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Abstract: Dynamic performance analysis is essential for production systems facing random distur-
bances. In this paper, a vulnerability evaluation approach is proposed for smartphone assembly
production systems with finite buffers under a resilient system analytic frame. Firstly, four important
vulnerability indicators, namely Terminal Time Delay (TTD), Terminal Time Window (TTW), Bot-
tleneck Time Delay (BTD), and Bottleneck Time Window (BTW), are defined to expound temporal
and spatial attributes caused by disruptive events. Then, a recursive derivation approach of the
queuing network model is presented to obtain a state-transition matrix, wherein machine reliability
is also considered in the model. Afterward, the exact solutions of steady and transient vulnerability
are evaluated based on state probabilities inference. Finally, numerical studies are carried out to
validate the proposed method and translate it into a practical tool. An application program with
vulnerability analysis and disturbance control functions is developed, embedded in the digital twin
system independently developed by our team to solve practical problems.

Keywords: smartphone production systems; digital twin; finite buffers; vulnerability analysis;
temporal and spatial attributes; dynamics analysis

1. Introduction

The products of computer, communication, and consumer electronics are replaced
quickly. As the main resource of equipment to complete the product manufacturing
cycle, the production line has a direct impact on the quality, cost, and delivery cycle
of the product. During the production process, due to the frequent switching of the
production line configuration, the disturbance factors will cause the production of local
stations to be disordered and propagate along the branch link to the main link. Therefore,
to ensure the stability of production capacity under frequent changes in production lines
and disturbances, the design of the assembly system must be flexible.

Serial structures with intermediate finite buffers are most widely adopted in produc-
tion systems. Normally, workstations are allocated according to certain process routes, and
buffers are allocated in consideration of their line balancing and antijamming ability. The
intervention of buffers causes the fluctuation of system performance. Traditional output
indicators, such as productivity, due-time performance, and other statistical indicators,
are general and effective steady-state metrics during production system modeling [1].
However, in industrial production, disturbance factors frequently come from both inside
(machine failures, scheduled maintenance, the fluctuation of working time, quality defaults,
etc.) and outside (urgent orders, product changeover, process change, etc.). Transient-state
performance evolution cannot be well-studied under the traditional performance evalua-
tion frame. Thus, the dynamics analysis of the production system is essential to customized
design and operation optimization. Random failures and small disruptions may result in a
catastrophic risk to production systems in the current highly interconnected manufacturing
environment [2,3]. Performance reduction under such disruption can be well described
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as a vulnerability metric, which is also well explained in the resilient system research
field [4–6]. Henry and Ramirez-Marquez [7] described the resilience of a generalized
engineering system by depicting the performance transition process. Hosseini et al. [6]
divided the entire process into three separate intervals, and three performance indica-
tors are applied to match these three intervals, which are reliability, vulnerability, and
recoverability, respectively. Such description and definition can also be adopted in the
production system field. The resilient production system can be modeled as a discrete event
dynamics system. As a constituent part of system dynamic performance, vulnerability
under disruptions is an important performance indicator in production system engineering.
To some content, the vulnerability effect is ubiquitous in both production systems at the
workshop level [8,9] and inter-enterprises supply chains [10]. Vulnerability risks include
high maintenance/servicing costs, yield reduction, and more importantly, system outage
and the final large-scale delivery delay.

System vulnerability analysis (SVA) is less studied in comparison with system relia-
bility analysis (SRA) in the production system field. System reliability is the performance
metric of a resilient production system (as shown in the first interval of Figure 1), which
represents the continuous working ability without failures from the static perspective.
However, SVA provides a quantification study in terms of failure effect analysis, with
emphasis on the effect propagation of cascading failures. Studies on SRA provide a global
steady-state performance metric for fulfilling specified functions on the macro level. Ac-
cordingly, SVA affords a local dynamics survey of disturbance influences. Equal attention
should be paid to SRA and SVA for resilient production systems.
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Figure 1. Performance transition of a resilient system.

For a reconfigurable electronic assembly line that is frequently replaced, it will take
a lot of time to design a balanced production line structure, deploy tools, and debug and
test after each disturbance causes system interruption. The digital twin platform of the
production line can provide a virtual test optimization platform [11,12]. The data between
the physical and virtual entities support each other in decision making, which is applied
to the design, analysis, and regulation of the production line [13–15]. As the theoretical
core of the extended application of digital twin technology, SVA plays a vital role in the
evaluation and analysis module of the digital twin system. SVA provides the evaluation
measures in the configuration and designing stage of production systems. Additionally, it is
the fundamental work for performance control in the operational stage. New quantitative
analysis methods and means should be developed to understand the nature of the vulnera-



Machines 2022, 10, 752 3 of 28

bility effect. Vulnerability quantification is undoubtedly more valuable than mainstream
qualitative analysis. However, it is difficult to construct a precise mathematical model
due to the dynamic properties of the vulnerability effect. In this paper, a transient and
steady vulnerability analysis approach is proposed for a resilient serial production system
considering both temporal and spatial attributes. This method establishes a mathematical
analytical model for the performance evaluation module in the twin system, which not
only effectively avoids the shortcoming that the simulation model takes a long time, but
also can evaluate the brittle effect of the dynamic disturbance during the operation of the
production line.

The remainder of this paper is organized as follows: related works are reviewed in
Section 2, wherein the innovation and difference from the presented works are briefly
emphasized. Section 3 provides a digital twin system and architecture. Section 4 presents
the temporal and spatial attributes of SVA of production systems. Section 5 provides the
transient and steady vulnerability quantitative approach for both terminal station and
bottleneck station. A case study is applied to verify the proposed method in Section 6. The
conclusion and an outlook outlining ideas for future research are presented in Section 7.

2. Literature Review
2.1. Resilient Production System

System resilience has been a new performance metric for a dynamic system with
disruption. Resilience system modeling has been studied for engineering systems such as
grid networks [16] and infrastructure systems [17,18]. A major area of resilience research
related to production is on the supply chain network. Some valuable reviews can be
seen in [19–21]. Most papers in this area focus on the risk management of supply chain
disruptions, which are dedicated to elucidating the attributes of resilience in different
scenarios instead of quantizing it [22,23]. There are a few quantitative analytic models. A
Bayesian network model is constructed to quantify the supply chain resilience of sulfu-
ric acid manufacturers [24]. Xu and Radhakrishnan [25] developed a multidimensional
nonlinear model to capture the dynamics of the supplier–manufacturer network. At the
factory level, the concept of a resilient manufacturing system was proposed by Zhang
and Luttervelt [4], and related guidelines for design and management are also discussed
for resilient manufacturing systems. Production loss, throughput settling time, and total
under-production time are used to measure the resilience of the manufacturing system by
Gu and Jin, and the proposed resilience metrics are applied to assist in the reconfiguration
of system design [26]. The optimal control policy of operation rate to achieve resilience in
a class of serial manufacturing networks is addressed under disruption [27]. In brief, the
resilience mechanism is valuable to explore the dynamics principle under disruption, and
quantitative evaluation for manufacturing systems with certain structures still needs to be
further studied.

