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Abstract: Impact load is a kind of aperiodic excitation with a short action time and large amplitude,
it had more significant effect on the structure than static load. The reconstruction (or identification
namely) of impact load is of great importance for validating the structural strength. The aim of this
article was to reconstruct the impact load accurately. An impact load identification method based on
impulse response theory (IRT) and BP (Back Propagation) neural network is proposed. The excitation
and response signals were transformed to the same length by extracting the peak value (amplitude
of sine wave) in the rising oscillation period of the response. First, we deduced that there was an
approximate linear relationship between the discrete-time integral of impact load and the amplitude
of the oscillation period of the response. Secondly, a BP neural network was used to establish a linear
relationship between the discrete-time integral of the impact load and the peak value in the rising
oscillation period of the response. Thirdly, the network was trained and verified. The error between
the actual maximum amplitude of impact load and the identification value was 2.22%. The error
between the actual equivalent impulse and the identification value was 0.67%. The results showed
that this method had high accuracy and application potential.

Keywords: structural dynamics; impulse response theory; impact load identification; dynamic
inverse problem; BP neural network; signal processing method

1. Introduction

Impact load was a kind of aperiodic load that cannot be ignored in engineering practice.
Impact load acted on the component or structure at a high amplitude in a short time (the
action time was less than half of the fundamental free vibration period of the structure,
always tenths of a millisecond).

Identifying (or reconstruction namely) the impact load on the structure accurately
has significant meanings, for example, it can verify the structural strength and improve
the structural design. This article focuses on the identification of impacts that do not
cause damage: for example, the launch of missiles on a helicopter or the waves on an
ocean platform.

The main focus of this article is the dynamic response of the structure under impact
load. When a structure is subjected to impact load, stress waves and dynamic response of
the structure are usually considered. The research of stress waves mainly has focused on the
local disturbance of objects and its propagation; the research of structural dynamic response
ignored the propagation process and directly studied the deformation, fracture and its
relationship with time. Due to the complexity of the shock form, researchers typically
focused on only one aspect. As an effective method in establishing linear models, artificial
neural networks have been used widely in the research of load identification. He Wei
presented a brief review for the application of neural networks in load identification areas.

Tian Yan et al., (2004) used the RBF network to research the load on gearbox and
performed load identification of the random excitation and bearing excitation [1]. Tian Yan
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et al., (2006) also used the improved Elman network to identify the electrical-mechanical-
fluid coupling shock excitation of the gearbox [2]. Staszewski et al., (2000) used a neural
network model to identify the load acting on the composite box panel and used a genetic
algorithm to optimize the sensor parameters [3]. Ghajari et al., (2013) applied a neural
network model to composite plate, identified loads that took both linear and nonlinear
deformation into consideration [4].

Wang et al., (2015) used the SVM network to conduct multi-point random dynamic
load identification in the frequency domain, and it performed well in the low-frequency
range [5]. Fang et al., (2018) applied a pseudo-linear neural network (PNN) to the vibration
load identification of the primary spur gear box under four working conditions of no-load
and loaded [6]. Cheng et al., (2018) used the improved neural network and BP neural
network to optimize GA-PSO to identify the excitation load of the double-span sub-rotation
system [7].

Zheng Shijie et al., (2009) identified the single point loads of composite plate-shell
structures based on a genetic algorithm and BP neural network [8]. Mitsui et al., (1998)
proposed the idea of using neural network technology to identify the load of the cantilever
beam by using neural network technology [9]. Cooper and Dimaio (2018) used the feed-
forward neural network to realize the wing load identification of large rib loads; however,
they only identified the static loads [10].

Ren et al., (2018) proposed a method of using deep learning technology to perform
load parameter identification and structural failure analysis based on the deformation
and damage characteristics of the structure [11]. Chen et al., (2019) adopted the deep
neural network (DNN) to realize the impact load identification of the rigid body to the
hemispherical shell structure. The results showed that the trained DNN network had high
accuracy for various characteristic parameters of impact loads [12].

Zhang Zhihong and Zhang Hong (2022) used a BP neural network to study the
driving dynamic load recognition of crawler system [13]. Yang Te (2022) used a deep neural
network to extract and identify the time-frequency domain features of stationary random
signals [14]. Xia Peng (2022) introduced the long short-term memory neural network into
the research of dynamic load identification, combined with the “memory” characteristic of
a time-delay neural network and dynamic system [15].

