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Abstract: The development of AI and robotics has led to an explosion of research and the number
of implementations in automated systems. However, whilst commonplace in manufacturing, these
approaches have not impacted chemistry due to difficulty in developing robot systems that are
dexterous enough for experimental operation. In this paper, a control system for desktop experimental
manipulators based on an audio-visual information fusion algorithm was designed. The robot could
replace the operator to complete some tedious and dangerous experimental work by teaching it the
arm movement skills. The system is divided into two parts: skill acquisition and movement control.
For the former, the visual signal was obtained through two algorithms of motion detection, which
were realized by an improved two-stream convolutional network; the audio signal was extracted by
Voice AI with regular expressions. Then, we combined the audio and visual information to obtain
high coincidence motor skills. The accuracy of skill acquisition can reach more than 81%. The latter
employed motor control and grasping pose recognition, which achieved precise controlling and
grasping. The system can be used for the teaching and control work of chemical experiments with
specific processes. It can replace the operator to complete the chemical experiment work while greatly
reducing the programming threshold and improving the efficiency.

Keywords: desktop experimental manipulators; skill acquisition; motion control; motion detection;
speech recognition; information fusion; pose recognition

1. Introduction

Modern production is subject to a great deal of uncertainty since new items are being
introduced at an increasingly rapid rate, particularly those with multiple varieties and
a limited lifespan. Therefore, the ability to create flexible and reconfigurable production
systems is highly desired. When it comes to flexible tasks, human abilities such as quick
perception and the processing of different types of information or adaptability and impro-
visation can be crucial success factors [1–3]. The most sensitive jobs, including operating
chemical experiments, still rely entirely on physical labor, despite automated robots playing
a large role in modern manufacturing lines. These lines require significant labor, and a
human worker may have to spend hours drilling in screws or wheels without stopping.
Modern business needs collaborative robots that can effectively aid human employees
because labor is becoming more expensive due to an aging population. Therefore, giving
full play to the advantages of robots and using them to complete some cumbersome and
high-risk experiments will become the main direction of the intelligent development of
chemical laboratories. In the same process, the use of intelligent devices such as robots
and robotic arms requires the mastery of complex programming and control techniques,
which is still difficult for chemical experimenters. This raises the question of how to control
robots, robotic arms and other intelligent devices to complete chemical experiments in a
simpler and faster way.
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Chemical experiment is an indispensable link in the process of research, study and
production in the chemical industry [4]. At present, the intelligence of chemical engineering
procedures is not very high; the experimental process that can be completed by using
intelligent mechanical equipment such as manipulators to carry out chemical experiments
is relatively simple, and the programming is relatively complex. In addition, various
chemical reagents are used in chemical experiments. These reagents interact with each
other during the experiment to produce various harmful substances, and unpredictable
dangers may occur as a result of experimental errors. Therefore, it is necessary to use
more intelligent manipulators and other equipment to replace the operator to complete the
relevant complex tasks.

Today’s technologies enable us to send a robot to land on Mars, but not to properly
control a robot shaking hands with us. The performance of most advanced robot control
systems at present still cannot match that of humans’ adaptability, flexibility and coop-
erative ability, which are urgently required by the flexible manufacturing systems used
to facilitate mass customization in the context of Industry 4.0 [5,6]. Modelling human
skills from a robot control view is still challenging, especially for high level versatile and
collaborative skills. Robots have recently been finding their way into human industrial
and daily life, an example of which is by learning motor skills from human tutors through
demonstration, and then generating these learned skills [7]. Obviously, a skilled robot
would be more efficient in interacting with humans and industrial productions. It is in-
creasingly expected that robots should be capable of flexible skills in order to adapt to more
complex situations. Teaching by demonstration is seen as one of the most effective ways
for a robot to learn motion and manipulation skills from humans [8]. In this paper, inspired
by human mechanical intelligence adaptivity to variations of tasks, both position trajectory
and oral interaction are achieved for robot motion control to realize a more completed skill
transfer process.

With the development of machine learning and machine vision technology, the de-
ductive programming of the manipulator provides a new solution for human-computer
interaction, which is an important way to reduce the difficulty of acquiring skills for the
manipulator [9–11]. The teaching programming of the manipulator is a process of auto-
matically learning the motion trajectory by watching and learning the teaching actions
of people; teaching robots by visual signals such as motion tracking-based teleoperation,
or by audio inputs such as oral command interface, plays an increasingly important role.
Researchers such as Haage of Lund University used an RGB-D camera-based sensing
module to track human movements when implementing robot teaching. The robot is
mainly used to install industrial parts and inspection equipment [12]. Li C et al. designed a
LeapMotion sensor-based controller for tracking the operator’s hand movements to achieve
the real-time robot teaching. The end-effector of the robot is actually held for demonstration
to teach the robot action. Meanwhile, a neural network (NN)-based adaptive controller
has successfully been developed for the remote manipulation of the DLR-HIT II robot
hand [13]. In [14], the authors developed a robot learning method by modelling the motor
skills of a human operator using dynamic motor primitives (DMP) and integrating the
speech recognition, wherein people could easily teach the robot by speaking. However,
only a few works [15,16] take advantage of the visual signals- and audio inputs-based robot
teaching by combining them, which results in a negative effect on the data transmission
latency and the diversity of motor skills.

