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Abstract: A novel fault diagnosis scheme was developed to address the difficulty of feature extraction
for planetary gearboxes using refined composite multiscale fluctuation dispersion entropy (RCMFDE)
and supervised manifold mapping. The RCMFDE was first utilized in this scheme to fully mine
fault features from planetary gearbox signals under multiple scales. Subsequently, as a supervised
manifold mapping method, supervised isometric mapping (S-Iso) was applied to decrease the
dimensions of the original features and remove redundant information. Lastly, the marine predator
algorithm-based support vector machine (MPA-SVM) classifier was employed to achieve intelligent
fault diagnosis of planetary gearboxes. The suggested RCMFDE combines the composite coarse-
grained construction and refined computing technology, overcoming unstable and invalid entropy in
the traditional multiscale fluctuation dispersion entropy. Simulation experiments and fault diagnosis
experiments from a real planetary gearbox drive system show that the complexity measure capability
and feature extraction effectiveness of the proposed RCMFDE outperform the multiscale fluctuation
dispersion entropy (MFDE) and multi-scale permutation entropy (MPE). The S-Iso’s visualization
results and dimensionality reduction performance are better than principal components analysis
(PCA), linear discriminant analysis (LDA), and isometric mapping (Isomap). Moreover, the suggested
fault diagnosis scheme has an accuracy rate of 100% in identifying bearing and gear defects in
planetary gearboxes.

Keywords: multiscale fluctuation dispersion entropy; supervised isometric mapping; feature extraction;
planetary gearbox

1. Introduction

Planetary gearboxes are frequently employed in industrial, medical, and aerospace
machinery because of their small size, strong load-bearing capacity, and huge transmission
ratio. However, due to the intricate functioning and working environment, its internal
parts (such as bearings and gears) are prone to malfunction. If these issues are not resolved
quickly, the faulty parts could compromise the equipment’s ability to function normally
and result in serious mishaps. Thus, it is significant to carry out planetary gearbox fault
diagnosis [1-5].

Signal collection, feature extraction, and fault detection are the three main processes
in planetary gearbox failure diagnostics. Within them, feature extraction is the most crucial,
which controls the ensuing diagnostic efficacy [6-9]. Fortunately, advanced nonlinear
feature extraction techniques, such as entropy theories, are frequently used to extract me-
chanical fault characteristics. The generalized refined composite multiscale sample entropy
was introduced by Wang et al. [10,11] to efficiently extract information on bearing faults.
Zheng et al. validated the benefits of the defect diagnostic system through experimental
data using composite multiscale fuzzy entropy [12]. Ye et al. used multi-scale permuta-
tion entropy to construct the fault characteristics of suspension systems for high-speed
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trains [13]. Although the abovementioned entropy-based fault diagnosis methods have
achieved good experimental results in various fields, applying these theories to planetary
gearbox fault diagnosis still suffers from the following drawbacks. Specifically, computation
of the generalized refined composite multiscale sample entropy is inefficient and generates
uncertain values. The composite multiscale fuzzy entropy suffers from entropy instability
on large scales. The multiscale permutation entropy only focuses on the alignment order
but ignores the signal amplitude differences [14,15].

Fortunately, the shortcomings of the techniques above can be successfully solved by
multiscale dispersion entropy, a recently created tool for nonlinear dynamics research.
Moreover, the multi-scale dispersion entropy offers the benefits of quick calculation and
noise immunity [16]. Azami et al. developed the multiscale fluctuation dispersion entropy
(MFDE) with a new diffusion graph fluctuation evaluation approach to enhance the analyti-
cal performance of the original multiscale dispersion entropy method [17]. However, MFDE
application to planetary gearbox feature extraction is still characterized by shortcomings.
The MFDE uses the traditional coarse-grained construction technique, resulting in unstable
analysis results at large scales. A novel and refined composite multiscale fluctuation dis-
persion entropy (RCMFDE) method is proposed in this paper and applied to address this
defect and fully extract planetary gearbox features.

However, the RCMFDE-based fault feature extraction has redundant fault features,
which might lengthen detection time and reduce detection precision if immediately input
to a classifier for fault detection. Hence, it is essential to utilize dimensionality reduction
techniques for effective secondary feature extraction [18,19]. Principal component anal-
ysis (PCA) and linear discriminant analysis (LDA) are the major types of conventional
dimensionality reduction techniques. However, both are linear dimensionality reduction
techniques [20-23], indicating that the abovementioned methods are unsuitable for deal-
ing with nonlinear fault feature sets of planetary gearboxes [24]. Subsequently, several
nonlinear manifold learning techniques for fault feature fusion have been proposed, includ-
ing isometric mapping (Isomap), linear local tangent space alignment, and discriminant
diffusion mapping analysis [25-27]. However, such nonlinear methods are unsupervised
dimensionality reduction techniques that do not fully utilize dataset label information.
Therefore, in this paper, a novel supervised Isomap (S-Iso) method was applied to achieve
dimensionality reduction of the RCMFDE feature sets [28].

