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Abstract: Machine vision has been studied for measurements of workpiece form deviations due to its
ease of automation. However, the measurement accuracy limits its wide implementation in industrial
applications. In this study, a method based on machine vision for measurement of straightness,
roundness, and cylindricity of a workpiece is presented. A subsumed line search algorithm and
an improved particle swarm optimization algorithm are proposed to evaluate the straightness and
roundness deviations of the workpiece. Moreover, an image evaluation method of cylindricity
deviation by the least-square fitting of the circle’s center coordinates is investigated. An image
acquisition system incorporating image correction and sub-pixel edge positioning technology is
developed. The performance of the developed system is evaluated against the measurement results of
the standard cylindricity measuring instrument. The differences in the measurement of straightness,
roundness, and cylindricity are −4.69 µm, 3.87 µm, and 8.51 µm, respectively. The proposed method
would provide a viable industrial solution for the measurement of workpiece form deviations.

Keywords: machine vision; form deviation; evaluation algorithm; image-based process; edge detection

1. Introduction

Shafts are one of the most important machinery parts for a wide range of industrial
applications. Geometric deviations of a shaft will affect its functional performance. Conven-
tionally, manual inspection and measurement are usually conducted for the measurement
of straightness and roundness, which has the disadvantage of larger errors and lower
efficiency [1]. Machine vision technology has been employed to measure industrial parts
of different sizes with high efficiency and accuracy, which is widely used in automatic
measuring [2–4]. Many researchers have conducted research on measurements based on
machine vision technology. Lu et al. [5] developed a straightness measurement system
based on the combination of a laser and machine vision, where multiple groups of vi-
sion sensors were adopted to realize on-line detection of seamless steel pipe straightness.
Cho et al. [6] explored a new method of support vector regression to detect roundness to
improve the accuracy and speed of the fitting algorithm, and it was proved to be more
robust to noises, including measurement deviations for the tested problems. Liu et al. [7]
proposed a binocular-vision-based deviation detection system and an identification algo-
rithm to achieve deviation detection with three-dimensional measurement capability and to
simplify the complex error identification formulations of position-independent geometric
deviations in the rotary axis. Xiao et al. [1] proposed an on-line dimensional accuracy
measurement method by machine vision, where three surface sources were placed in the
positions of left, middle, and right to ensure uniform illumination, which realized the
real-time measurement of the straightness and roundness on the conical spun workpiece.
Tan et al. [8] studied the measurement of shaft diameter with the structured light system
composed of a laser linear light source and a camera. The test results show that when
the shaft diameter was 36.162 mm, the speed was 1250 r/min, and the maximum average
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measurement deviation was 0.019 mm. Li. [9] developed a geometric measurement system
for shaft parts by machine vision, and an improved single-pixel edge detection method
was proposed by the Canny detection algorithm. The experimental results show that the
repeatability deviation of the system was less than 0.01 mm. Luo et al. [10] proposed an
improved differential evolution algorithm (IoCoDE) for the accurate evaluation of mini-
mum zone axis straightness deviation. The results indicate that the evaluation accuracy of
IoCoDE was better than linking ends, the least-square method (LSM), and other common
evaluation algorithms, and it was basically around 1 s. Hao et al. [11] suggested a coded
references and geometric-constraints-based method to solve the inconsistency problem
of measurement range and accuracy for slender shafts. The systematic deviation of the
experimental system was 0.01754 mm. Min et al. [12] measured the high-precision geo-
metric deviation of thread with machine vision and optical enlargement. The geometric
deviations of thread were calculated by using the thread cross-sectional image. The linear
precision of this system was less than 10µm. Chai et al. [13] proposed a non-contact optical
measurement scheme to measure the co-axiality of a composite gear shaft; the least-square
circle (LSC) and the particle swarm optimization (PSO) were used, and the measurement
deviation range was less than 0.065 mm.

In the literature mentioned above, the machine vision measurement is more precise and
efficient as compared with the traditional measurements. However, there is a lack of standard
vision detection instrument for form deviations measurement in industry. Therefore, the
structure of vision measurement and related algorithms need to be further studied.