The identification methods above based on neural network had a common feature:
the excitation signal and the response signal were synchronized, that meant the length of
excitation was equal to the response. The correspondence provided an advantage for the
application of neural networks.

However, the excitation and response signal of impact load did not have this advantage.
The action time of impact load was too short (10 ms or less) while the response was long
(10 s or more); therefore, two signals could not correspond one by one. How to extract the
representative information from the response signal was the key point of this article.

The main innovation of this paper was that the peak value (amplitude of sine wave)
in the oscillation rising period of the response was extracted as the input, and the discrete
time integral of the impact load amplitude was extracted as the output. In doing so, two
signals were transformed to the same length, making it possible to be used for training and
validation of a neural network.

The main content of this article includes an impact load identification method based
on impulse response theory (IRT) and BP neural network. The excitation and response
signals were transformed to the same. First, we deduced that there was an approximate
linear relationship between the discrete-time integral of impact load and the amplitude of
the oscillation period of the response. Secondly, a BP neural network was used to establish
the linear relationship between the excitation and response. Thirdly, the network was
trained and verified.

The main content of the following article is as follows. Section 2 introduces the
theoretical basis of the method. Sections 2.1.1 and 2.1.2 introduce the linear relation-
ship between the discrete-time integral of impact load and the peak value (amplitude
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of sine wave) in the rising oscillation period of the response in both the single-degree-
of-freedom (SDOF) system and multi-degree-of-freedom (MDOF) system. Section 2.2
introduces the basic theory of neural network. Section 3 presents the results. Section 3.1
introduces the configuration of experiment, Section 3.2 introduces the signal processing,
and Sections 3.3 and 3.4 introduce the training of the neural network and the identification
results.

2. Materials and Methods

This chapter includes the detailed description of the impulse response theory and the
basic process of the neural network.

2.1. Impulse Response Theory

The Fourier transform theory and the impulse response theory are two methods to
calculate the response under aperiodic excitation. The Fourier transform theory was suitable
for signals with a certain time length. The impulse response theory regards any load as
the superposition of a series of unit impulses, determines the response of unit impulse and
then uses the superposition principle to superpose a series of impulse responses one by
one (or integral form) to obtain the dynamic response of the system.

The impact load has a short acting time and was not suitable for frequency domain
method. Thus, this paper conducted identification research mainly based on the impulse
response method.

2.1.1. Single Degree-of-Freedom (SDOF) System

The aperiodic load excitation F(t) can be regarded as the weighted sum of several
impulse excitation acting at different moments. The time width of each pulse tends to 0, and
the value of F(t) at the corresponding moments can be taken as the weighted coefficient of
each impulse, and thus F(t) can be regarded as the weighted sum of each impulse.

Figure 1 shows the conception of the impulse response theory (IRT).
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As it was assumed that the dynamic system was a linear system, if the response of
the system under the unit impulse excitation was solved, then the whole response can be
solved according to the linear superposition principle. The response of a SDOF system
with unit impulse was discussed under zero initial condition. The differential equation set
of motion of the system was as follows:

m
..
x(t) + c

.
x(t) + kx(t) = δ(t)

x0 = x(0) = 0
v0 =

.
x(0) = 0

(1)



Machines 2022, 10, 524 4 of 18

In the above equation: δ(t) was the unit impulse function, also known as the Dirac δ
function, which was defined as follows:

δ(t− a) =
{

0 t 6= a
∞ t = a

;
∫ +∞

−∞
δ(t− a)dt = 1 (2)

In the above equation, the impulse width tended to be zero, and the amplitude tended
to be ∞; however, the impulse was equal to 1.

The zero-initial condition in Equation (1) mean that the system was in static condition
at the beginning and was suddenly affected by δ(t) at the moment t = 0. As the time of
δ(t) action was extremely short, the instant time after the action was over can be written as
t = 0+. According to the theorem of momentum, the increase of momentum was equal to
the impulse acting on the body; therefore: m

.
x(0+)−m

.
x(0) = 1.