In this paper, the arm motion detection and speech recognition are combined, and
at the same time, with the help of information fusion and pose recognition, a teaching
control system for the manipulator is designed [17] so that the manipulator can understand
the skills taught by the experimental staff. It can complete the human-robot interaction
more accurately and quickly, and then replace the operator to complete the experimental
work. Compared with other robot learning methods, our proposed system possesses the
following features:
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1. The teaching process is simple and does not require operators to have programming
skills, which is suitable for direct use by chemical operators.

2. The self-developed desktop manipulator is small in size and suitable for simple
desktop chemical experiments.

3. Chemical experimental actions are decomposed into a combination of multiple basic
actions, and a combination of visual action recognition and speech recognition is used
to improve the accuracy of teaching.

4. Compared with the manipulator used in traditional research, our proposed method
employs a low-cost manipulator with lower power consumption but embeds ad-
vanced robot learning algorithms.

2. Overall System Design

The teaching control system in this design takes the desktop experimental manipulator
as the physical carrier and the Raspberry Pi operating system as the platform. It is mainly
aimed at teaching the experimental robot arm to imitate the experimental movements of
the human arm through the teaching of the operator in the chemical analysis experimental
scene. This is then combined with the grasping pose recognition algorithm of a certain
experimental instrument to assist the control, teaching and motion control. The two are
combined to complete a set of experimental process combinations.

2.1. System Logical Architecture

As shown in Figure 1, the overall logical architecture of this design can be divided
into three levels: From the bottom up, they are the hardware composition, device driver
and application software layer. The hardware consists of a desktop manipulator (with
three basic degrees of freedom, similar to a human arm), a Raspberry Pi 4B core board, a
motor and motor control board, a high-resolution camera, a microphone and a robotic claw.
The device driver part includes an audio driver for microphone, USB_Cam camera driver,
motor driver and other related programmable logic. The application software layer is the
software program running in the Raspberry Pi desktop operating system and the set of
motion parameters of the manipulator, which is similar to the Linux operating system. The
software program part includes a visual interface program for motor control and teaching
process grasp, speech recognition [18] function module, motion detection module and the
fusion and matching part of motion information.

2.2. System Function Process

The overall workflow of the teaching control system is shown in Figure 2. In the teach-
ing process of this whole set of experimental procedures, a complete set of experimental
procedures is composed of many simple experimental actions, which are called action
primitives. The operator needs to dictate his movements while performing the movements.
The manipulator obtains information by listening and seeing, and performs fusion verifica-
tion, so as to understand the movements that need to be performed. That is, the speech
recognition module and the action recognition module, respectively, combine the action
primitives recognized by the whole set of experimental process actions into the set in order,
and then match them with the action groups in the manipulator action set stored in the local
action library where the action information is displayed. The identification information in
the process is obtained through the information fusion algorithm to obtain a final set of
action groups, which are saved or handed over to the manipulator to run and reproduce.
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Figure 1. System logical architecture.

The system visualization interface is compatible with Windows and Linux operating
systems. As shown on the right side of the figure, the action parameters are stored in
an xml file, and the format is neat and simple, which is easy to read and store the action
parameters. In the visual interface, three Scale and Radio buttons are set to control the steps
and directions of the three motors (x, y, z, respectively), and the action group is defined
and stored by sliding and adding actions. Click Start Live Teaching to turn on the camera,
and then start the teaching function.
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3. The Composition and Performance Parameters of the Manipulator

As shown in Figure 3, the desktop robotic arm in this design has three basic degrees
of freedom and can rotate in the space above the desktop. The robotic arm is composed
of a Raspberry Pi 4B as the core control board, a motor drive expansion board, a stepper
motor drive module, three stepper motors, a 12 V power adapter, and a camera with a
microphone. The operations can be picked and placed using robotic arm universal grippers.
The maximum payload of the robotic arm is 500 g, and the max reach is 320 mm. The
stepper motor adopts a high-torque 42 planetary deceleration stepper motor with a step
angle of 1.8◦. In the stepper motor drive module, each step (1.8◦) of the motor is subdivided
into 16 steps for finer control.
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3.1. Core Control Panel

The control system runs on a non-customized version of Raspberry Pi 4B, which is
essentially a tiny, embedded PC. The Raspberry Pi used in this article has a 64-bit, 1.5 GHz
quad-core CPU, 1 GB of memory, and two USB 3.0 and two USB 2.0 communication ports.
The programming system is a desktop Raspbian System based on the Linux operating
system [19]. The control system controls the microphone and camera through the USB
communication port of the Raspberry Pi and controls the self-developed stepper motor and
drive module through the GPIO port.