In this study, a new method is presented for measuring the form accuracy of a shaft
workpiece. In order to obtain images of the shaft, an image acquisition system is designed.
The image pre-processing method and form deviations evaluation algorithm are studied.
By integrating the computer control and calculation algorithm, form deviations, such
as straightness, roundness, and cylindricity deviation of the shaft part, are calculated
automatically and efficiently.

2. Image Acquisition System and Camera Calibration
2.1. Composition of the Image Acquisition System

The composition of the form deviation measurement system is depicted in Figures 1 and 2.
It is mainly composed of the X, Y, Z linear electrokinetic displacement platform, rotating
electric platform, CMOS camera, optical lens, LED light source, three-jaw chuck, tailstock,
motion control card, and computer. Information on the main hardware models of the
system is provided in Table 1. The parameters of the motion stages are listed in Table 2.

Machines 2022, 10, x FOR PEER REVIEW 2 of 17 
 

 

surface sources were placed in the positions of left, middle, and right to ensure uniform 
illumination, which realized the real-time measurement of the straightness and round-
ness on the conical spun workpiece. Tan et al. [8] studied the measurement of shaft di-
ameter with the structured light system composed of a laser linear light source and a 
camera. The test results show that when the shaft diameter was 36.162 mm, the speed 
was 1250 r/min, and the maximum average measurement deviation was 0.019 mm. Li. [9] 
developed a geometric measurement system for shaft parts by machine vision, and an 
improved single-pixel edge detection method was proposed by the Canny detection al-
gorithm. The experimental results show that the repeatability deviation of the system 
was less than 0.01 mm. Luo et al. [10] proposed an improved differential evolution algo-
rithm (IoCoDE) for the accurate evaluation of minimum zone axis straightness deviation. 
The results indicate that the evaluation accuracy of IoCoDE was better than linking ends, 
the least-square method (LSM), and other common evaluation algorithms, and it was 
basically around 1 s. Hao et al. [11] suggested a coded references and geomet-
ric-constraints-based method to solve the inconsistency problem of measurement range 
and accuracy for slender shafts. The systematic deviation of the experimental system was 
0.01754 mm. Min et al. [12] measured the high-precision geometric deviation of thread 
with machine vision and optical enlargement. The geometric deviations of thread were 
calculated by using the thread cross-sectional image. The linear precision of this system 
was less than 10μm. Chai et al. [13] proposed a non-contact optical measurement scheme 
to measure the co-axiality of a composite gear shaft; the least-square circle (LSC) and the 
particle swarm optimization (PSO) were used, and the measurement deviation range was 
less than 0.065 mm. 

In the literature mentioned above, the machine vision measurement is more precise 
and efficient as compared with the traditional measurements. However, there is a lack of 
standard vision detection instrument for form deviations measurement in industry. 
Therefore, the structure of vision measurement and related algorithms need to be further 
studied. 

In this study, a new method is presented for measuring the form accuracy of a shaft 
workpiece. In order to obtain images of the shaft, an image acquisition system is de-
signed. The image pre-processing method and form deviations evaluation algorithm are 
studied. By integrating the computer control and calculation algorithm, form deviations, 
such as straightness, roundness, and cylindricity deviation of the shaft part, are calcu-
lated automatically and efficiently. 

2. Image Acquisition System and Camera Calibration 
2.1. Composition of the Image Acquisition System 

The composition of the form deviation measurement system is depicted in Figures 1 
and 2. It is mainly composed of the X, Y, Z linear electrokinetic displacement platform, 
rotating electric platform, CMOS camera, optical lens, LED light source, three-jaw chuck, 
tailstock, motion control card, and computer. Information on the main hardware models 
of the system is provided in Table 1. The parameters of the motion stages are listed in 
Table 2. 

 
Figure 1. Schematic diagram of an image acquisition system. Figure 1. Schematic diagram of an image acquisition system.
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Computer CMOS Camera Lens Light Source

ADLINK
IPC-610

DAHENG
MER-2000-19U3C

Computer
V1228-MPY

KOMA
JS-LT-180-32
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Table 2. Specification of motion stages.