Assuming that the initial condition was
.
x(0) = 0, then the system obtained an initial

velocity:
.
x(0+) = v+0 = 1/m. According to this assumption, the impact load can be

decomposed into the superposition of several initial excitations. The problem expressed in
Equation (1) can be converted to an initial value problem expressed as follows:

m
..
x(t) + c

.
x(t) + kx(t) = 0

x(0+) = 0
.
x(0+) = 1/m

(3)

The parameters were set as follows:

ωn =
√

k/m
ξ = c

2mωn
= c

2
√

mk
ωd =

√
1− ξ2ωn

(4)

It was assumed that the SDOF system was in the case of small damping ratio (0 < ξ <
1), the solution of Equation (3) was as follows:

x(t) =
1

mωd
e−ξωntsin ωdt (5)

The response of the system to unit impulse excitation was denoted as h(t), and then
the unit impulse response of the system can be expressed as follows:

h(t) =
u(t)
mωd

e−ξωntsin ωdt u(t) =
{

0 (t < 0)
1 (t ≥ 0)

(6)

For the impact load excitation F(t), it can be regarded as a combination of a series of
impulse excitation, and the impulse force at any time τ was F(τ). The system responded
to the impulse was F(τ) · ∆τ · h(t− τ). According to the superposition principle of linear
system, the whole response of the system was as follows:

t

∑
τ=0

F(τ)∆τh(t− τ) (7)

When ∆τ tended to be 0, the summation sign would become into integral; thus, the
response of the system to the impact load F(t) can be expressed as follows:

x(t) =
∫ t

0 F(τ)h(t− τ)dτ

x(t) = u(t)
mωd

∫ t
0 F(τ)e−ξωn(t−τ) sin ωd(t− τ)dτ

(8)



Machines 2022, 10, 524 5 of 18

In actual conditions, the impact load signal was discrete signal, such as F(t) = F(ti)
(i = 1, 2, · · · , n). If the sampling interval of the signal was fixed, the time width of each
pulse was also fixed, denoted as ∆τ.

According to Equation (8), the integral form of continuous function can be transformed
into the sum form of discrete function, as follows:

x(t) =
t

∑
τ=0

F(τ)∆τh(t− τ) =
n
∑

i=1
F(ti)∆τh(t− ti)

= u(t)∆τ
mωd

n
∑

i=1
F(ti)e−ξωn(t−ti) sin ωd(t− ti)

(9)

The discrete time integral of discrete impact load within the action time [t1, tn] can be
expressed as:

IF(ti) = ∆τ
n

∑
i=1

F(ti) (10)

For a single excitation, the attenuation of the response within a time step ∆τ can be

expressed by the relative attenuation coefficient: e−ξωn∆τ = e−ξωn
1
f . The damping ratio of

steel structure was between 0.03 and 0.08, and the sampling frequency was 4096 Hz. Thus
the attenuation coefficient corresponding to the first 100 Hz mode was about 0.9954, and
the attenuation coefficient within 10 sample 10∆τ was about 0.9550.

As the attenuation coefficient was very close to 1, the amplitude of response can be
regarded as constant in rising oscillation period. The amplitude in the rising oscillation
period of each response was as follows:

Ix ≈
u(t)∆τ

mωd

n

∑
i=1

F(ti) ≈
u(t)∆τ

mωd

n

∑
i=1

F(ti)e−ξωn(t−ti) ≈ u(t)
mωd

· ∆τ
n

∑
i=1

F(ti) ≈
u(t)
mωd

· IF(ti) (11)

The Ix was the amplitude in rising oscillation period of each response (peak value),
and the IF(ti) was the discrete time integral of the impact load. Equation (12) shows an
approximate linear relationship between the two expressions:

IF(ti) ∝ Ix (i = 1, 2, · · · , n) (12)

To sum up, if the system parameters of the SDOF system are known, the response can
be calculated according to the excitation. Reversely, the excitation can also be solved from
the response.

2.1.2. Multiple Degree-of-Freedom (MDOF) System

The same method can be extended to a MDOF system. A constant coefficient differ-
ential equation set with n equations was used to describe the system with n degrees of
freedom, shown as the matrix equation:

[m]
{ ..

x(t)
}
+ [c]

{ .
x(t)

}
+ [k]{x(t)} = {F(t)} (13)

In the above equation, [m], [c], [k] are the mass matrix, damping matrix and stiffness
matrix, respectively.

{ ..
x(t)

}
,
{ .

x(t)
}

, {x(t)} refer to the generalized displacement, general-
ized speed and generalized acceleration vector, respectively. {F(t)} is the excitation force.
The equation could also be expressed as follows:

[R] ·
[ .