3.2. Stepper Motor and Drive Module

The key element used to control the movement of the manipulator is the motor. There
are three stepping motors used in this manipulator, which realizes the motion control
of three basic degrees of freedom. The manipulator adopts a high-torque 42 planetary
deceleration stepping motor. The theoretical deceleration ratio of the horizontal motion
motor is 1:5.18, and the actual measurement is 11:57, which is close to the theoretical value;
the deceleration ratios of the stepping telescopic motors of the two arm parts are both 1:19
(the actual measurement is 187:3591). The current of the motor is 1.7 A, the step angle is
1.8◦, and its step accuracy is 5%.

As shown in Figure 4, the motor driver adopts an A4988 driver, which can drive the
motor voltage of 8–35 V. This manipulator uses a 12 V power supply to power the motor.
Among them, each stepper motor drive module outputs two control signals, STEP and
DIR, respectively, which are connected to the Raspberry Pi pins to realize the control of the
stepping pulse and direction, respectively; the MS1–3 pins are used in this design. Both are
connected to a high level, and the corresponding parameters of the interface level and the
number of steps is shown in Table 1. Each step (1.8◦) of the motor is subdivided into 16
steps to achieve more precise control.
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4. Skill Acquisition Module Design
4.1. Motion Detection

At the beginning, we selected the action detection of the skeleton network, but the
effect was not obvious, and the earliest dual-stream network also had a very good accuracy
in action detection. Based on the dual-stream network, we performed the feature extraction
part and the fusion classification algorithm. The next step is to improve and expand the
behavioral action recognition data set and apply it in the chemical analysis experiment
business scenario.

The action detection part of this paper is mainly based on an improved two-stream
convolutional network. This part inputs the preprocessed image information into the
network, uses the EfficientNetv2 [20] algorithm to calculate the RGB image and optical flow
image features, and then uses the extracted feature information to use linear classification.
The SVM [21–24] is used to classify the behavior and obtain the identification information
of the action.

As shown in Figure 5, the two-stream convolutional network divides the input video
into two channels for processing, one of which is to extract the task arm and scene-related
information in the RGB image by the convolutional neural network, and the other is to
process the optical flow image information, which is finally normalized and fused by the
Softmax function.
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The extraction of optical flow images in the network (action video preprocessing)
is obtained by gradient-based operations. The key principles of the algorithm (1) are as
follows: first, set the image sequence I(x, y, t); the vector X = [x, y]. The sequence is
extracted from the previous and subsequent frames in a demo video, that is, when the local
optical flow image of the video is basically constant. For any Y ∈ N(x), there are:

d
dt
∇I(X, t) =

∂∇I
∂X

∂X
∂t

+
∂∇I
∂t

= H(I) · d + (∇I)t = 0 (1)

where X is the x vector, H(I) is the Hesse matrix of the image sequence I, and the relationship
between X and the offset d is introduced in (2):

E(X, d) = ‖ (H(I) · d + (∇I)t) ‖2 (2)

Setting the derivative equal to 0 yields (3):

d = −(HT(I)H(I))
−1

(HT(I)(∇I)t) (3)

The above process can be summarized as analyzing the changes of the pixels in the
video image on the timeline and the correlation between adjacent frame images, finding
the corresponding relationship between the previous frame and the current frame, and
calculating the motion information (the offset is a kind of motion information), followed by
drawing the optical flow image.

In the calculation feature part, as shown in Figure 6, compared to the previous Efficient-
Net [25] algorithm, EfficientNetv2 uses Fused-MBConv to replace the MBConv structure,
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that is, the conventional 3 × 3 convolution is used to replace the 3 × 3 depth convolution
in MBConv and 1 × 1 convolution to improve the calculation speed of the network.
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To obtain the feature information of the RGB image and optical flow image, it needs to
be classified and verified. Support vector machine (SVM) is a binary classification model
used to solve the separating hyperplane that can correctly divide the training data set.
It also has the largest geometric interval. As shown in Figure 7, w × x + b = 0 is the
separation hyperplane. There are generally many such hyperplanes, but the separation
hyperplane with the largest interval is indeed the only one. For the optimal value among
them, Formula (4) can be used to select, which is as follows:

maxw,b(minx1
yi(wTxi + bi)