In summary, a unique planetary gearbox feature extraction method predicated on
RCMFDE and S-Iso was established in this paper to obtain the feature matrices with
the ability to distinguish faults easily. Moreover, the marine predator algorithm-based
support vector machine (MPA-SVM) was employed as a fault identifier for achieving the
intelligent diagnosis of planetary gearboxes [29-31]. Simulations and planetary gearbox
fault diagnosis experiments confirm the efficiency and superiority of the suggested methods.
The contributions of this paper are as follows:

1. A novel RCMFDE method is developed to extract planetary gearbox fault features.

2. An entropy-manifold-based feature extraction technique is proposed to mine the
sensitive components by combining the RCMFDE and S-Iso.

3. A fault detection scheme for planetary gearboxes is developed based on the entropy-
manifold characteristics and MPA-SVM.

4. Planetary gearbox fault diagnosis experiments are carried out to assess the viability of
the suggested approaches. The results show that the RCMFDE outperforms the exist-
ing MFDE [17] and multi-scale permutation entropy (MPE) [8] for feature extraction.
The dimensionality reduction of the S-Iso is better than the well-established PCA [22],
LDA [21], and Isomap [25]. The suggested scheme can accurately determine various
planetary gearbox faults.

The remainder of this paper is organized as follows. Section 2 provides the specific
procedures of the proposed RCMFDE and conducts simulation experiments to verify its
effectiveness. Section 3 outlines the suggested planetary gearbox fault diagnosis scheme,
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while the fault diagnosis experiments on a real planetary gearbox are investigated in
Section 4. Ultimately, Section 5 summarizes a few key findings.

2. Refined Composite Multiscale Fluctuation Dispersion Entropy Method
2.1. Multiscale Fluctuation Dispersion Entropy

Given a time series Y = {y1,¥2,...,yn}, the MFDE’s fundamental procedure is
as follows.

5. The new coarse-grained sequences Z(8) = {z1,z,,...,zy /s } are constructed by:

1 js
= EZi:(jfl)erl Yi @

where s is the scaling factor, and z; denotes the value of the j-th new sequence.
6. The Z() are mapped to between 1 and c.

X = U\ﬁ/ exp|— —u)?/20%] dh )

W; = R(c- x; +0.5) 3)

where y is the expectation, ¢ is the variance, c is the category, W = {W;} represents
the mapping result, and R is the rounding function.
7. The mapping result W is reconstructed by:

) {wj, Wiih..., Wj+<m_1>t}, i=[1L,2...,N=(m-11t (@)

where m is the embedding dimension and ¢ is the time delay. U( ) s the j-th
reconstructed vector.
8.  The reconstruction result U 1€) = {U(’"' t'c)} is transformed to the fluctuation

dispersion result Q"™ ') = {Qj(”" te) }

where Q ') denotes the j j-th fluctuation dispersion.

There is a specific fluctuation dispersion pattern for each time series: Oyp,...0,, ,(1 <
v <2c—1), Wiy —W; =1y, ..., Wit m—1)t = Wit (u—2)t = Um—1. Then, every pattern’s
probability p(Quyo,...0,_,) is determined by:

Number(Quyo,...0,, 5)
P(Qogoy..vp) = N _ (mvo_vll)vt : (6)

9.  The entropy values of the MFDE are computed by:

2c-1)""
MFDE(Y,m,c,t,5) = — 2 p(Qvovl---vm—Z) lnp(Qvovl---vm—z) @)
0O=1

2.2. Refined Composite Multiscale Fluctuation Dispersion Entropy
Using the MFDE to extract nonlinear features of planetary gearboxes may result in
unstable entropy values and insufficient excavation of signal information. Therefore, the
RCMFDE was developed. Figure 1 depicts the RCMFDE flowchart, and the specific stages
are as follows:
10. The composite coarse-grained technique with Equation (8) was used instead of the
traditional one. A comparison of these two methods is displayed in Figure 2. Com-
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pared with the conventional coarse-grained technique, the composite coarse-grained

technique can more fully exploit useful information from the time series.

1 +ks—1
Jin = EZ?:nJSr(kfl)syi’ 1<n<s, 1<k<N/s

11.  The fluctuation dispersion pattern probabilities for each new sequence were calculated

according to steps 2—4 in the MFDE.

12.  The entropy values of the RCMFDE were computed using the refined arithmetic approach:

- _
RCMFDE(Y,m,c,t,s) = — 2 P (Qogoy.om ) 109 (Qogor..om )
0O=1

where p(Qyy0,...0,, ,) is the mean probability that each coarse-grained sequence will

have a fluctuation dispersion pattern.