2.2. Vulnerability Analysis of Production System

Vulnerability is the dynamic performance index of the system under disturbance. The
quantitative evaluation of vulnerability is the premise of disturbance control. In the field
of production system manufacturing, SVA plays as the second procedure of a resilient
system in Figure 1 which is also vital for the dynamics modeling of production systems.
A systematic method to quantitatively study the vulnerability assessment of production
systems has not been well developed to date. Compared with performance models of
production quantity, some vulnerability models in terms of production quality control are
proposed by applying network modeling or fuzzy theory. Qin and Zhao established a
man–machine–environment brittleness model of dynamic quality characteristics using the
brittleness theory of complex systems [28]. A fuzzy analytic hierarchy process is applied to
further identify the brittle source of the complex manufacturing process [8]. Vulnerability
value is measured for assembly manufacturing systems using complex network theory
and simulation technology [9]. Alnino and Garavelli present a simple Markov model of a
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just-in-time production system to identify the vulnerability of backorder probability [29].
Liu and Xv proposed a modeling and evaluation method for the structural vulnerability of
manufacturing systems based on the universal generating function and information entropy
principle [30]. Gao and Wang evaluated the structural vulnerability of reconfigurable
manufacturing systems based on the entropy principle and Markov models [31].

A major research area of SVA is still on supply chain networks and their risk manage-
ment, which center on network structure modeling and vulnerability source identification
through node linking relation [10,32–34]. Nakatani et al. proposed a supply chain model
using a directed graph based on life cycle inventory data, and the Herfindahl–Hirschman
index is used to rank vulnerability indicators of disruption risks [10]. Petri-Net-based
visualization and triangularization clustering algorithms are studied to offer insights into a
supply chain vulnerability in [33]. Risk management to reduce production system vulner-
ability is discussed in [35,36]. In brief, the vulnerability evaluating model under dynamic
disruption remains unexplored for structured systems in the production capacity perspective.

2.3. Transient Performance Analysis

In production systems engineering, a great deal of work has been devoted to analyzing
the performance of manufacturing systems. Traditionally, production system modeling
methods are limited to steady-state analysis [37–39]. Meerkov and Zhang explored tran-
sients of the states and outputs in serial production lines with Bernoulli machines [40].
Analytical formulas for evaluating the settling time of productivity rate and WIP using the
Bernoulli Reliability Model are also provided by Ju et al. [41]. Hou et al. proposed a novel
“split-view” method for transient and steady-state performance analysis of inhomogeneous
assembly systems [42]. A Production line with a rework loop is further studied using a
“self-view” method from a buffer’s viewpoint [43]. Based on Markov analysis, Chen and
Huang proposed an auxiliary production line to decouple the dynamics of the original
system to study the transient behavior of the production line [44]. Jia and Chen studied
the transient performance evaluation problem by considering adjustments and resets on
serial production lines for multi-type and low-volume production [45]. Huang and Wang
introduced an analytical model to study the transient performance of a multi-product serial
production line with Bernoulli reliability machines and non-negligible settings during
changeover [46]. In brief, these mentioned approaches are centered on transient-state
performance evaluation before reaching the steady state, for example, the typical warming-
up period and shift transferring period [47]. However, transient performance analysis
under sudden disruptions, such as random machine failures and other scheduled shut-
downs (e.g., preventive maintenance activities), is less popularly studied and needs to be
further explored.

In the related research on performance evaluation, most research literature focuses
on evaluating the steady-state performance of manufacturing systems and analyzing the
performance indicators of the system under long-term operation. The study of transient
performance of manufacturing systems also mainly focuses on evaluating the performance
of the system before reaching a steady state. Additionally, studies on how perturbation
events will affect system state and capacity are rare. In the related research on vulnerability,
most of the research objects are various complex systems. All of them have only carried
out qualitative analysis on vulnerability, and there are few quantitative studies on system
vulnerability. In practice, the impact of disturbance events on system performance is not
immediately apparent due to the presence of buffers in manufacturing systems. There is
even a time window in which system productivity is not affected, but little research has
been conducted on this.

Therefore, the current research on the vulnerability of manufacturing systems is still
insufficient, and it is necessary to pay attention to the impact of disturbance events on
system productivity, quantify the capacity loss and opportunity time window, and then
formulate the control strategy of the production line under disturbance. Based on the
previous research results, this paper has made certain innovations on its basis:
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The essence of the dynamic analysis of production systems is mainly discussed, and an
evaluation method of production line vulnerability under the framework of elastic system
analysis is proposed.

The method can perform transient performance analysis in the face of the sudden
random disturbance production system. By quantitatively evaluating the vulnerability
index of the production line under disturbance events, and formulating the regulation
strategy under disturbance based on the vulnerability time window, the production loss
caused by disturbance can be avoided or reduced.

The mathematical analysis model established by this method was successfully applied
to the performance evaluation module in the digital twin system of the mobile phone pro-
duction line developed by our team, and the research results of this paper were transformed
into tools that can solve practical production problems.

3. Digital Twin System and Architecture
3.1. Digital Twin System

The assembly process of smartphones is very complex and involves many processes,
including five main process steps: soldering, assembling, inspecting, quality control, and
marking. For a reconfigurable electronic assembly line that is frequently replaced, it will
take a lot of time to design a balanced production line structure, deploy tools, and debug
and test after each disturbance causes system interruption. Therefore, in order to guarantee
stable production capacity, the assembly line of the mobile phone manufacturing shop
must be flexible, quickly reconfigurable, and adaptable to random interruptions.

As an emerging technology, the digital twin provides a new idea for the disturbance
control and reconfiguration of mobile phone assembly lines. The digital twin system of
the production line can provide a virtual test optimization platform. The data between
the physical and virtual entities support each other in decision making, which is applied
to the design, analysis, and regulation of the production line. As shown in Figure 2, a
reconfigurable electronic assembly line digital twin system with disturbance analysis and
control was independently developed by our team.