|w| ) (4)
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The overall structure is shown in Figure 8. The RGB and optical flow feature extraction
parts in the dual-stream convolutional network use lightweight Efficientnetv2 to perform
convolution and pooling, respectively, and then combine the actions given by the SVM
classifier for the two branches. The information is classified and, finally, identified action
information is given. The data in the experiment are a self-made data set for chemical
analysis. In the laboratory environment, a fixed camera is used to record the behaviors
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of stirring, picking up the experiment, putting down the experiment, taking liquid, and
mixing liquid. This behavior was recorded 50 times. The video duration of the dataset
is controlled within 10 s, and the recorded video changes in lighting, background, and
occlusion, forming 10,000 chemical analysis action videos, with an average of 10 clip videos
per video. The video format is 320 × 240, 25 fps and the audio is saved as a wav format
file. The data set has a huge number of video frames, and there are data redundancy,
interference, etc., which have a great impact on training and learning. Using the improved
two-stream convolutional neural network, the recognition accuracy can reach 92%, which
is improved in this experiment. Compared with other methods, the accuracy of the latter
method is improved, but the training process still takes a significant amount of time.
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After obtaining a complete set of identification information on the action, it is nec-
essary to determine the execution sequence of the manipulator action of the module and
obtain the executable action of the manipulator. First, design and name the motion primi-
tives of the manipulator and store all the designed motion primitives in the library. The
action information detected above is stored in a sequence, and the action primitives in the
matching directory are used to determine the action primitive sequence in the current time.
In each teaching process, the program matches the sequence combination composed of
multiple action primitives, and then search for the associated actions in the manipulator
action group library. The recognized action numbers are connected in series to obtain a
sequence, and this sequence is used to find a complete match or the closest action group;
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these are identified as the recognized experimental actions and given a coverage. After
the program finds the action group with the greatest match, it continues to match with
the action group in the library and stores the relevant information that the action group
coverage is higher than 50% in the matching process.

4.2. Speech Recognition and Keyword Extraction

Teaching is a process of speaking while doing. The operator dictates the current action
during arm movement, which requires the addition of voice technology. The key to speech
technology is to process natural language, recognize speech and generate text, so that
machines can listen, speak, understand and think [26]. This paper uses Baidu’s real-time
speech recognition, which is based on Deep Peak2 end-to-end modeling, transforms the
received audio stream into text characters in real time, and then uses regular expressions to
extract action keywords. The flow chart is shown in Figure 9.
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In this process, since it is speech recognition in chemical experiments, it is necessary
to supplement the training set text corpus for many terms in chemical experiments and
the speech data required by the current experimental process. The corpus data include the
format of the speech files, name and text information. The corpus data set summarizes
about 55 min of relevant identification content, and its audio files are converted into a
direct binary sequence PCM file format after analog-to-digital conversion, which realizes
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the digitization of the sound and deletes the file header and end marks that differ from
other file formats, in order to facilitate the concatenation of files. After supplementing the
corpus data set, the accuracy of speech recognition in experimental business scenarios can
be effectively improved by 7–15%.

In the above speech recognition process, the program needs to read the action file
keywords manually set earlier in the text in advance and write them into memory variables.
In each teaching process, the keywords recognized by the speech are matched to the text. If
the match is correct, the identifier number IdentNumber is recorded immediately and stored.

Summarize all the matched speech keyword numbers in the whole teaching process
in order, similar to the action detection and matching part; search for the action group of
the robot arm; and search for a complete match or the closest action group. This is the
speech recognition to action group, which retains the coverage information and records
other related action group information with a coverage higher than 50%.

4.3. Audio and Video Information Fusion

Since the manipulator teaching program in this paper is mainly run-in embedded
devices, in some scenarios, mobile terminals and embedded devices are much inferior in
configuration, computing power, and device performance compared to servers or PCs [27].
Under such restrictive conditions, it is difficult to achieve high-speed and accurate recogni-
tion algorithms and teaching methods. Moreover, teaching is a dynamic process, which
requires the continuous recognition of speech and actions. In this process, recognition
failure will inevitably occur and affect the accuracy. Therefore, this paper draws on the
information fusion of sensors [15,16,28] and writes a highly targeted algorithm to combine
the key information obtained by the two separate modules of action detection and speech
recognition, so as to improve the accuracy of skill acquisition and save performance.

The video recognition Information and speech recognition information obtained dur-
ing the teaching process of the manipulator are an action group and its coverage. In the
case of the most ideal running effect, the length of the action group given by the video and
the voice is equal, and the data are shown in Table 2 as an example. The two modules in
Table 2 list the highest coverage information ACT_G0 generated by the current teaching
process and other action coverage information greater than 50% coverage.

Table 2. Matching degree distribution table.

ACT_G0 ACT_G1 ACT_G2 ACT_G3 ACT_G4
Video module 0.8 0.75 0.7 0.6 0.5
Audio module 0.8 0.7 0.7 0.6 0.6

If, in this teaching process, the two modules have the same maximum coverage action
group—that is, the video and voice parts have selected the same action group with the
highest matching degree—then the action can be regarded as a teaching action and does
not need to follow the algorithmic process of fusion. The action can also be considered as
being outside of this low-probability case.

After analyzing and testing the common fusion of confidence-based independent
classifiers, this paper moves the fusion point to the action group category. The action group
sequence given by the acquisition module is fused.