Z
]
+ [S] · [Z] = {Q(t)} (14)

The solution of the equation above can be written as xk = xk1 + xk2, where xk1 is the
general solution and xk2 is the particular solution.

• Particular solution
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The particular solution of Equation (14) is as follows:

xk2 =
2n

∑
j=1

Φ(j)
k · ξ j2(t) =

2n

∑
j=1

1
Rj

Φ(j)
k ·

∫ t

0
eαj(t−τ) ·Qj(τ)dτ (k = n, n + 1, · · · , 2n) (15)

• General solution

According to the theory of vibration mechanics, the general solution of Equation (14)
is as follows:

xk1 =
2n

∑
j=1

Φ(j)
k · ξ j1(t) =

2n

∑
j=1

Φ(j)
k · ξ0j · eαjt (k = n, n + 1, · · · , 2n) (16)

The solution of Equation (14) can be obtained by combining two solutions as follows:

xk = xk1 + xk2 =
2n

∑
j=1

Φ(j)
k · (ξ0je

αjt +
1
Rj

∫ t

0
eαj(t−τ)Qj(τ)dτ) (k = n, n + 1, · · · , 2n) (17)

Since the system had viscous damping, the free vibration would decay quickly; there-
fore, only the influence of the particular solution was considered in practice.

If the excitation was the discrete impact load, the expression of the response can be
written as follows:

x =
n

∑
m=1

2
|Rm|

·
nt

∑
i=1

e−ηm(t−∆τ) · |F(ti)| ·
∣∣∣Φ(m)

k

∣∣∣ · cos(ωm(t− ∆τ)− θm)∆τ (18)

For each natural frequency ωm, it can be regarded as a combination of SDOF systems.
The response with a frequency of ωp within a sampling period can be approximated

expressed as follows:

xωp ≈
2∆τ

∣∣∣Φ(ωp)

k

∣∣∣∣∣∣Rωp

∣∣∣
nt

∑
i=1
|F(ti)|cos

(
ωωp(t− ∆τ)− θωp

)
(19)

The amplitude in rising oscillation period of response can be expressed as follows:

Ixd ≈
2∆τ

∣∣∣Φ(ωp)

k

∣∣∣∣∣∣Rωp

∣∣∣
nt

∑
i=1
|F(ti)| (20)

Similar to the SDOF system, it was still an approximate linear relationship:

IF(ti) ∝ Ixd (21)

The above conclusions showed that the time integral of discrete impulse load was
approximately linear with the peak value (amplitude of sine wave) in the rising oscillation
period of response in MDOF system.

2.1.3. Conclusion

Within a given parameter range, the discrete time integral of the impact load had
an approximate linear relationship with the peak value (amplitude of sine wave) in the
rising oscillation period of response in both SDOF and MDOF systems. Theoretically,
this linear relationship can be used to calculate the corresponding load according to the
response given.

The accuracy of this method mainly depended on the accuracy of system parameter
identification and the attenuation coefficient. If the identification of system parameters was



Machines 2022, 10, 524 7 of 18

more accurate, and the attenuation coefficient was closer to 1, the identification accuracy
was higher.

The key point of the load identification method was to determine the system param-

eters, that is
∣∣∣Φ(ωp)

k

∣∣∣, ∣∣∣Rωp

∣∣∣. Traditional methods typically determine each parameter by
dynamic model or experiment, which is complicated and inaccurate. This paper used the
neural network to determine the parameters of the system and establish a linear relationship
between two signals.

2.2. BP Neural Network

The linear model of a neural network was a practical method to determine the un-
known linear relationship. Theoretically, the mapping between two groups of data with
linear relationship can be determined by a neural network. The discrete time integral of the
impact load had an approximate linear relationship with the amplitude in the oscillation
period of the response. The former was taken as the output and the latter as the input, and
the neural network was used to establish the linear model between them.

An Artificial Neural Network (ANN) was established by imitating the structure of
the human neuron system, which had a high adaptive ability and learning ability [10]. A
typical BP neural network was composed of an input layer, a hidden layer and an output
layer. The signals transmitted forward and the errors transmitted reversely. When the
result was inconsistent with the reference result, the error was propagated back, and the
connection weights and thresholds of the neural network were adjusted according to the
learning algorithm until the reference value was reached.