The assembly process of the smartphone can be divided into various processes such
as sticking double-sided tape, dispensing, TP pressing, sticking accessories, back cover
locking screws, and pasting accessories. Based on this assembly process, we construct
corresponding digital virtual assembly lines and physical assembly lines. As shown in
Figure 3, on the virtual platform, we built a standardized general platform (SGP) with
complete functions and built a variety of special assembly machines based on this general
platform. Such as locking screw machines, sticking accessories machines, TP double-sided
adhesive machines, etc., for mobile phone processing. At the same time, drag-and-drop
autonomous guided vehicles (AGVs) are also built for loading and unloading machines.
Figure 4 shows the physical assembly line of a smartphone and its components, each of
which corresponds to the components of a virtual assembly line. Based on digital twin
technology, two-way real mapping and real-time interaction between physical production
lines and virtual production lines can be realized.

The digital twin system shown in Figure 2 is mainly divided into three parts, including
the device layer, the control network layer, and the execution system layer. The device
layer includes physical production lines and virtual production lines. The control network
layer includes instruction synchronization. The execution system layer includes the MES
system, data analysis center, cell control system, and the SCADA system. The solid line
represents the instruction channel, and the dashed line represents the information channel.
Production instructions (such as scheduling scenarios or reconfiguration decisions) are
issued by the global manufacturing execution system (MES) to the cell control systems,
which are then passed on to machine instructions in the shop floor control network. At the
same time, the supervisory control and data acquisition (SCADA) system obtains the field
data and provides the field monitoring data and simulation data for the future decision
making of MES.
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For the digital twin system, a bidirectional connection channel is established in order to
realize the synchronous operation of the physical production line and the virtual production
line. As shown in Figure 2, a physical entity has a corresponding virtual entity. The PLCs
in the various devices of the physical assembly line can perform input/output. These
inputs/outputs are then associated with the various devices of the virtual assembly line
through the soft PLC interface of the simulation software. This enables synchronization of
physical and virtual production lines.

When the electronic assembly line is disturbed, the disturbance information is trans-
mitted through the established bidirectional connection channel between the physical space
and the information space, and the real-time state monitoring of the physical entity is
reflected in the virtual model. The virtual model is used to simulate the line state evolution
in advance, and the performance evaluation module of the data analysis center evaluates
the influence of disturbance on the whole system’s fault fluctuation. Then, the structure
and performance of the production line can be regulated through optimization algorithms.
Finally, the optimization plan and implementation measures are given to ensure the normal
production output of the whole system.
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3.2. Notations and Assumptions

A digital twin system is far more than a virtual 3D model (visualization), and an
accurate analytical model is essential to describe the internal operating mechanism of the
system. The vulnerability analysis method proposed in this paper provides a theoretical
core for the extended application of digital twin technology. As shown in Figure 5, this
paper models the mobile phone assembly production system as a series system with finite
buffers for analysis. The following notations are adopted in Abbreviations.
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The following assumptions are made in the process of SVA.

(1) The first station m0 is never starved, and the last station mN is never blocked.
(2) All stations are failure-dependent and buffers are reliable.
(3) Stations’ servicing time without consideration of failures obeys the deterministic distribution.
(4) The servicing time is deterministically distributed when machine failure has not occurred.
(5) Station failure obeys the exponential distribution.
(6) Traveling time at buffers is negligible.

4. Temporal and Spatial Attributes of SVA

A resilient production system can be considered a dynamic space–time system. Finite
buffers can suppress the stochastic disturbance effect and enhance product stability in the
system. The consumption of work-in-process in buffers is accompanied by the alternation
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of the station’s starvation and blocking states. On the other hand, random failures and
scheduled disruptions (e.g., preventive maintenance activities) of different stations result in
differentiated production losses owing to their disturbance moment and duration. Hence,
production disturbances (device failures, batch variation, process time delay, etc.) combined
with inherent buffering mechanisms contribute to the dynamics of cell phone assembly
systems. Consequently, system state evolution has distinct temporal and spatial attributes
during the process of SVA. On account of different analysis perspectives, SVA and its
quantification are separated into two parts in this section: vulnerability effect on the end-
of-line station of the assembly line and vulnerability effect on the bottleneck station of the
assembly line.

4.1. Vulnerability Effect on End-of-Line Station

System yield is computed by the production count of the end-of-line station. Any
disruption of due-time performance may lead to product shortage and the irretrievable risk
of delivery delay. Once stoppage occurs in an end-of-line station, the downstream industry
chains are likely to be badly hit. Thus, it is necessary to analyze the vulnerability effect on
the end-of-line station.

As shown in Figure 6, once a failure event of a certain station occurs for a serial transfer
line with N + 1 stations and N buffers, it is unlikely for the failure event to immediately
cause system performance reduction because of the function of finite buffers. System
state evolution heavily depends on the configuration structure. The disturbance event
immediately leads to local instability of a certain station, but it takes a propagation time to
cause production reduction at the end-of-line station. Such a phenomenon is explained as
Terminal Time Delay (TTD) effect in this paper. On the other hand, there is an opportunity
window for the repair process such that the end-of-line station’s production will not stop.
The opportunity window is indicated as Terminal Time Window (TTW) below.
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Suppose a disturbance event E (mi, te, de) occurs, wherein mi is the i th station (i = 0, 1,
2, . . . , N), te is the occurrence time, and de is the duration of event E. The bottleneck station
is indicated as mk. The production system can be divided into three parts as Figure 5: line
L1 between the first station and mi (mk if mi locates at the downstream of mk, I > k), line L2
between mi and mk, line L3 between mk (mi if mk locates at the upstream of mi, I > k) and the
last station.

TTD of the event E(mi, te, de), which is indicated as TDi(te), can be defined as follows.

Definition 1. Terminal Time Delay (TTD) is the time interval between the occurrence moment of
the disruption and the moment of production stoppage at the end-of-line station.
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As shown in Figures 7 and 8, the stagnant production of the end-of-line station does not
occur until the time moment te + TDi(te). Accordingly, TTD can be represented qualitatively
according to the residence time (RT) of line L2 (RT(L2)) and L3 (RT(L3)).
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As shown in Equation (1), TTD is determined in terms of the disruption location and
occupancy situation of downstream buffers. Therefore, the disruption’s TTD has a distinct
spatial attribute determined by the distance from the last station. Additoinally, it also
has distinct temporal attributes determined by the work-in-process (WIP) dynamics of
downstream buffers and stations.

TDi(te) =

{
RT(L2) + RT(L3) i ≤ k
RT(L3) i > k

(1)

The TTW of the event E(mi, te, de), which is indicated as TWi(te), can be defined
as follows.

Definition 2. Terminal Time Window (TTW) is the opportunity time that the disruption does not
lead to the production stoppage at the end-of-line station.