Algorithm idea: Define the ACT_G0 of the video module part as VG0, and then define
it as VGn in turn. Similarly, the audio module part is defined as AG0, AG1...AGn. Compare
AG0 with 1–n in the VG part and find a VGx that has a similarity of 100% with AG0, according
to the positive sequence—that is, if more than 50% of the VG matches AG0, then record and
store the coverage product of AG0 and VGx (AG0× VGx, 0 < x≤ n). The same is true for the
AG part. The above two parts of the results are compared to the action group that outputs the
optimal matching value (weights are equally divided), as shown in Formula (5):

FG = Mag[(AG0×VGx), (VG0× AGy)]x, y ∈ [0, n] (5)
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Among them, Mag is the function of the action group to find the maximum value, and
FG is the action group of the robot arm that obtains the maximum value after the coverage
rate is multiplied.

When the action group whose similarity with ACT_G0 is 100% in the above process
is empty, enter the following search algorithm: there is a similarity (<100%) between any
two sets of actions, and the product of the original coverage is used to equalize the two.
The similarity between the two is obtained, the correlation value of the two is obtained,
and all the correlation values are aggregated to output the maximum action, that is, the
maximum value is obtained by the fusion of two actions with different coverage, and then
the two actions. In the group, select the action group that is closest to the original set of
action primitive sequences (with the largest coverage), which is the final teaching action.
The above process is shown in Formulas (6) and (7).

FQ(x, y) = AGx×VGy× Fit(AGx, VGy) x, y ∈ [0, n] (6)

FFG = MAX_G{MAX[FQ(x, y)]} x, y ∈ [0, n] (7)

Among them, in Formula (6), fit is the similarity between two sets of action groups,
FQ is the product of a pair of coverage and multiplied by the action-related value of the
similarity between the two. In Formula (7), all the two modules are action information
fusion; output a pair of actions with the optimal correlation value, and then select the
action group with the highest coverage with the original action primitive sequence, that is,
FFG. In this way, the verification and fusion of the video module and the relevant action
information of the audio module are completed, and the manipulator determines the final
motor skills.

5. Manipulator Motion Control

The D-H method is usually used to build the model and analyze the motion of
the mechanical arm. The D-H method is a common kinematic solution method in the
field of robotics, which is beneficial to analyze and establish the kinematic model of the
robotic arm and calculate the forward and inverse solutions. Through D-H modeling, the
transformation matrix between each joint can be obtained, so as to obtain the transformation
matrix from the base coordinate system to the claw coordinate system and the position and
attitude of the end of the manipulator.

As shown in Figure 10, the specific method of establishing the link structure coordinate
system for the manipulator is as follows: where j − 1 and j represent two links, j − 1, j and
j + 1 represent three axis joints, and the axis joint coordinates. The x-axis, y-axis, and z-axis
of the system follow the right-hand rule. Among them, a is used to indicate the length of
the connecting rod, α is used to indicate the rotation angle of the connecting rod, d is used
to indicate the offset distance of the connecting rod, and θ is used to indicate the axis angle
of the joint.

Table 3 is the attached connecting rod D-H parameters, in which the parameters of
each connecting rod are d = 103 mm; a1 = 140 mm; b2 = 160 mm; a3 = 70 mm.

As shown in Figure 11, the joint coordinate system of the three-degree-of-freedom
experimental manipulator is established on the basis of the D-H parameter coordinate system,
including the three rotating joints of the manipulator and the position of the end effector.
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Figure 10. Robot arm link coordinate system.

Table 3. Parameters of the experimental manipulator connecting rod.

Link Connecting Rod
Angle

Connecting Rod
Torsion Angle Corner Range Connecting Rod

Distance
Connecting Rod

Distance
i θn/(◦) αn/(◦) θi/(◦) di/mm di/mm
1 θ1 0 −135~135 d d
2 θ2 90 −15~80 0 0
3 θ3 0 −20~95 0 0
4 θ4 0 −90~90 0 0

Machines 2022, 10, x FOR PEER REVIEW 14 of 23 
 

 

1 1  0 −135~135 d d 

2 2  90 −15~80 0 0 

3 3  0 −20~95 0 0 

4 4  0 −90~90 0 0 

As shown in Figure 11, the joint coordinate system of the three-degree-of-freedom 

experimental manipulator is established on the basis of the D-H parameter coordinate 

system, including the three rotating joints of the manipulator and the position of the end 

effector. 

 

Figure 11. Robot arm model: set the coordinate system according to the D-H method. 

The analysis concluded that, for the demonstration function to be implemented in 

this paper and the designed three-degree-of-freedom robotic arm, it is more suitable to 

use the geometric solution method in the inverse kinematics solution because our network 

can get the position where the end actuator or the clamping jaws of the robotic arm are 

located very simply and precisely, and the robotic arm has only three motors responsible 

for the operation of X, Y and Z. Figure 12 shows the simplified spatial coordinate diagram 

of the drawn experimental manipulator. 