The structure of the neural network is as in Figure 2.
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BP neural network consisted of input variables X = (x1, x2, . . . , xm), hidden layers q
and output nodes Y = (y1, y2, . . . , ym).

The input calculation equation of the node i in the hidden layer is as follows:

netp
i =

M

∑
j=1

ωijo
p
j − θi =

M

∑
j=1

ωijx
p
j (i = 1, 2, · · · , q) (22)

In the above equations, xp
j and op

j , respectively, represent the input and output of the
input layer node under the action of the sample p, ωij represents the connection weight
between the input layer node and the hidden layer node, and θi represents the threshold of
the hidden layer node.

If the error of output exceeds the set value, the error was fed back from the output
layer, and the connection weights between the neuron nodes of each layer were modified
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until the error was less than the set value. The quadratic error for the output of any sample
is expressed as:

Jp =
1
2

L

∑
k=1

(
tp
k − op

k

)2
(23)

The total error expression of the system is:

J =
N

∑
p=1

Jp =
1
2

N

∑
p=1

L

∑
k=1

(
tp
k − op

k

)2
(24)

The main function of the ANN was the weight correction between the three layers.

• Correction of the connection weight between the output layer and the hidden layer

The connection weights between the neuron nodes of each layer were adjusted in the
opposite direction of the gradient of the error function.

The adjustment expression of the connection weight ∆ωki can be obtained as:

∆ωij = ηδ
p
k op

i = ηop
k

(
1− op

k

)(
tp
k − op

k

)
op

i (25)

Among the equation, tp
k and op

i represent the expected result and the output value of
the hidden layer node, respectively.

• Correction of the connection weights between the input layer and the hidden layer

In the same way, the modified expression of the connection weight between the hidden
layer and the input layer can be obtained by the gradient of the error function:

∆ωij = ηδ
p
i op

i = ηop
i

(
1− op

i

)
(

L

∑
k=1

δ
p
k ·ωki)o

p
j (26)

Among the equation, op
i and op

j , respectively, represent the output of the hidden layer
neuron node i and the output of the output layer neuron node j under the action of the
sample p.

Therefore, the weighting coefficient increment of the output layer node k, and the
connection weight increment of the hidden layer node i can be obtained under the action
of the sample p: {

ωki(k + 1) = ωki(k) + ηδ
p
k op

i
ωij(k + 1) = ωij(k) + ηδ

p
i op

j
(27)

The connection weights of each layer of the neural network were adjusted to appropri-
ate values until the error is no more than the set value.

3. Results

This chapter includes four sections, the experimental configuration Section 3.1, sig-
nal processing Section 3.2, neural network training and validation Section 3.3 and load
identification Section 3.4.

Figure 3 is the flow chart of signal processing and feature extraction. This figure
contains the main content of the actual work of this paper.
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Figure 3. The whole process of the signal processing and featuring extraction.

3.1. Experiment Configuration

In this experiment, the excitation signal of the impact load was acquired by the force
sensor on the force hammer, and the response signal was acquired by four sensors (strain
rosette). The equipment included a force hammer (PCB086B20), strain rosette, power
amplifier, digital acquisition and computer. Before the experiment, the strain rosette was
firmly attached to the four measuring points on the steel structure, and the impact load
was applied to the structure by the force hammer. The impact load signal was amplified by
the power amplifier and then acquired by the digitizer. The response signals were acquired.
The sampling frequency was set to 4096 Hz.

The connection diagram of each issue is shown in Figure 4.
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Figure 4. The configuration of the experiment system.

The experimental structure used in this article was a steel cantilever beam with two
supporting bars. The density was 7850 kg/m3, and the elastic modulus was 210 Gpa. The
main beam was made of 30 × 30 mm angle steel with the thickness of 3 mm; the middle is
connected by partition frame with the thickness of 3 mm. The actual structure is shown in
Figure 5.
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Figure 5. 3D model of the steel frame structure including the location of four sensors and impact load.

Figure 6 shows the details of the strain rosette used in this experiment.
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Table 1 listed the exact location of the force hammer and four sensors (strain rosette)
in the space coordinate system.
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Table 1. Location of four sensors (rosette) and impact load (force hammer).