Note that the TTW is definitely less than the TTD. As shown in Figures 7 and 8,
once the disturbance event E(mi, te, de) occurs, the last work-piece before disruption flows
through line L3 if i > k (line L2 and L3 if i ≤ k). There is an opportunity window for the
repair process (the repair time is de) such that the first work-piece after repair catches up
with the foregoing last work-piece exactly at mN. Thus, mN could never be stopped as if the
disturbance event had never occurred.
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Once E(mi, te, de) occurs, the vulnerability effect on the end-of-line station can be
rescued if the following equation is satisfied.

TWi(te) > de (2)

If Equation (2) is not satisfied, production cessation at the end-of-line station will occur
at te + TDi(te).

In conclusion, the values of TTD, TTW, and de jointly determine the triggering moment
and effect of end-of-line vulnerability.

4.2. Vulnerability Effect on Bottleneck Station

According to the theory of constraints [48], system performance is restricted by the
bottleneck station. Provided the bottleneck station mk is not affected by the event E(mi, te,
de), the production of the whole system remains stable owing to the buffering mechanism
of line L2. Namely, in the case of i ≤ k, mk keeps working because of the WIPs in line L2;
in the other case of i > k, mk keeps working because of the vacancies in line L2. Note that
downtime of mk will lead to permanent system production losses. Accordingly, E(mi, te,
de) immediately leads to the local instability of neighboring stations of mi, but it takes a
certain duration of time for E(mi, te, de) to cause permanent system production losses. Such
a duration of time is defined as Bottleneck Time Delay (BTD). On the other hand, there is
an opportune time for the repair process such that the bottleneck station’s production will
not stop. The opportunity time is indicated as Bottleneck Time Window (BTW) below.

BTD of the event E(mi, te, de), which is indicated as BDi(te), can be defined as follows.

Definition 3. Bottleneck Time Delay (BTD) is the time interval between the occurrence moment of
the disruption and the moment of production stoppage at the bottleneck station.
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As shown in Figures 7 and 8, the stagnant production of the bottleneck station does not
occur until the time moment te + BDi(te). Accordingly, BTD can be represented qualitatively
according to the residence time (RT) of line L2.

BDi(te) =

{
RT(L2) i ≤ k
RT′(L2)− RT(L2) i > k

(3)

where RT′(L2) is the residence time of line L2 when buffers between mi and mk are all full,
RT(L2) is the normal mean residence time without the disruption.

BTD is determined based on the distance and buffer occupancy situation between mi
and mk. Namely, if i ≤ k, BTD is the time interval for all WIPs in line L2 passing through
mk. If i > k, BTD is the time interval for all buffers in line L2 becoming full. Therefore, the
disruption’s BTD has distinct spatial attributes determined by their distance. Additionally,
it also has distinct temporal attributes determined by vacancy dynamics between mi and mk.

Definition 4. Bottleneck Time Window (BTW) is the time interval between the occurrence moment
of the disruption and the moment causing permanent production losses.

Note that the BTW is definitely less than the BTD. As shown in Figure 7 (i≤ k), once the
disturbance event E(mi, te, de) occurs, the last work-piece before disruption flows through
line L2. There is an opportunity window for the repair process (the repair time is de) such
that the first work-piece after repair catches up with the foregoing last work-piece exactly
at mk. Thus, mk could never be starved because of the disruption as if the disturbance event
never occurs.

On the other hand, as shown in Figure 8 (i > k), once the disturbance event E(mi, te, de)
occurs, there is an opportunity window for the repair process (the repair time is de), such
that mk+1 returns to its normal work and obtains a work-piece from the full Bk. Thus, E(mi,
te, de) will not lead to the blocking of mk as if the disturbance event never occurs.

Let us construct such a scenario in the assumption of the continuous flow model [49].
The production line can be considered as a long rope with children (maybe on a moun-
taineering trip) tied in succession (similar to the Drum–Buffer–Rope model in the theory of
constraints [48]). Once a child tumbles, there is a time window for his/her recovery that
causes no effect on queue velocity. Thus, the time window is the time that ropes between
the falling child and bottleneck child (maybe a ‘little fatty’) becoming totally tight if the
falling child locates after the bottleneck child or becomes completely relaxed (children hud-
dle together) if the bottleneck child locates after the falling child. The Drum–Buffer–Rope
example is helpful for understanding the vulnerability delay. However, there is an error
in such a continuous flow model. It holds that the bottleneck child will not be affected by
the falling child as long as he/she recovers in the moments of the above two critical state
limits. Jobs in mobile phone machining production lines are generally discretely delivered.
Thus, it takes time to pass from the failure machine to the bottleneck machine.

Once E(mi, te, de) occurs, the vulnerability effect on the bottleneck station can be
rescued if the following equation is satisfied.

BWi(te) > de (4)

If Equation (4) is not satisfied, permanent production losses of the entitled system will
occur at te + BDi(te) because normal production of mk is affected.

Similarly, the values of BTD, BTW, and de jointly determine the triggering moment
and effect of bottleneck vulnerability.

As shown in Figure 6, once the disturbance event E(mi, te, de) occurs, the production
process of the whole system remains stable during the time interval [te, te + BDi(te)].
As shown in Figure 7, the production process of the whole system turns to be unstable
because of the new bottleneck of line L3, and such a period sustains at the time interval
[te, te + TDi(te)]. It is remarkable that there is no relationship of size between BTD and TTD
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or BTW and TTW. In another way, BTW can be defined as the longest possible downtime
of mi that does not result in permanent production loss at mN. TTW can be defined as the
longest possible downtime of mi that does not result in the production stoppage of mN.

As shown in Figures 7 and 8, the time span between a disruptive event and the repair
action can be quantified as mean time to repair (MTTR), which is indicated as de in this
paper. Similarly, there is Recovery Time Delay (RTD) for productivity restoration because
of the existence of propagation time. Furthermore, a longer period is consumed to recover
to a stable state.

5. Vulnerability Quantification

Equations (1)–(4) give qualitative descriptions of the vulnerability effect on the end-of-
line station and bottleneck station of the mobile phone assembly line. However, system
vulnerability should be further quantified in the following procedures. We can consider the
mobile phone production system in Figure 6 as a tandem open queuing network system.
Thus, production performance can be estimated by the stochastic service system model.

5.1. Stochastic System Model

The transition probability matrix of the tandem system with (N + 1) stations is deduced
recursively in this subsection.

The servicing rate of mi is indicated as a constant µi when failure is not considered.
Failure time obeys exponential distribution with rate parameter λi. Suppose Xi and Ti
are the producing number and survival time of mi, respectively. Thus, we can infer the
following equation.