Figure 11. Robot arm model: set the coordinate system according to the D-H method.

The analysis concluded that, for the demonstration function to be implemented in this
paper and the designed three-degree-of-freedom robotic arm, it is more suitable to use the
geometric solution method in the inverse kinematics solution because our network can get
the position where the end actuator or the clamping jaws of the robotic arm are located
very simply and precisely, and the robotic arm has only three motors responsible for the
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operation of X, Y and Z. Figure 12 shows the simplified spatial coordinate diagram of the
drawn experimental manipulator.
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Figure 12. Space coordinate system of the three-degree-of-freedom manipulator.

There are mainly three constants in this manipulator: link length L1, link length L2
and link length L3; three rotation dependent variables: rotation angles Q1, Q2 and Q3; one
variable: the general size of the gripper at the end of the manipulator; and a coordinate
position (X, Y, Z).

As shown in Figure 13a, looking at it as a plane coordinate system with x as the
horizontal axis and y as the vertical axis, the tangent of the connecting rod rotation angle
θcox is:

tan θCOX = y/x (8)
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Reverse find:
θ1 = θCOX = arctany/x (9)

From the perspective of the XOZ plane of the space coordinate system of the manipu-
lator, as shown in Figure 13b, from the coordinates of point A (x1, z1), we can know that
OC = x1, AC =z1 and obtain:

θAOC = arctanz1/x1 (10)
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Similarly, the cosine formula can be used to obtain:

θBOA = arctan
L2

2 + x1
2 + z1

2 − L3
2

2L2
√

x1
2 + z1

2
(11)

θOBA = arccos
L2

2 + L3
2 − (x1

2 + z1
2)

2L2L3
(12)

Introduce this into formulas:

θ2 = π/2− θAOC − θBOA (13)

θ3 = π − θOBA (14)

θ4 = π/2− θ2 − θ3 (15)

The corresponding rotation angle of the link L2, the corresponding rotation angle of
the link L3, and the horizontal angle of the link L3 can be obtained.

According to the above process, the inverse kinematics solution for the geometric
solution of the three-degree-of-freedom experimental manipulator in this paper can be
summarized as the flow chart shown in Figure 14:
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After the teaching is completed, the program loads the finalized XML action parameter
file. The program reads the corresponding direction and step parameters of the X, Y and
Z motors in sequence, executes them in sequence, and controls the high- and low-level
outputs of the related pins of the Raspberry Pi to control the operation of the motor. Among
them, the rotation angle of the robot arm corresponding to the step parameter 1024 is 18◦,
and the maximum is 10,240.
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When the manipulator is in motion, the camera installed near the gripper at the
front end of the manipulator can receive real-time image data and transmit them to the
Raspberry Pi through the USB port. The system combines it with the grasping pose
recognition algorithm [29] for grasping. Five variables are used: (x, y, θ, h, w) to describe
the gripping position and direction of the gripper when the manipulator grips the object.
As shown in the rectangular box in Figure 15, (x, y) is used to represent the center position
of the rectangular box; θ is used to represent the angle between the horizontal axis in the
image and the current tilt position of the rectangular box; h denotes height; and w is used
to represent width.
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When the manipulator reaches the vicinity of the object, the position of the front end
of the manipulator needs to be adjusted slightly, according to the position of the rectangular
frame. That is, six basic adjustment actions are set: left and right, up and down, and
clockwise/counterclockwise rotation. Use the above actions to adjust the mechanical arm
to reach the preset position and achieve object grasping.

The grabbing pose algorithm is based on the Cornell Grasping Dataset, and on the basis
of the data set, it continues to supplement and train the grabbing positions related to chemical
equipment, which compensatively improves the accuracy of grabbing pose recognition.

6. System Performance Testing and Analysis
6.1. Test Experiments and Results

In the information fusion part, there is a requirement on whether the two modules
generate the same number of action primitives, so an experiment is set up to record the
number of action primitives in each module.

Test experiment: The experiment process was on a fixed test bench. The experimenter
simulated the whole set of experimental actions and dictated the actions at the same time.
Since this process does not require the movement of the robotic arm, but only observes its
teaching process, the experimental program ran in the Windows 10 operating system to
record the number of action primitives in the action group it generates. A total of 12 groups
of different teaching tests were carried out in the process, and each group of actions was a
set of coherent actions composed of 10 action primitives, as shown in Table 4, according to
a certain logic and sequence. The 12 groups of action combinations are shown in Table 5.
The number of action primitives of a complete set of actions detected by the speech part
and the action part obtained in each teaching process is shown in Table 6.
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Table 4. Action primitives.

Action Primitive Number Experimental Action Action Description
1© Take the test tube Remove the test tubes from the test tube rack.

2© Shake the test tube Hold the test tube in your hand and shake it from side to side (it is
common to shake the arm repeatedly in the same direction).