Item XYZ Location (mm)

Sensor-1 (0.0, 0.0, 0.0)
Sensor-2 (41.6, 3.2, −13.8)
Sensor-3 (326.7, 3.2, −13.8)
Sensor-4 (0.0, 0.0, 90.2)
Impact (607.6, −73.8, 156.2)

3.2. Signal Processing

This part includes the design of the digital filter, discrete-time integration of impact load
and extraction of peak value (amplitude of sine wave) in the rising oscillation period of response.

Figure 7 shows the impact load records throughout the experiment. The time interval
between the last three impact loads was too short for the response to decay completely.
Therefore, the last three sets of data were not used in the following signal processing. The
signal 1 in Figure 7 is taken as an example.
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Figure 7. Load-time history of all impact signals.

Figure 8a shows the actual time–force history of the impact load 1, which was a discrete
signal. Figure 8b shows the discrete time integral of impact load 1, which was also a set of
discrete values. The specific calculation equation of discrete integral value is Equation (10).
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Figure 8. (a) Load-time history of impact load 1 (after zoom in). (b) Load-time discrete integration of
impact load 1.
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According to the response solution of the MDOF system, the response signals of each
sensor contain multiple natural frequencies. Figure 9 shows the power spectral density
(PSD) analysis results of four response from four sensors.
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Figure 9. Power Spectral Density (PSD) of four response signals from four strain rosettes. (a) Response
Signal-1; (b) Response Signal-2; (c) Response Signal-3; and (d) Response Signal-4. The red line in each
represented the standard amplitude of the PSD.

The PSD shows that there were several similar frequencies of four sensors. The natural
frequencies of the frame structure in Table 1 was obtained from the modal experiment.

According to Figure 9 and Table 2, the primary modes were order 1, order 3 and
order 5. Considering that the impact direction was the Z direction, the proportion of the
vertical bending mode (order 2) was not significant. There was also a frequency component
of 50 Hz. In order to obtain the response of each frequency component individually, a
bandpass digital filter was designed as shown in Figure 10.

Table 2. The natural frequency and mode of the actual model.

Order Natural Frequency (Hz) Mode of Vibration

1 23.3 Bending (horizontal)
2 33.5 Bending (vertical)
3 45.7 Torsion (Y axis)
4 67.3 Torsion (X axis)
5 74.3 Torsion (Z axis)
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Figure 10. The example amplitude response of the FIR-I filter (Attenuates normalized frequencies
below 0.4π rad/sample and between 0.6π and 0.9π rad/sample).

The filter was a FIR1 type bandpass filter. By filtering the primary frequencies individ-
ually, the response signals at each frequency were obtained. The parameters of the filter are
shown in Table 3.

Table 3. The frequency and the filter band for designing the FIR-I filter.

Frequency (Hz) Filter Band (Hz)

0 (0, 0.1)
23 (23, 24)
46 (46, 47)
50 (49, 50)
70 (69, 70)

Taking Response 4 as an example, the result is shown in Figure 11.
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Figure 11. The response signal–4 was decomposed into several frequencies. (0, 23, 46, 50 and 70 Hz).

Figure 11 shows that the 0 Hz component was the fundamental motion without
oscillation. The frequency component of 50 Hz did not change with the load; thus, it
was noise.

In conclusion, three frequencies of 23, 46 and 70 Hz were selected as identification
response signals as shown in Figure 12.
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Figure 12. Schematic diagram of linear relation of load–time discrete integration and the peak value
(amplitude of sine wave) of the oscillation period.

Figure 12 shows that, through linear transformation, there was indeed a linear relation-
ship between the discrete time integral of the load and the peak value (amplitude of sine
wave) in the rising oscillation period of the response. This also confirmed the feasibility
of the previous theoretical assumptions. The impact load can be solved according to the
linear combination of the response in three frequencies. The peak value (amplitude of sine
wave) in the oscillation rising period of the response at three frequencies were extracted as
a group of outputs.

The above analysis was given by taking sensor 4 as an example. The situation was
similar for other three sensors. A total of 12 sets of data from all four sets of rosettes were
extracted to construct the input sample data of the neural network.

To ensure that the maximum value of each group of differential peaks can be extracted,
discrete-time differentiation was performed on each peak value (amplitude of sine wave),
and Figure 13a was obtained, and the data between the differential maximum point and
the left and right 0 points were taken as a set of response samples as shown in Figure 13.
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Figure 13. (a) The gradient of the peak value (amplitude of sine wave). (b) The value of the oscillation
period. The point marked number 1 and 3 represented the point that the gradient equals to zero, the
point marked number 2 represented the point that the gradient reached the maximum.