Motorized Stage
Parameters

Travel Range (mm) Resolution (µm) Repeatability Positioning (µm)

X KXL06200-C2-F 200 0.2 ±1
Y, Z KXG06030-C 30 0.1 ±1

Rotating KS401-40 360◦ 0.003◦ ±0.05◦

2.2. Camera Calibration

In the process of two-dimensional images, there is nonlinear deformation in different
degrees, which is usually called geometric distortion. In addition, there are other factors,
such as the instability of the camera imaging process and the quantization deviation caused
by the low image resolution. Thus, there is a complex nonlinear relationship between the
object points in the image and the corresponding points in the World Coordinate System.
Because of the existence of these distortions, the calibration coefficients of different image
zones even in one direction are different [14,15].

Figure 3 shows the relationship between the camera coordinate system and the World
Coordinate System. Let p be a point in the field of camera view. The homogeneous
coordinates of point p in the camera coordinate system and the World Coordinate System
are (XC, YC, ZC, 1) and (XW, YW, ZW, 1), respectively. The homogeneous transformation
relationship between the World Coordinate System and pixel image coordinate system is
as follows:

Zc

u
v
1
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 fu 0 u0 0
0 fv v0 0
0 0 1 0

(R t
0T 1

)
XW
YW
ZW
1

 = M1M2


XW
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1
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where R is a 3 × 3 rotation matrix, t is a 3 × 1 translation matrix, M1 is the inner camera
parameter matrix, M2 is the outer camera parameter matrix, fu and fv are the equivalent focal
lengths in x and y directions, (u0, v0) represents the coordinate of the main point on the camera.
The space point p in the camera coordinate system is set as p(XC, YC, ZC). Suppose that the
projected coordinates of point p normalized are p(xn, yn), and the projected coordinates of
point p after adding distortion are p(xd, yd) [16]; then, the relationship is as follows:

xd = xn(1 + k1(x2
n + y2

n) + k2(x2
n + y2

n)
2
) (2)

yd = yn(1 + k1(x2
n + y2

n) + k2(x2
n + y2

n)
2
) (3)

where k1, k2 are radial distortion coefficients.
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In order to make vision measurement more accurate, the ceramic calibration board
with 1 µm possession precision is selected in this experiment. The sum of the calibration
grid is 20 × 16, and the side lengths are 4 mm. The process for camera calibration includes,
firstly, the collection of a calibration board image under the same condition on the form
deviation measurement, such as focal length, object distance, lighting strength, and then, the
collection of nine different orientation board images. The flow chart for camera calibration
is shown in Figure 4.
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3. Main Algorithms
3.1. Image Correction

Due to deviations of camera installation and equipment assembly, the acquired part
image may have a small tilt angle. When evaluating form deviations, it is necessary to
obtain the element line coordinates in 360 measuring images, whose coordinate results
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are affected by the small tilt angle. This increases the detection deviation and detection
complexity. In order to improve the detection accuracy and efficiency, it is necessary
to rectify the measured part images. We propose an image correction algorithm based
on the centerline slope. Firstly, the distorted image is eliminated by camera calibration
data, and then, the coordinates of the top and bottom edges on the workpiece image are
obtained by the Canny algorithm [17]. The average data are computed as a centerline
by the corresponding addition algorithm. The slope of the centerline is obtained by the
least-square fitting, by which the rotation angle θ is obtained. Finally, the measured part
image is revised by θ. Suppose that the point P0(x0, y0) rotated anticlockwise by θ is
P0(x, y), the coordinate point matrix expression after rotation is as follows:x

y
1

 =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

x0
y0
1

 (4)

3.2. Sub-Pixel Edge Detection Algorithm

The conventional sub-pixel edge detection methods include: sub-pixel edge detection
by moment, sub-pixel edge detection by fitting, sub-pixel edge detection by interpolation,
etc. [18,19]. The measured workpiece in this experiment is an axis, so it is assumed there
will be no burrs, roughness, etc., in the edge area of the image. The top and bottom edges
of the sampling image are in accordance with the image characteristics of a polynomial
function. In order to realize the sub-pixel edge position, the parameters describing the edge
features in the image can be obtained by establishing equations of polynomial parameters
and using the principle of the least-square method [20,21].