P(Xi ≤ xi)= P(µiTi ≤ xi) = P(Ti ≤ xi/µi)

=
∫ xi

µi

0
λie−λixi dxi = 1− e−

λi xi
µi

(5)

Therefore, if failures are considered, the servicing rate of mi is an exponential distribu-
tion with parameter ωi, which is calculated by:

ωi = λi/µi, i = 0, 1, . . . , N (6)

Considering that the first station m0 is never starved, the system can be modeled as an
N node tandem open queuing network without m0. Let bi(t) be the queue length at time t,
(i = 1, 2, . . . , N). Thus, the state space is represented as EN = {(b2(t), b1(t)}, which ranks in
lexicographical order. The ith state-space Ei, which is i dimension Markov process, can be
represented by Ei−1 of the 1st to (i − 1)th service station.

Ei = {(0, h), (1, h), . . . , (Bi, h), h ∈ Ei−1} 2 ≤ i ≤ N, E1 = {(0), (1), . . . , (B1)} (7)

In order to investigate the recurrence relation between Ei−1 and Ei, the survey of a
state-transition process for the first buffer B1 is necessary. The birth and death rates are
ω0 and ω1, respectively. The corresponding state-transition matrix Q1 of E1 is shown in
Figure 9.

Q1 =



−ω0 ω0
ω1 −(ω0 + ω1) ω0

ω1 −(ω0 + ω1) ω0
. . . . . . . . .

ω1 −(ω0 + ω1) ω0
ω1 −ω1


(8)
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Figure 9. State-transition diagram of the buffer B1.

The death rate of the first service station (namely, ω1) is exactly the birth rate of the
second service one. E2 = {(bN(t), bN-1(t), . . . , bi(t), . . . , b1(t)), i = 1, . . . , N, bi(t) = 0, 1, . . . , Bi},
b2(t) = 0, 1, 2, . . . , B2, b1(t) = 0, 1, 2, . . . , B1; the state-transition process of both buffer B1
and B2 is shown in Figure 10.
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Considering the Markov property in Figure 10, the state process of nodes is only
related to their adjacent nodes’ states. Thereby, we can deduce the state-transition matrix
Q2 of E2 based on Q1. Firstly, the state transition density matrix of the process (0, b1(t))→
(0, b1(t + ∆t)), which matches with the first row in Figure 10, can be indicated as Qa

1 in the
following context.

Qa
1 =



−ω0 ω0
−(ω0 + ω1) ω0

−(ω0 + ω1) ω0
. . . . . . . . .

−(ω0 + ω1) ω0
−ω1


(9)

The transition rate of state (r, b1(t))→ (r + 1, b1(t + ∆t)) is exactly the death rate ω1 of
the first station, which means a work-piece is transferred to Queue 2 from Queue 1 (r = 0, 1,
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. . . , B2 − 1). The state transition density matrix of such a process, which is indicated as Qb
1,

is shown as Equation (10).

Qb
1 = Q1 −Qa

1 =



0
ω1 0

ω1 0
. . . . . .

ω1 0
ω1 0


(10)

Accordingly, the transition density matrix of the process (r + 1, b1(t))→ (r, b1(t + ∆t))
is indicated as ω2 I, which means a part is finished at Queue 2 (r = 0, 1, . . . , B2−1). Ad-
ditionally, the transition density matrix of (r, b1(t))→ (r, b1(t + ∆t)) is Qa

1 −ω2 I, wherein
2 ≤ r ≤ B2 − 1.

As for (B2, b1(t))→ (B2, b1(t + ∆t)), the transition density matrix, which matches with
the last row in Figure 10, can be shown as the following transformation:

(Qa
1 + Qb

1D1)−ω2 I =


−ω0 −ω2 ω0

−ω0 −ω2 ω0
. . . . . .

−ω0 −ω2 ω0
−ω2

 (11)

where D1 =


0 I

0 I
. . . . . .

0 I
0

.

Hence, Q2 can be obtained based on Q1 as the following equation:

Q2 =



Qa
1 Qb

1
ω2 I Qa

1 −ω2 I Qb
1

ω2 I Qa
1 −ω2 I Qb

1
. . . . . . . . .

ω2 I Qa
1 −ω2 I Qb

1
ω2 I Qa

1 + Qb
1D1 −ω2 I


(12)

Accordingly, the state process of Ei is a quasi-birth and death process (QBD). The birth
rate of the ith queue is the death rate of the (i − 1)th queue (i > 1). The transition matrix of
such a process is Qb

i−1 (i > 1). The transition matrix of state space {(r + 1, h), h∈Ei−1, r = 0, 1,
. . . , Bi − 1} to {(r, h), h∈Ei−1, r = 0, 1, . . . , Bi − 1} is ωi I, which means a part is finished by
the ith queue. Accordingly, the state-transition matrix Qi with a higher dimension can also
be derived by Qi−1 according to the recurrence relation.

Qi =



Qa
i−1 Qb

i−1
ωi I Qa

i−1 −ωi I Qb
i−1

ωi I Qa
i−1 −ωi I Qb

i−1
. . .

. . .
. . .

ωi I Qa
i−1 −ωi I Qb

i−1
ωi I Qa

i−1 + Qb
i−1Di−1 −ωi I


(13)

2 ≤ i ≤ N.
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wherein,

Qa
i =



Qa
i−1 Qb

i−1
Qa

i−1 −ωi I Qb
i−1

Qa
i−1 −ωi I Qb

i−1
. . .

. . .
Qa

i−1 −ωi I Qb
i−1

Qa
i−1 + Qb

i−1Di−1 −ωi I


,

Di−1 =


0 I

0 I
. . .

. . .
0 I

0

, Qb
i = Qi −Qa

i .

5.2. State Space Equations
The exact performance of small-scale systems can be computed, avoiding the large-scale matrix

QN. Suppose Y = (Y0, Y1, Y2, . . . , YN) is the steady-state solution of the stochastic service system
model. The following equation should be satisfied according to the equilibrium condition.

YQN = 0 (14)

where QN is computed in terms of Equation (13). Thus, the following equations can be obtained.

Y0Qa
N−1 + Y1(ωN I) = 0 (15)

Y0Qb
N−1 + Y1(Qa

N−1 −ωN I) + Y2(ωN I) = 0 (16)

Yi−1Qb
N−1 + Yi(Qa

N−1 −ωN I) + Yi+1(ωN I) = 0 (17)

YN−1Qb
N−1 + YN(Qa

N−1 + Qb
N−1DN−1 −ωN I) = 0 (18)

The following constraint is given by

Y0e0 +
N

∑
i=1

Yie1 = 1 (19)

where the dimension of all 1 column vectors e0 and e1 is the same as Y0 and Y1.
Let C = (−ωN I)−1, Yi+1 can be obtained according to Equation (17).