3© Stir Perform circle stirring movements with your arms (usually, the arms
are kept in one position to draw a circle).

4© Liquid titration Keeping your arms balanced and wrist vertical, perform the titration action.

5© Rinse the instrument Hold the test tube in your hand for rinsing.

6© Take the glass rod Retrieve the glass rod from the glass rod holder.

7© Gripping solids Hold the jig to perform the action of pinching the object.

8© Place solids Put the clamped solid into the test tube.

9© Place the test tube Put the test tube in your hand back into the test tube rack.

É Take high test tube Hold the test tube and raise the arm to the head position.

Table 5. Composition of action primitives in action groups.

Action Group Action Primitive
Task 1 1© 4© 2© 9©
Task 2 1© 7© 8© 4© 9©
Task 3 1© 4© 3© 9© É
Task 4 1© 4© 3© 5© É 9©
Task 5 1© 4© 6© 3© É 2© 5© 9©
Task 6 1© É 7© 8© 4© 6© 3© 9©
Task 7 1© 4© 2© 3© 5© 7© 8© 9©
Task 8 1© 7© 8© 9© 1© 4© 2© 9©
Task 9 1© 5© É 4© 2©

Task 10 1© 2© 4© 3© 5© 7© 8© 9©
Task 11 1© 7© 8© 4© 3© É 2© 5© 9©
Task 12 1© 5© 9©

Table 6. Number of action primitives.

(Number/n) Task 1 Task 2 Task 3 Task 4 Task 5 Task 6
Reality 4 5 5 6 8 8

Video module 4 5 5 6 6 8
Audio module 4 5 5 6 8 8

Task 7 Task 8 Task 9 Task 10 Task 11 Task 12
Reality 8 8 5 8 9 3

Video module 6 7 5 8 8 3
Audio module 7 7 5 7 9 3

The data in Table 6 show that in the teaching process of some simple action groups
with a small number of action primitives, the number of action primitives generated by
the two modules is basically the same. According to the results, we assume that when the
complexity of an action group continues to increase, with the increase in the number of
action primitives that comprise the action group, the number of missed and lost ones will
theoretically increase with a small confidence range. The proportional probability of the
number will gradually decrease from 100% to 81.2%, and in practice, when teaching some
conventional action groups, it can basically reach more than 95%—that is, the number of
actions that are missed to be recognized is less than 5%, and the overall effect good.

On the basis of the above consistent situation, the coverage of the final action group is
shown in Table 7 below:
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Table 7. Action group coverage.

Task 1 Task 2 Task 3 Task 4
100% 80% 80% 83.3%

Task 6 Task 8 Task 9 Task 12
75% 71.4% 80% 100%

The results shown in the record table are supplemented with 36 teaching experiments.
The teaching program is run in the Raspberry Pi Raspbian desktop operating system,
four groups of basic experimental procedures are selected, and seven effective teaching
experiments in each group of repeated actions are selected. Record the action group
identification coverage in its process. Combining the recognition results of the speech
part and the single module of the video part, the correct action primitives identified in the
28 effective teaching experiments (the experiments that are not completely executed due to
the personal operation errors of the personnel) are listed in the video, speech and fusion.
The comparison of numbers and accuracy rates is shown in Table 8:

Table 8. Comparison of fusion and single-module experiments.

ACT1 Reality Video Audio Fusion ACT2 Reality Video Audio Fusion
Task 1 6 4 6 6 Task 1 5 5 5 5
Task 2 6 5 4 5 Task2 5 4 4 4
Task 3 6 5 4 6 Task 3 5 4 3 4
Task 4 6 6 6 6 Task 4 5 3 3 3
Task 5 6 3 4 4 Task 5 5 4 3 4
Task 6 6 4 5 5 Task 6 5 5 5 5
Task 7 6 5 5 6 Task 7 5 4 5 5
SUM 42 32 34 37 SUM 35 29 28 30

Accuracy 1 76% 82% 89% Accuracy 1 82.8% 80% 85.7%
ACT3 Reality Video Audio Fusion ACT4 Reality Video Audio Fusion
Task 1 4 4 4 4 Task 1 8 6 7 7
Task 2 4 4 4 4 Task 2 8 7 6 7
Task 3 4 2 3 3 Task 3 8 5 6 6
Task 4 4 4 4 4 Task 4 8 7 8 7
Task 5 4 4 4 4 Task 5 8 7 7 7
Task 6 4 4 4 4 Task 6 8 5 5 6
Task 7 4 3 3 4 Task 7 8 6 6 7
SUM 28 25 26 27 SUM 56 43 45 47

Accuracy 1 89.3% 92.8% 96.4% Accuracy 1 76.8% 80.3% 83.9%

It can be seen from Table 4 that, compared with single-module recognition, the teaching
accuracy rate after fusion is improved by about 5−7%, and the result verifies the effectiveness
of audio-visual fusion. According to the number of action primitives in the test task and
the coverage rate of their action groups, the overall teaching coverage rate after adding
information fusion is calculated to be about 87.7%. According to the number of action
primitives in the test task and its action group coverage, the overall teaching accuracy is finally
calculated to be about 81.4%. This result achieves good results in the field of the non-contact
skill acquisition of chemical robotic arms without using support equipment.