The method used is to filter and denoise gray images and use the Otsu method to
complete threshold segmentation [22]. The Canny algorithm is used to obtain the rough
edges of the part image, selecting rough edges in order to turn them into a single row. An
appropriate zoom is chosen, and then, the fine edges are accurately obtained by using the
polynomial fitting algorithm. The edge point formula fitted by polynomial y(x) can be
expressed as Equation (5):

y(x) = a0 + a1x + a2x2 + . . . + amxm =
m

∑
j=0

ajxj (5)

By calculating the quadratic sum of the least squares and making partial derivatives
of am equal to 0, the result is obtained.

F(a0, a1, . . . , am) =
n

∑
i=1

[y(xi)− yi]
2 (6)

∂F
∂aj

= 2
n

∑
i=1

[y(xi)− yi]x
j
i = 0 (j = 0, 1, . . . , m) (7)

By solving the above equations, the fitting polynomial coefficients can be determined.

3.3. Calculation of Straightness Deviation
3.3.1. Axis of workpiece fitting

By extracting the middle line on the top pixel edges and the corresponding bottom
pixel edges of a workpiece image as the central axis, the calculation is rendered simple and
easy. However, if the workpiece in the image has a tilted angle or straightness deviation,
the upper and the corresponding lower edge pixel edges are asymmetric, which leads to a
large straightness deviation of the central axis. In order to reduce this deviation, the radial
local zone search method is used to determine the position of the shaft axis.
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In order to determine the coordinates of the top and bottom edges, the top edge point
(xj, yj) closest to the bottom edge point (xi, yi) is shown in Figure 5.√

(yi − yj)
2 + (xi − xj)

2 = min{H} (8)Machines 2022, 10, x FOR PEER REVIEW 7 of 17 
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The geometric center coordinates of the workpiece axis are as follows.{
x =

xi+xj
2

y =
yi+yj

2

(9)

To decrease computing time, extract each n point on the left and right of the bottom
edges corresponding relatively to the abscission of the top edge point, which is a total of 2n
points. According to Equations (8) and (9), the geometric coordinates of a workpiece axis
are obtained. Then, the axis of the part is estimated.

3.3.2. Straightness deviation algorithm

The straightness deviation according to ISO 1101 is the difference between the largest
and smallest distances between the workpiece line and the reference line. According to
ISO 1101, the form tolerance zone has the direction of the minimum [23,24]. The minimum
zone method [25] is needed to search for the minimum value of the distance between
two parallel lines containing the measured contours according to the minimum condition
principle. So, an enveloped line searching algorithm is proposed to obtain the straightness
deviation. The algorithm is discussed below.

The least-square method is used to obtain the baseline L1, as shown in Figure 6, and
the linear equation is set as

y = k1x + m (10)
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Figure 6. Graphical demonstration of enveloped line search algorithm.

Regarding baseline L2 as the boundary, all sampling points are divided into two category
points, i.e., high points and low points, from which the farthest point P1 is found. Serving P1
as the base point, a line L2 is generated with the slope k1. By changing the slope of line L2, the
sampling points are located below or on the line, and the critical point P2 is determined.

ki = k1 + a (11)
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where a is the minimum value. Calculate the corresponding intercept based on ki using the
expression below.

mi = −kixP1 + yP1 (12)

In order to calculate P2, let

W = kix + mi − y (13)

All coordinates of the measured points, except P1, are substituted into Equation (13),
and the sampling points are calculated when ki varies. In theory, when W is zero, P2 is
obtained. However, in an actual situation, by setting small step size a, P2 appears between
two scanning lines. In this case, the following requirement should be met:

min{kix + mi − y} < 0 (14)

The enveloped line y = ki x + m1 is confirmed by two points, P1 and P2, and then, the
minimum enveloped line y = ki x + m2 is parallel to the line through the farthest point P3.
At this point, the three points, P1, P2, and P3, are satisfied with the ‘high-low-high’ rule
criterion of the minimum zone. The straightness deviation is calculated by the distance
between the two enveloped lines.

d3 = |m1 −m2|/
√

k2 + 1 (15)

In the same way, search for the bottom line and three points of the ‘low-high-low’
criterion to satisfy the minimum zone. The distance of a pair of enveloped lines is also
obtained after calculation, according to the similar steps above. The minimum distance
value of the two results obtained will be used as the straightness deviation.