Yi+1 = Yi−1Qb
N−1C + Yi[Qa

N−1 −ωN I]C (20)

Y2 = Y0Qb
N−1C + Y1[Qa

N−1 −ωN I]C (21)

Y1 = Y0Qa
N−1C (22)

In order to simplify the derivative process, we give the following substitution parameters:

H1 = 0, H2 = Qb
N−1C, G1 = I, G2 = [Qa

N−1 −ωN I]C (23)

Hi+1 = Hi−1Qb
N−1C + Hi[Qa

N−1 −ωN I]C, 1 < i < BN − 1 (24)

Gi+1 = Gi−1Qb
N−1C + Gi[Qa

N−1 −ωN I]C, 1 < i < BN − 1 (25)

Y2 can be represented as (Y0H2 + Y1G2) according to Equations (21) and (23). Then, Yi can also
be expressed by Y0 and Y1 through iterative computing.

Yi = Y0Hi + Y1Gi, 1 ≤ i ≤ BN − 1 (26)

Yi can be further expressed containing only Y0 using Equation (22).

Yi = Y0(Hi + Qa
N−1CGi), 1 ≤ i ≤ BN − 1 (27)
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We further calculate YN by Equation (18).

YN = −YN−1Qb
N−1(Q

a
N−1 + Qb

N−1DN−1 −ωN I)
−1

= −Y0(HN−1 + Qa
N−1CGN−1)Qb

N−1(Q
a
N−1 + Qb

N−1DN−1 −ωN I)
−1 (28)

In order to simplify the derivative process, we further give the following substitution variable:

Ri = Hi + Qa
N−1CGi, 1 ≤ i ≤ BN − 1, RN = −RN−1Qb

N−1(Q
a
N−1 + Qb

N−1DN−1 −ωN I)
−1 (29)

Thus, Yi = Y0Ri, I = 1, 2, . . . , N. By adding together Equations (15) and (18), we can obtain the
following formula containing only Y0:

Y0[QN−1 +
N−1

∑
i=1

RiQN−1 + RN(Qa
N−1 + Qb

N−1DN−1)] = 0 (30)

Equation (19) can also be shown as follows:

Y0(e0 +
N

∑
i=1

Rie1) = 1 (31)

In conclusion, Y0 can be determined by the following linear inhomogeneous equations:
[QN−1 +

N−1
∑

i=1
RiQN−1 + RN(Qa

N−1 + Qb
N−1DN−1)]

T

(e0 +
N
∑

i=1
Rie1)

T

Y0
T =

[
0MN−1×1

1

]
(32)

wherein, MN−1 = ∏N−1
i=1 (Bi + 1). Additionally, Y can be further calculated by Equations (27) and (28).

5.3. Vulnerability Quantification
The disruptive event E(mi, te, de) will bring different levels of impact on system production

performance, which has distinct temporal and spatial attributes owing to the disruption location and
duration. According to Equations (1) and (3), the transient vulnerability of E(mi, te, de) is determined
by the WIPs and vacancies condition at the moment of te.

From the foregoing definition, both terminal vulnerability and bottleneck vulnerability are
required to be quantified. In Equation (1), according to little’s law, Transient TTD in te is computed
based on work-pieces of downstream buffers and stations after mi.

TDi(te) =
∑N

h=i+1 Lh(te)

(1− STN)ωN
=

∑N
h=i+1 [bh(te) + xmh (te)]

(1− STN)ωN
(33)

where Lh(te) is the queue length of the hth service station, bh(te) is the number of WIPs in the hth
buffer, and xmh (te) is the variate that indicates whether there is a work-piece in mh, which equals to 1
if there is one, 0 otherwise. Note that both bh(te) and xmh (te) should be given as the input condition.
The probability of the starvation of the last station is STN, which is calculated by

STN = P{LN = 0} = ∑
ξ∈ENS

Yξ (34)

where LN is the queue length of the last station, Yξ is the probability of state ξ, and state space ENS is
shown as:

ENS= {0, bN−1(t), . . . , bi(t), . . . , b1(t), i = 1, . . . , N − 1, bi(t) = 0, 1, . . . , Bi} (35)

Transient TTW for the repair process of mi, namely the opportunity window that the first
work-piece after repair catches up with the foregoing last work-piece exactly at mN, can be quantified
by the following equation.

TWi(te) =
∑N

h=i+1 Lh(te)

(1− STN)ωN
−∑N−1

h=i
1

ωh
=

∑N
h=i+1 [bh(te) + xmh (te)]

(1− STN)ωN
−∑N−1

h=i
1

ωh
(36)
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The steady TTD of a disruptive event E(mi, te, de) can be computed by the average queue length
between mi and mN, which is shown as:

TDi =
ELTTD

i
(1− STN)ωN

(37)

ELTTD
i represents the expected queue length between mi and mN in the steady state. In the

above equation, the steady joint probability distribution of each queue length can be indicated as the
following equation:

P{
N
∩

h=1
(Lh = lh )} = ∑

ξ∈EN

Yξ , EN = {(bN , bN−1, . . . , bi, . . . , b1), bi = 1, . . . , Bi} (38)

ELTTD
i can be determined by the following equation:

ELTTD
i = ∑

ξ∈EN

[Yξ∑N
h=i+1 bh(ξ)] (39)

where bh(ξ) is the number of work pieces in Queue h under the state ξ.
The steady TTW can also be computed by the average queue length.

TWi =
ELTTD

i
(1− STN)ωN

−∑N−1
h=i

1
ωh

(40)

As for the bottleneck-dominated vulnerability, the BTD of E(mi, te, de) is determined by the
WIPs and vacancies condition at the moment of te. Suppose a disruptive event occurs in mi, and the
bottleneck station is mk. If i ≤ k, BTD is the time interval for all WIPs in line L2 passing through mk. If
i > k, BTD is the time interval for all buffers in line L2 becoming full.

Therefore, if I > k, the transient BTD of E(mi, te, de) can be computed by the sojourn time of the
last WIP before disruption event between mi and mk. If i > k, the transient BTD of E(mi, te, de) can be
computed by the time that all vacancies between mi and mk become full.

BDi(te) =


∑k

h=i+1 Lh(te)
SBkωk

, i < k

0 , i = k
∑i

h=k+1 [Bh−Lh(te)]
SBkωk

, i > k

(41)

where SBk is the probability that mk is neither starved nor blocked. SBk is calculated by the follow-
ing equation:

SBk = ∑
ξ∈EBS−k

Yξ , EBS−k = {bN , bN−1, . . . , bk+1 6= Bk+1, bk 6= 0, . . . , b1}, bk = 0, 1, . . . , Bk (42)

Bottleneck station mk is determined by the starvation and blocking probability.