6.2. Test Effect and Problem Analysis

At present, the system does not have a clear solution to the inconsistency, and the
follow-up research needs to improve and modify the relevant algorithms in the inconsistency.

In terms of accuracy, the stability and accuracy of the manipulator teaching system
depends on the accuracy of its action behavior recognition and speech recognition parts.
Since it runs in an embedded device, part of its action recognition and matching algorithm
needs to be lightweight, so part of the accuracy is sacrificed in the case of improving
the recognition speed. The near-field Chinese Mandarin recognition accuracy rate of the
speech recognition part is 95%, and the accuracy rate of further keyword matching is higher



Machines 2022, 10, 772 19 of 22

than that of simple recognition. The two modules are continuously recognized during the
teaching process, and it is inevitable that there will be lost recognition, which will reduce
the accuracy. However, based on the information fusion, combining the advantages of the
two, the final action coverage can be obtained. Basically, as it is stable at more than 81%,
this result is satisfactory at present. After the teaching is completed, the execution effect
of the robot arm on the action group basically depends on the accuracy of the teaching
process. When performing the robot arm execution experiment, as shown in Figure 16,
it is found that each action group can be adjusted during the teaching process. If every
action primitive is identified, then the execution effect of the robotic arm can achieve the
expected goal. If the action primitives of the action group are different, the results of visual
action recognition can often be recognized. However, if there are two actions that are
highly similar in the teaching process, misrecognition is easy to occur during visual action
recognition. At this time, the accuracy can be further improved by correcting the speech
recognition results, which can be seen from the above experimental data table. The different
actions, the light occlusion of the test bench and the noise in the environment during the
experiment have a certain impact on the teaching process. In the later experiments, a better
experimental environment will be built to reduce the external influence on the experiment.
Different experimenters have different proficiency in movement and different execution
postures and speeds, which also makes visual action recognition more difficult. Therefore,
during the teaching process, the movements should be as smooth and distinguishable as
possible. The recognition accuracy should also be improved.
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In terms of performance and speed, when the program is run on the Raspberry Pi
system with 2 GB of RAM, the hit time of a single action primitive (the time it takes to
identify the two modules) is within 1 s (the jump time of the action detection program
segment is about 0.59 s), while the speech recognition is about 0.82 s. In addition, when
the voice part needs to perform multiple loop verifications later, it can be changed to use
the language compiled by machine code to run the loop part specifically, create a dynamic
link library for this part, and use the external function library types to call, which can
significantly improve the loop speed.

When performing the pose-grasping experiment, as shown in Figure 17, because the
test tube and other equipment are made of transparent materials, the recognition effect is
greatly affected. Try to use label recognition clamping instead (as shown in Figure 17) or
use label recognition as a compensatory measure to improve the recognition efficiency.
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7. Concluding Remarks

Operators need to perform various chemical experiments in chemical laboratories;
these are cumbersome, and some of them are harmful to the human body. Therefore, it is
necessary to use a manipulator instead of an operator to conduct experiments. However, the
experimental manipulator that is currently used needs to be programmed by professional
manipulator controllers, which is difficult for chemical operators. Therefore, in order to
solve the above problems, this paper proposes a simple and efficient manipulator teaching
system based on motion detection and speech recognition.

The operator dictates his movements during the experiment. The system uses motion
detection to detect the movement of the operator’s arm, matches with voice recognition,
and uses algorithms related to information fusion to teach the manipulator the motor
skills that should be performed. The manipulator grasps objects in combination with pose
recognition during the execution process, and completes a set of experimental tasks. The
accuracy rate of the system in the acquisition of motor skills can reach more than 81%.

Based on the design and experimental results of this paper, the experimental manip-
ulator is taught and programmed to acquire and execute experimental skills, and there
is a certain applicability and feasibility to use the manipulator in chemical analysis ex-
periments. However, some problems in the system were found during the experiment:
the transparent material of the test tube and light affected the recognition accuracy, the
response speed of the device had a delay, similar behaviors were easily misidentified, and
the recognition accuracy needed to be further improved in the actual application process,
etc. Since the manipulator is a self-developed manipulator in the laboratory, no model
in the corresponding simulation environment has been established, and the subsequent
research and development workload is heavy. In the future, we will focus on solving the
above problems, create a suitable data production environment in the laboratory, minimize
the interference such as light and noise, form models in the simulation environment which
are open source for everyone to use, improve the efficiency of later research, and further
improve the recognition accuracy and speed. The manipulator will be replaced if necessary
to achieve the purpose, but it will still be researched in the direction of low cost and low
power consumption.
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