3.4. Calculation of Roundness Deviation
3.4.1. Three-Dimensional Reconstruction by Monocular Camera

The workpiece three-dimensional coordinate system xoyz is seen in Figure 7. Let the
initial position angle be 0◦; the point coordinates on the workpiece contour surface collected
by the camera are (x1, y1, z1), and the rotating β point A on the workpiece is moved to point
B, whose coordinate is (x2, y2, z2). According to the geometric relationship, as shown in
Figures 7 and 8, the relationship is as follows:

y1 = AO · cos 0◦ (16)

z1 = AO · sin 0◦ (17)

y2 = BO · cos β (18)

z2 = BO · sin β (19)

x1 = x2 (20)
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Among them, AO is distance between point A and the workpiece axis. The work-
piece contour information is collected by the camera through the workpiece rotation, and 
the 3D contour model of the workpiece surface is established by the camera. 

Due to the installation eccentricity of the workpiece, the circle center of a certain 
section workpiece is changed. In order to eliminate the eccentricity deviation, the half 
distance between the top and bottom edge is used as a radius value, that is, AO = 
|y1′−y1|/2, so the radius of the corresponding positions under other rotation angles can be 
obtained. The radius under every x position can be determined on the corresponding 
circle, so as to realize the three-dimensional reconstruction of the workpiece contour. 

 
Figure 7. Position relation of camera and workpiece in the measuring coordinate. Figure 7. Position relation of camera and workpiece in the measuring coordinate.
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Figure 8. Graphical demonstration of the axis section acquisition point.

Among them, AO is distance between point A and the workpiece axis. The workpiece
contour information is collected by the camera through the workpiece rotation, and the 3D
contour model of the workpiece surface is established by the camera.

Due to the installation eccentricity of the workpiece, the circle center of a certain section
workpiece is changed. In order to eliminate the eccentricity deviation, the half distance
between the top and bottom edge is used as a radius value, that is, AO = |y1

′−y1|/2,
so the radius of the corresponding positions under other rotation angles can be obtained.
The radius under every x position can be determined on the corresponding circle, so as to
realize the three-dimensional reconstruction of the workpiece contour.

3.4.2. Roundness Deviation Algorithm

The roundness deviation according to ISO 1101 is the difference between the largest
and smallest radial distance of the workpiece circumference from the reference circle [23,24].
There are four commonly used methods for evaluating roundness deviation, which are the
minimum zone circle method, the minimum circumscribed circle method, the maximum in-
ner circumscribed circle method, and the least-square circle method [26,27]. The minimum
zone method is an evaluation method in accordance with the definition, but it is difficult
to solve directly because it is a nonlinear problem, and it is complicated to calculate the
collected data [28].

As shown in Figure 9, assuming that (xi, yi) are the measured coordinates on the actual
contour of the workpiece, and (xk, yk) are the center coordinates of the minimum zone
method to be solved, then the distance Hik from the measured point to the center is

Hik =

√
(xi − xk)

2 + (yi − yk)
2 (21)
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The objective function F to be optimized is

F = max(Hik)−min(Hik) (22)

What needs to be solved is how to determine the value of (xk, yk), so that F is the
minimum. When F = f, f is the roundness deviation.

Particle swarm optimization (PSO) is an intelligent optimization algorithm proposed by
Kennedy and Eberhart in 1995, inspired by the movement of flock birds [29]. In this paper,
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the PSO algorithm of synchronously changing learning factors is used to solve roundness.
This algorithm has clear advantages in optimization accuracy and convergence speed.