Sh =|STh+1 − BLh|+|STh − BLh−1|, h = 1, 2, . . . , N − 1
S0 =|ST1 − BL0|, SN =|STN − BLN−1|

(43)

where the starvation probability of mh is obtained by

STh = ∑
ξ∈EST−h

Yξ , EST−h = {bN , bN−1, . . . , bh = 0, . . . , b1}, bh = 0, 1, . . . , Bh (44)

and the blocking probability of mh is obtained by

BLh = ∑
ξ∈EBL−h

Yξ , EBL−h = {bN−1, . . . , bh, bh+1 = Bh+1, . . . , b1}, bh = 0, 1, . . . , Bh (45)

Queue length at mh is obtained by

Lh(te) = [bh(te) + xmh (te)] (46)
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Steady BTD can be computed by the average queue length.

BDi =


ELBTD

i−k
SBkωk

, i < k

0, i = k
∑i

h=k+1 Bh−ELBTD
i−k

SBkωk
, i > k

(47)

ELBTD
i−k represents the expected queue length between mi and mk, which can be computed in a

similar way.

ELBTD
i−k =


∑

ξ∈EBS−k

[Yξ ∑k
h=i+1 bh(ξ)], i < k

0, i = k

∑
ξ∈EBS−k

[Yξ ∑i
h=k+1 bh(ξ)], i > k

(48)

Accordingly, transient BTW for the repair process of mi, namely the opportunity window that
the first work-piece after repair catches up with the foregoing last work-piece exactly at the bottleneck
station mk, can be quantified by the following equation:

BWi(te) =


∑k

h=i+1 Lh(te)
SBkωk

−∑k−1
h=i

1
ωh

, i < k

0, i = k
∑i

h=k+1 [Bh−Lh(te)]
SBkωk

−∑i−1
h=k

1
ωh

, i > k

(49)

The steady BTW can also be computed by the average queue length.

BWi =


ELBTD

i−k
SBkωk

−∑k−1
h=i

1
ωh

, i < k
0, i = k
∑i

h=k+1 Bh−ELBTD
i−k

SBkωk
−∑i−1

h=k
1

ωh
, i > k

(50)

Therefore, the transient vulnerability effect on the terminal station can be quantified for each
disturbance event E(mi, te, de) as follows:

VT
i (te) =

{
0, de ≤ TWi(te)

λiωN(1− STN)[de − TWi(te)], de > TWi(te)
(51)

The steady vulnerability effect of mi on the final station can be quantified by

VT
i =

{
0, de ≤ TWi

λiωN(1− STN)(de − TWi), de > TWi
(52)

The transient vulnerability effect on the system bottleneck can be quantified for each disturbance
event E(mi, te, de) as follows:

VB
i (te) =

{
0, de ≤ BWi(te)

λiωk[de − BWi(te)], de > BWi(te)
(53)

The steady vulnerability effect of mi on the system output can be quantified by

VB
i =

{
0, de ≤ BWi
λiωk(de − BWi), de > BWi

(54)

6. Case Study
The rapid replacement of mobile phone products poses a serious challenge to its assembly

system. Frequent product replacement results in frequent switching of the configuration structure of
the production line, which leads to the instability of the production process and the loss of produc-
tion capacity. The mobile phone assembly process is very complicated and has many procedures,
including dozens of procedures such as mainboard inspection, camera welding, antenna bracket
installation, camera fixing, and button board welding. Due to factors such as frequent product
replacement, equipment failure, and adjustment of line change parameters, the production capacity
of the production line is often lost. At present, most mobile phone assembly companies belong to
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foundries, with meager profits. The loss of capacity due to frequent interruptions will seriously affect
corporate profits. Therefore, in order to ensure the stable production capacity of the production
line under high-frequency disturbance, it is very important to carry out vulnerability analysis and
control strategies.

The Digital Twin System (DTS) is a 3D design and simulation optimization system designed
by our team for the characteristics and needs of the 3C manufacturing industry. It has strong 3D
near-physical simulation capabilities and good scalability. Figure 11 is the virtual simulation platform
and physical production line of the mobile phone assembly line built by DTS, respectively. The
entire project is based on digital twin technology, which not only supports open architecture design,
rapid reconfiguration of production lines, distributed integration testing, transparent monitoring,
high-fidelity hardware-in-the-loop simulation, rapid custom design of the entire line, and other
application modalities, but also includes a fully automatic production line, custom design platform,
intelligent control system, and other parts.
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DTS is mainly composed of four functional modules including basic management, near-physical
simulation, multi-view synchronization, performance analysis, and regulation, and each module
contains multiple sub-functions. The main function modules and main interface of the system are
shown in Figure 12 respectively. Figure 12a is the main interface of the digital twin system, which
mainly includes functional areas such as the 3D view window, function menu area, component
library, model BOM tree, and model attribute management. Figure 12b is the scene layout of the
system interface, which can design the layout of the production line in the 3D scene. Figure 12c
is the model property management interface, which can set the near-physical properties of the 3D
model. Figure 12d is the scripting interface, which can Script control of equipment actions and WIP
flow in the production line. Figure 12e is the PLC connection management interface, which can
establish a communication channel between physical equipment and virtual models. Figure 12f is the
performance analysis and control interface, which can analyze the performance of the production
line and iteratively optimize the design of the production line. The vulnerability analysis method
proposed in this paper is an important theoretical basis for the performance analysis and control
module. Based on this method, the module can realize the real-time analysis of the production line
performance. Simulate disturbance events, quantify vulnerability indicators, and then formulate
appropriate disturbance control strategies to avoid production residual losses.
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Figure 12. Introduction to the main function interface of DTS. (a) Digital twin interface. (b) Scene
layout management interface. (c) Models’ property management interface. (d) Script writing interface.
(e) PLC connection management interface. (f) Performance analysis and control interface.
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Combining the theoretical research results in this paper, this chapter develops a vulnerability
analysis application that supports disturbance simulation, vulnerability quantification, and distur-
bance control. Additionally, it encapsulate it as a functional component into the performance and
analysis control module of the digital twin system, as shown in Figure 13. In the vulnerability
quantitative analysis and control strategy module, after inputting fault data, the “Vulnerability Index
Solving” function can quantify the vulnerability index of the production line, generate a production
line performance analysis chart, and display the quantification results. The “disturbance control
strategy” function can generate the control strategy when the equipment fails.
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The analytical models described in the previous sections can accurately evaluate the perfor-
mance of production systems under dynamic disruptions, and the case studies in this section aim to
validate the vulnerability quantification method. Select some of the processes in the mobile phone
assembly process for virtual simulation, namely sticking double-sided tape, dispensing, TP pressing,
back cover locking screws, pasting accessories, etc. Suppose the production line consists of 8 tandem
queues, namely 8 stations and 7 buffers. The configuration parameters of the line are listed in Table 1.
It is supposed that the first station is never starved.

