Targeti is the predicted value calculated by the response
surface meta-model and Outputi is the actual observed value. The lower the RSME is, the
better the model is.
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(b) Correlation Coefficient (R).

R =
Cov(Target, Output)

σTargetσOutput
(−1 ≤ R ≤ 1) (11)

where Cov(Target, Output) is the covariance between the values of Target and the RSM
Output. σTarget and σOutput are the standard deviations of Target and Output, respectively.
The maximum value of R = 1 is reached when the linear relationship is perfect between the
target and output values, whereas when R = 0 it means that a linear correlation does not
exist between the output and target values.

Bootstrap resampling requires a suitable number of repetitions to test the fitness of
the metamodel. Too few repetitions are insufficient to account for fitness, and too many
repetitions are time consuming. In this paper, the normal distribution is randomly sampled
from the solution space five times repeatedly, and twenty-seven sets of observations are
taken each time as the validation set for verification. The validation results of throughput
are shown in Table 5. The minimum and maximum RSME values of five validations are
34.3170 and 42.9624, respectively. The mean value of RSME is 37.3359. In addition, all five
RSME values fluctuate slightly around the mean value. All the R values of five validations
are above 0.98, which is very close to 1. The above results show that the throughput RSM
metamodel has good and stable prediction performance for out-of-fit data.

Table 5. Results of Five Validations for the Throughput RSM Meta-Model.

Test 1 2 3 4 5

RSME 37.230 37.0707 42.9624 34.3170 35.0992
R 0.9879 0.9891 0.9845 0.984 0.9814

4.5. Order Driven Dynamic Resource Configuration

Assume there is an order A, which has a total of 345 products delivered in 8 months
with four times. The first delivery is at the end of the third month with 180 products. A
total of 70 products are needed to be delivered in the fifth month. The third delivery is at
the end of the sixth month with 45 products. Moreover, 50 products need to be delivered in
the last month. The product quantity of order A is divided into monthly throughput as
shown in Table 6.

Table 6. Information of Order A.

Delivery Period Volume Available Time
(Month)

Throughput
Assigned to Month

1 180 3 60
2 70 2 35
3 45 1 45
4 50 2 25

Total 345 8 -

As seen in Table 6, four different throughputs, i.e., 60, 35, 40 and 25, are required over
an eight-month period. Thus, a total of four resource allocations are required in order to
complete the production task. The optimal resource allocation scheme should ensure the
system throughput and the utilization rate of resources should be maximized. The weight
of the response throughput is 8. The weight is 0.5 for the response of personnel utilization.
The utilization of workstations with a weight of 0.2 except for the testing workstation,
whose weight is 0.4. And the optimal resource configuration result is generated using
Minitab. The four resource configuration solutions and the maximum of the composite
desirability D of the assembly line are shown in Table 7.
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Table 7. Resource Allocation Solution Validation.

Delivery
Period

Solution
(x1, x2 , x3, x4, x5) D Order

Target
Meta-Model

Results
Simulation

Results Volume Delivery
Time

1 14, 20, 2, 2, 16 0.8898 60 60 66 180 198
2 6, 14, 2, 2, 8 0.9108 35 35.3 34 70 68
3 4, 15, 2, 2, 12 0.9116 45 45.3 51 45 51
4 9, 14, 2, 2, 5 0.9363 25 25 22 50 42

Sum - - - - - 345 359

For instance, Figure 5 shows the results of the second resource allocation based on
multi-responses optimization. It can be seen that the optimal factor levels for factors xi
(i = 1, 2,· · · , 5) are 6, 14, 2, 2, and 8, respectively. The desirability D of the resource allocation
is 0.9108. Accordingly, there should be 14 operators including 6 master operators, 2 testing
workstations, 2 packaging workstations and 8 finishing workstations. Given these optimal
resource factor combinations, the predicted values of the special process workstations
utilization y2 (85.24%) and throughput y1 (424) are obtained. The curves reflect the trend
that each resource factor influences the individual desirability of each response of the
meta-model. For example, the impact of resource factors x1 and x5 on the composite
desirability D has the extreme value point. The resource factor x5 has a positive effect on
the throughput y1.
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In order to confirm the results of the four resource allocation solutions, the simulation
model is used to validate the solution for each resource allocation. The simulation data
is shown in Table 7. In production planning, when inventory is available, the current
production produced can be less than the order demand, as long as the total production
is satisfied at the time of delivery [47]. The sum of the first delivery throughput is 198,
which can meet the demand of a first-delivery order (A) of 180 and generates inventory.
The inventory can make up for the lack of second and fourth throughput. The sum of all
eight-month throughput is 358, meeting the demand of order A. The simulation data show
that the solution is feasible. Therefore, the reliability of the metamodel and the optimization
method is verified.
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5. Conclusions

For system performance prediction and the resource allocation problem of a general
assembly line with workforce constraints, long working-hour process, multiple work area
re-entry phenomena and order-based production, a simulation optimization method based
on an RSM metamodel is proposed. The sensitivity analysis was conducted to determine
the impact of multiple resource factors on system performance. A factorial design of ex-
periments was carried out to collect data through the simulation model. Multiple RSM
metamodels were developed for the number of master operators, the total number of shop
workers, as well as the number of workstations in the quality control area, the packaging
area and the finishing area on several system performance indicators (throughput, work-
force utilization, work area utilization, etc.). The stability of the most important throughput
RSM metamodel over the entire solution space was verified using the bootstrap resampling
validation method. The seven performance indicators are optimized by the desirability
function together, where the throughput indicator is ensured to satisfy the target demand
and the utilization indicators are maximized. The effective resource configuration solutions
under the satisfied throughput target are obtained for timely delivery in multiple stages.

Compared to traditional simulation modeling methods, the RSM metamodel allows
for a faster initial prediction and determination of the overall performance of the assembly
line based on resource allocation solutions. It can assist workshop managers in making
quick and correct decisions in the face of order changes. The method also provides a
management reference for complex assembly lines. In the future work, a Digital Twin
model can be constructed to realize real-time data collection and performance analysis.
Meanwhile, other multi-objective decision-making methods will be tried to determine
resource allocation.
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