The synchronous learning factor refers to setting the range of learning factors c1 and c2
as [cmin, cmax], and the value formula of the learning factor in the t-th iteration is as follows:

c1 = c2 = cmax −
cmax − cmax

tmax
· t (23)

The algorithm flow chart is shown in Figure 10 as follows.
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3.4.3. Cylindricity Deviation Algorithm

The cylindricity deviation according to ISO 1101 is the difference between the largest
and smallest radial distances of the workpiece surface from the reference [23,24]. According
to the form deviation evaluation principle, when the actual cylindrical surface is compared
with the ideal surface, the minimum enveloped zone should be determined according to
the actual cylindrical surface. When the actual surface is tightly contained by two identical
co-axial cylindrical surfaces, between which the radius difference is the minimum, it is the
minimum enveloped zone.

In this paper, a method of spatial cylindricity deviation detection is proposed based on
the PSO and the least-square algorithm. Suppose that the circle center coordinate of each
cross-section in Figure 11 is obtained by the improved particle swarm algorithm. According
to the circle center coordinates, the space axis is fitted by the least-square algorithm. Assume
that E1 and E2 are the points with the largest and smallest distances, respectively, from the
measured contour points on the fitted straight line. The cylindricity deviation d2 can be
expressed as the difference between the maximum distance and the minimum distance
from the measured contour points to the spatial axis.

d2 = dmax − dmin (24)
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4. Experiment and Results Analysis
4.1. Calibration Results

Camera calibration is performed before image collection. A total of nine images
are collected, as shown in Figure 12, for calibration. The corner detection result of the
calibration plate is as shown in Figure 13.
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The camera is calibrated according to the flow chart in Figure 4, and the inner parame-
ters and distortion matrix are obtained as follows:

[k1 k2] = [−0.0868 0.0127]

M1 =

∣∣∣∣∣∣
5395.86 0 2749.23

0 5394.83 1809.22
0 0 1

∣∣∣∣∣∣
Extract subpixel image corrected angular coordinates,. The pixel distance between the

adjacent corner point is obtained as h. Internal and external calibration parameters are used
to calculate the sub-pixel corner coordinates in the image. Assume the distance between
the adjacent corner points is M, according to the pixel distance, the ratio of the proportion
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relation coefficient k is calculated out, which is shown in Equation (25). The values k in the
horizontal direction and vertical direction are 30.32 µm and 30.44 µm, respectively.

k =
M
h

(25)

After calibration, the measured workpiece is clamped by the three-jaw chuck, and the
other end of the part is held by the tail. The X, Y-direction linear electrokinetic displace-
ment stages are moved to the initial position of the camera, and the measured workpiece
is moved to the focal plane of the camera lens by controlling the Z-direction linear elec-
trokinetic displacement stage. When the workpiece is rotated by 1◦, an image of the
workpiece is acquired by the camera. A total of 360 images are obtained and stored in the
computer. Before image pre-processing, the image is corrected by the methods described
in Section 3.1. Figure 14 is the collected original workpiece image, and Figure 15 is the
corrected workpiece image.

Machines 2022, 10, x FOR PEER REVIEW 12 of 17 
 

 

in the computer. Before image pre-processing, the image is corrected by the methods 
described in Section 3.1. Figure 14 is the collected original workpiece image, and Figure 
15 is the corrected workpiece image. 

 
Figure 14. Original workpiece image. . 

 
Figure 15. Workpiece image after correction. 

4.2. Image Pre-Processing 
Since the measurement of the form deviation is only related to the edges, the com-

plex background and noise are present in the collected images. It is necessary to carry out 
pre-processing, such as region of interest (ROI) extraction, filtering, and image en-
hancement, to eliminate additional interference in order to precisely measure the work-
piece form. When collecting the image, the workpiece, three-jaw chuck, and tailstock part 
are photographed, so a rectangular area is used for ROI extraction. According to the re-
quirements of form deviation and characteristics of the workpiece image, various filters 
are used to deal with the same image. After comparison, Gaussian filtering is more suit-
able for image pre-processing for our study. The processed images are shown in Figure 
16. The original workpiece image is obtained by machine vision, as shown in Figure 16a. 
ROI extraction is performed by a rectangular area, as shown in Figure 16b. Threshold 
segmentation is completed by the Otsu method, as shown in Figure 16c. Rough edges of 
the part image are extracted by the Canny algorithm, as shown in Figure 16d. Parts of the 
upper-edge sub-pixel-position fine edges are accurately obtained by using the polyno-
mial fitting algorithm, as shown in Figure 16e. 