3.3. The Training of the BP Neural Network

The linear relationship between the input and output was constructed through the
linear model of the neural network. The structure diagram of the BP neural network used
in this paper is shown in Figure 14. It contained 12 inputs, 1 output and 10 hidden layers.
The network was trained with the Levenberg–Marquardt backpropagation algorithm.
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Figure 14. The structure of the BP neural network used in this article.

The performance of the neural network in the training process is shown in Table 4.

Table 4. Performance of the neural network during training and validation.

Situation Sample Number MSE I R II

Training 84 2.74376 0.999996
Validation 18 7.35701 0.999994

Testing 18 7.62322 0.999992
I Regression R Values measure the correlation between outputs and targets. An R value of 1 means a close
relationship, and 0 is a random relationship. II Mean Squared Error (MSE) is the average squared difference
between outputs and targets. Lower values are better. Zero means no error.

As shown in Table 4, the MSE of the three sets of data was small, while the R was close
to 1 which meant a strong linear relationship between the input and output. This result
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also confirmed that the theory proposed in this paper was correct and that the processing
of the response signal was feasible.

3.4. Impact Load Identification

This section used the neural network established before to proceed load identification.
The recognition results are shown in Figure 15.
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Figure 15. (a) The identification results of the load–time history. (b) The identification result of the
impulse–time history.

Figure 15a shows the time–force history of load identification and actual value, and
Figure 15b shows the time–impulse history of identification and actual value. In practical
applications, the maximum amplitude and impulse of the impact load were always given
more attention. Table 5 lists the statistics value of the identification results.

Table 5. Relative error of the impact load identification results.

Frequency (Hz) ANN Prediction Actual Value Relative Error

Maximal Force(N) 374.40 382.90 2.22%
Equivalent Impulse

(N·s) 1520.00 1510.00 0.67%

Table 2 shows that the identification method had high accuracy. The error between the
actual maximum amplitude of impact load and the identification value was 2.22%. The
error between the actual equivalent impulse and the identification was 0.67%. These results
show that the neural network established in this paper had good performance and that the
signal feature extraction method had high credibility.

4. Discussion

In this paper, an impact load identification method based on impulse response theory
(IRT) and BP neural network was proposed. By extracting the peak value (amplitude of
sine wave) in the rising oscillation period of the response, it transformed the excitation and
response signals into the same length. The ANN was used to verify the linear relationship
between the time integration of load and peak value of the response, the results showed
that there was a strong linear relationship between them. In this article, we did not take the
attenuation of response in the rising period into consideration; however, the results were
still ideal. That meant the damping ratio of the structure was relatively tiny.
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The identification results shown in Figure 15 still had some errors in the end of the
signal. The reason might be that the number of training samples was not sufficient. To
improve the performance of the ANN, some methods to select the training data should be
used. The impulse response theory (IRT) was the basic theory of our manuscript, and the
experiment results showed that the theory was effective in this condition. The precondition
of this theory was that there was no plastic deformation in structure. If there was plastic
deformation, the IRT was not suitable, and the stress wave must be taken into consideration.

Reviewing the research process of this paper, there were still some aspects worth
researching in the further. From the experimental perspective: (1) In the response signal,
there was a noise mainly at 50 Hz and at the doubling frequencies (100, 150, 200 Hz, etc.).
The noise was electric network noise, mainly caused by the absence of an electromagnetic
shielding wire. (2) Some intervals of impact were too short, which resulted that the former
response signals superposed with the latter ones.

From theory perspective: (1) Only the peak value (amplitude of sine wave) of the
response signal was used, which resulted in a certain waste. How to extract more features
from other parts of the response signal is worth researching. (2) As the sampling time
interval was too short, the actual maximum amplitude of the impact was likely to be missed.
Identifying the actual maximum of the impact is a valuable issue.

Though there are some aspects waiting to be explored, the results of this paper have
both theoretical and practical value. The neural network tool method was introduced
into the field of impact load identification, and a new way to extract signal features was
established. A neural network was used to identify the linear parameters of the system,
which was more efficient and faster than traditional methods. The validation results
showed that the method had high accuracy and practical application potential.
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