Table 1. Configuration information and reliability parameters.

Queue 1 Queue 2 Queue 3 Queue 4 Queue 5 Queue 6 Queue 7 Queue 8

Buffer capacity / 2 2 2 2 2 2 2
Service rate µi 4.5 4.3 4.1 4.3 4.5 4.2 4.5 4.5
Failure rate λi 0.036 0.040 0.031 0.029 0.029 0.040 0.034 0.034

Note that transient vulnerability is determined by the monitoring buffer/machine occupancy dy-
namics. Transient vulnerability evaluation is helpful for real-time decision support such as opportunity
maintenance. It can be inferred by real-time queue lengths using Equations (33), (36), (41), and (49).
On account of the number of work-pieces in buffers being variable, a steady evaluation is more
valuable for configuration design or vulnerability control.

Figure 14 exhibits the steady vulnerability evaluation results. Steady TTD, TTW, BTD, and
BTW results are used to illustrate the temporal and spatial attributes. As shown in Figure 14, BD2
and BW2 equal 0. Thus, M1 (Queue 2) can be inferred as the main bottleneck machine according to
Equations (47) and (50). In terms of the evaluation of terminal vulnerability, both TTD and TTW
gradually diminish with the decrease in distance from the terminal machine. From the perspective of
bottleneck vulnerability, both the BTD and BTW gradually increase as the distance is augmented from
the bottleneck machine. Despite the obvious trend of vulnerability, this paper presents a quantitative
approach that is the basis of further precise performance control strategies. Note that it will lead
to large errors if the TTD and BTD are considered as the TTW and BTW in responsive controlling
decisions. For example, in order not to cause any system production loss, the permitted opportunity
maintenance window for machines should be determined by the BTW instead of the BTD.
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Figure 14. Steady TTD, TTW, BTD, and BTW results.

The vulnerability delay effect can be clearly displayed in Figures 15 and 16. An obvious time
delay of disruption can be evaluated via the proposed approach. After certain critical time points,
namely steady TTWs in Figure 15 and steady BTWs in Figure 16, the vulnerability effect will be
linearly related to the repair time de with different slopes. The vulnerability effects of the bottleneck
machine (namely M1) are obvious. However, the terminal vulnerability of M0 will surpass M1 at a
certain de, becoming the most vulnerable machine. On the whole, the bottleneck vulnerability effect
turns out to be more obvious when it is farther away from M1. Accordingly, failure fluctuations of the
terminal machine can be well assessed via the results of terminal vulnerability in Figure 15. Further
controlling decisions (for example, permitted opportunity maintenance intervals) are available
to avoid the stockout of the downstream supply chain. Additionally, failure fluctuations of the
whole system output can be well assessed via the results of bottleneck vulnerability in Figure 16.
Additional controlling decisions (for example, buffer reallocation, line rebalancing, or permitted
opportunity maintenance window for individual equipment) turn out to be available to keep normal
production output.
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Apart from the distinct temporal and spatial characteristics when determining the null points,
the evolutional curve of vulnerability is closely sensitive to the failure rate of mi and the service rate
of the line. As shown in Figure 15 and Equation (52), terminal vulnerability is quite sensitive to
failure rate λi and the average processing speed of the last queue, while bottleneck vulnerability is
determined by the average processing speed of the bottleneck.

This paper affords an analytical model of vulnerability evaluation under sudden disruptive
events. The computing speed of the analytical model is faster than the normal event simulation model.
The proposed vulnerability evaluation model is the basis (mainly the four performance indicators) for
further quick decisions (such as reconfiguration optimization) under disruptions in the digital twin
system. The four performance indicators are steady results. To verify them, we use Plant Simulation
software to build the simulation model shown in the Figure 17, and conduct simulation experiments.
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Table 2 shows the numerical comparison of the analytical model and the simulation model of the
terminal time delay. The comparison result shows that the analytical results of Figure 15 are basically
anastomotic with the real assembly scenario, and the evaluating errors lie in 2% for all machines.



Machines 2022, 10, 752 26 of 28

Table 2. Terminal time delay quantization results.

Machine Analytical Method Simulation Method Evaluate Errors

m0 1202.75 1198.45 0.35%
m1 891.63 897.11 0.61%
m2 595.97 588.29 1.2%
m3 385.98 382.29 0.95%
m4 224.53 222.86 0.74%
m5 152.85 151.49 0.89%
m6 42.16 42.47 0.73%

7. Conclusions
This paper explores the nature of dynamics analysis of production systems and proposes a

vulnerability evaluation approach for mobile phone assembly lines under a resilient system analytic
frame. The vulnerability effect on the terminal and bottleneck machine is surveyed based on the
stochastic production system model, wherein temporal and spatial attributes are expounded via
vulnerability delay phenomena. Four special vulnerability indicators, namely TTD, TTW, TTD, and
TTW, are defined. Afterward, the transition matrix of the production system (N + 1 machines and
N buffers) is obtained by a recursive derivation means. Transient and steady vulnerabilities are
evaluated in two different modes, terminal vulnerability and bottleneck vulnerability, respectively.
The theoretical research is then translated into practical tools. An application program for brittleness
analysis and evaluation is developed and applied to the digital twin system independently developed
by the team to solve practical problems.

Potential future work can be divided into two aspects, vulnerability evaluation and vulnerability
control, respectively. On the one hand, the proposed exact evaluating approach is valuable for the
future approximative model of large production systems. Additionally, different failure distributions
such as the phase-type distribution should be studied. On the other hand, based on the proposed
vulnerability analysis approach, vulnerability control through reconfiguration planning or preventive
maintenance is the prospective research issue.
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Abbreviations

SVA system vulnerability analysis
TTD terminal time delay
TTW terminal time window
BTD bottleneck time delay
BTW bottleneck time window
TDi(te) TTD of mi at time moment te
TWi(te) TTW of mi at time moment te
BDi(te) BTD of mi at time moment te
BWi(te) BTW of mi at time moment te
E(mi, te, de) disruption event of mi at te, with the duration time de
µi servicing rate of mi without consideration of failures (deterministic distribution)
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λi the failure rate of mi
ωi the servicing rate of mi with consideration of station failure
Lh(te) the queue length of the hth station, with the expected queue length Lh
bh(te) the number of work-pieces in the hth buffer, with the expected value bh
STN the probability of the starvation of the last station
SBk the probability that mk is neither starved or blocked
ELTTD

i expected queue length between mi and mN
ELBTD

i−k expected queue length between mi and mk
VT

i (te) transient vulnerability on the terminal station at te, with the steady value VT
i

VB
i (te) transient vulnerability on the system bottleneck, with the steady value VB

i
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