  

Figure 14. Original workpiece image.

Machines 2022, 10, x FOR PEER REVIEW 12 of 17 
 

 

in the computer. Before image pre-processing, the image is corrected by the methods 
described in Section 3.1. Figure 14 is the collected original workpiece image, and Figure 
15 is the corrected workpiece image. 

 
Figure 14. Original workpiece image. . 

 
Figure 15. Workpiece image after correction. 

4.2. Image Pre-Processing 
Since the measurement of the form deviation is only related to the edges, the com-

plex background and noise are present in the collected images. It is necessary to carry out 
pre-processing, such as region of interest (ROI) extraction, filtering, and image en-
hancement, to eliminate additional interference in order to precisely measure the work-
piece form. When collecting the image, the workpiece, three-jaw chuck, and tailstock part 
are photographed, so a rectangular area is used for ROI extraction. According to the re-
quirements of form deviation and characteristics of the workpiece image, various filters 
are used to deal with the same image. After comparison, Gaussian filtering is more suit-
able for image pre-processing for our study. The processed images are shown in Figure 
16. The original workpiece image is obtained by machine vision, as shown in Figure 16a. 
ROI extraction is performed by a rectangular area, as shown in Figure 16b. Threshold 
segmentation is completed by the Otsu method, as shown in Figure 16c. Rough edges of 
the part image are extracted by the Canny algorithm, as shown in Figure 16d. Parts of the 
upper-edge sub-pixel-position fine edges are accurately obtained by using the polyno-
mial fitting algorithm, as shown in Figure 16e. 
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4.2. Image Pre-Processing

Since the measurement of the form deviation is only related to the edges, the complex
background and noise are present in the collected images. It is necessary to carry out pre-
processing, such as region of interest (ROI) extraction, filtering, and image enhancement, to
eliminate additional interference in order to precisely measure the workpiece form. When
collecting the image, the workpiece, three-jaw chuck, and tailstock part are photographed,
so a rectangular area is used for ROI extraction. According to the requirements of form
deviation and characteristics of the workpiece image, various filters are used to deal with
the same image. After comparison, Gaussian filtering is more suitable for image pre-
processing for our study. The processed images are shown in Figure 16. The original
workpiece image is obtained by machine vision, as shown in Figure 16a. ROI extraction
is performed by a rectangular area, as shown in Figure 16b. Threshold segmentation is
completed by the Otsu method, as shown in Figure 16c. Rough edges of the part image are
extracted by the Canny algorithm, as shown in Figure 16d. Parts of the upper-edge sub-
pixel-position fine edges are accurately obtained by using the polynomial fitting algorithm,
as shown in Figure 16e.
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4.3. Straightness Deviation Results

According to the vision measurement algorithm of straightness deviation, several mea-
suring experiments are completed on the ϕ 20 mm × 100 mm shaft workpiece. Results of
the containment line search algorithm at the rotation angle of 0◦ are shown in Figure 17. All
fitting axis points are successfully contained by the two containment lines. The straightness
deviation is the distance between the two lines multiplied by the calibration coefficient k.
The results of 360 straightness measurement are shown in Figure 18, where the maximum
straightness deviation is 30.18 µm, the minimum value is 4.71 µm, and the average value is
11.12 µm, respectively.
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In Figure 18, the variation in straightness deviation is somewhat large. There are two
possible reasons. Firstly, it takes about 3 min to collect 360 images from different angles,
during which the image quality may be affected by an unstable illumination. Secondly, the
workpiece axis is not the center of rotation. These factors affect the measured results.
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4.4. Roundness Deviation Results

Since the images of the entire axis are not detected in the roundness measurement,
several cross-sections in the same distance are used to calculate roundness deviation, so
that the ROI region required for roundness deviation measurement is smaller than that of
straightness deviation. Seven equidistance cross-section positions are selected in group A
with 2000 pixels and group B with 1100 pixels in the diameter direction, and the comparison
results are shown in Table 3 by using methods described in Section 3.3. Figure 19 shows
the graph of the improved particle optimization algorithm (PSO) calculation results for
position 1 in group A (the first position).

Table 3. Roundness deviation results.

Section Position Roundness Deviation of Group A/µm Roundness Deviation of Group B/µm

1 15.89 14.53
2 14.90 14.91
3 13.83 13.77
4 13.24 13.68
5 12.82 13.25
6 13.05 12.86
7 12.36 13.71

Average value 13.73 13.82
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4.5. Cylindricity Deviation Results

The number of cross-sections usually used in the measuring cylinder should be no
less than 5. In this study, by the rotation angle interval of 1◦, 10 cylindricity sections and
20 cylindricity sections of the parts are acquired to calculate cylindricity deviation. This
calculation process is the same as the roundness deviation calculation. Data fitting results
are shown in Figure 20; the cylindricity deviations are 26.91 µm and 29.81 µm, respectively.
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The cylindricity deviation of the workpiece changes slightly with the different number of
sections under the same experimental conditions.
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Figure 20. Graph fitting of workpiece axis and measured points.

4.6. Verification of Measurement Results

In order to judge whether the measurement proposed is correct, a commercial instru-
ment, RD602 cylindricity measuring instrument, is used to measure the same workpiece,
as shown in Figure 21. RD602 cylindricity measuring instrument has a high precision,
with the deviation of less than 0.5 µm at full working motion, which is used to verify the
accuracy of the on-line measurement system. The repeatability of this instrument is 0.2 µm.
The comparison results of form deviation are shown in Table 4.
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Table 4. Comparison of deviation results.

Average Value by RD602/µm Average Value by the Designed Instrument/µm Error/µm

Straightness 15.80 11.11 −4.69
Roundness 9.95 13.82 3.87
Cylindricity 21.30 29.81 8.51

Through some experiments, the standard deviations of straightness, roundness, and
cylindricity measured by this instrument are 0.52, 0.31, and 1.56, respectively. From the
comparison results shown in Table 4, it can be concluded that the straightness, roundness,
and cylindricity deviations of the form deviation measurement system are −4.69 µm,
3.87 µm, and 8.51 µm, respectively. The various form deviation values were measured
accurately, which can reach the measurement accuracy of commonly used three-coordinate
measuring machine and provides a reference for testing form deviation in production.
When calculating the straightness deviation, in order to use less time, it is not necessary to
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calculate the 360 data values. Instead, the rotation angle can be appropriately increased
to reduce the calculation. When calculating cylindricity, about 20 sections can be selected,
which can be time saving and efficient, satisfying the accuracy requirements.

5. Conclusions

In this paper, a new workpiece form deviation measurement method based on machine
vision is presented for the measurement of straightness, roundness, and cylindricity of
a workpiece. An image acquisition system for obtaining images of shaft workpiece is
developed. Edge detection technology and sub-pixel edge positioning technology are
used to extract the edge information. A subsumed line search algorithm and an improved
particle swarm optimization algorithm are proposed to evaluate the straightness and
roundness deviations of the workpiece. Moreover, a method of spatial cylindricity deviation
solution based on an improved synchronous PSO algorithm is proposed. The results of
straightness, roundness, and cylindricity deviations of the workpiece are obtained by
the above algorithms. Their standard deviations are 0.52, 0.31, and 1.56, respectively,
implying consistency in the measurement. From the contrast experiments, the differences
of straightness, roundness, and cylindricity deviations of the form deviation measurement
system are −4.69 µm, 3.87 µm, and 8.51 µm, respectively, which are comparable to the
traditional measurement methods. Therefore, the proposed method meets the precision
requirements and is applicable for non-contact measurement, which has the advantages
in measuring vulnerably scratched workpieces and in quickly obtaining form outlines of
the workpieces. The proposed method would provide a viable industrial solution for the
measurement of form deviations.
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