Time Series

T

Construct the composite
coarse-grained sequences

L]

Calculate the probability of
each fluctuation dispersion A
pattern

n=n+1

Yes

s=s5+1

No

Average probability of all
composite coarse-grained
sequences at the same scale

Yes

8 = Sliﬁ(!\'

No
RCMFDE

Figure 1. Flowchart of refined composite multiscale fluctuation dispersion entropy (RCMFDE).
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Figure 2. Comparison of two coarse-grained techniques.
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The invalid entropy value can appear only when the probability of all coarse-grained
sequences is zero. Therefore, this refined operation can reduce the possibility of invalid
entropy values.

2.3. Simulation Experiments

Fifty sets of white noise signals and 50 sets of blue noise signals were utilized in the
experiment to examine the impact of each parameter (i.e., signal length N, embedding
dimension m, category c, time delay ¢, and scale factor s) on the RCMFDE method.

14. The effect of the scale factor s on the performance of the RCMFDE is investigated.
When s is too low, the RCMFDE cannot fully exploit the entropy information of the
signal. Conversely, when s is excessive, the RCMFDE is prone to invalid or inaccurate
entropy results at large scales. According to [17,24], the performance s is defined as 25
in the paper.

15. The effectiveness of signal length N on the performance of RCMFDE is investigated.
The complexity analysis is performed using RCMFDE for noise signals with different
lengths (set to 1000, 2000, 3000, and 4000), and the entropy curves are plotted in
Figure 3. In this experiment, m =2,c=6,t =1, and s = 25.

—e— white noise N=1000 L pe— white noise N=1000 = = - blue noise N=1000
white noise N¥=2000 white noise N=2000 blue noise N=2000
white noise N=3000 0.09 white noise N=3000 blue noise N=3000

—+—  white noise N=4000 § ——  white noise N=4000 - - - bJ_BS QSJEZ })Yi400()

~e- blue noise N=1000 -Z / ~
blue noise N=2000 é 0.06 /
blue noise N=3000 _§
blue noise N=4000 g

D b

4 -8-9

5 10

10 15 20 25

15 20
Scale factor s Scale factor s

Figure 3. Effect of parameter N on RCMFDE.

The following conclusions are obtained from Figure 3.

The mean entropy curves of the same noise with different N are close to each other,
indicating that the parameter N has less influence on the analysis results of the RCMFDE.
However, the standard deviation of the RCMFDE entropy values decreases with an in-
crease in N, indicating that increasing the signal length can improve algorithm stability.
Besides, the RCMFD requires more running time with an increase in N (according to Ta-
ble 1). Thus, the parameter N is set to 3000 in this paper by considering the stability and
operation efficiency.

Table 1. Running time comparison of RCMFDE different N.

Noise N =1000 N = 2000 N = 3000 N =4000
White noise 2.71s 458s 6.45s 8.21s
Blue noise 2.75s 455s 6.41s 8.31s

16. The effect of the embedding dimension m on RCMFDE performance was investigated.
The complexity analysis was performed using RCMFDE for white noise signals with
different values of m (set to 2, 3, 4, and 5), and the analysis results are provided in
Figure 4. In this experiment, N = 3000, c =6, t =1, and s = 25.
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Figure 4. Effect of parameter m on RCMFDE.

Figure 4 demonstrates that the white noise exhibits higher mean entropy outcomes
with an increase in m. This is because the fluctuation dispersion pattern of RCMFDE
increases with m, increasing the entropy analysis results. Moreover, the inclination of the
average entropy curve of the white noise is approximately the same for different values of
m. However, as m increases, the standard deviation of the entropy values rises. Therefore,
the parameter m is set to 2.

17.  The effect of category c on the performance of RCMFDE is investigated. The complex-
ity analysis is performed using RCMFDE for white noise signals with different values
of c (set to 5, 6, 7, and 8), and Figure 5 displays the analysis findings. The setup values
for the remaining parameters are N = 3000, m =2,t =1, and s = 25.

2.8 0.08—
—e— white noise ¢=15 ——  white noise ¢ =5
w1 4la white noise ¢ =6 white noise ¢ = 6
B2 . . _ . .
a white noise ¢ =7  0.061~ white noise ¢ =7
% white noise ¢ =8 g white noise ¢ = 8
<
ggz.o E ——
e -
15) _g 0.04
£1.6 s
>
S g
2 V]
2 0.02
5 1.2
0.8 | | | | 0.00 | ] | | |
10 15 20 25 5 10 15 20 25
Scale factor s Scale factor s

Figure 5. Effect of parameter c on RCMFDE.

According to Figure 5, the mean entropy curves increase with c. This is because the
fluctuation dispersion patterns increase with t, resulting in larger entropy values. Secondly,
the tendencies of the mean RCMFDE entropy curves for the white noise are approximately
the same for different values of c. However, high standard deviation values appear on large
scales when parameter c is smaller (i.e., 5), while the standard deviation curves are closer
when ¢ is 6-8. Therefore, ¢ was set to 6 in this paper.

18.  The investigation is done into how the time delay t affects how well the RCMFDE
performs. The complexity analysis was performed using RCMFDE for white noise
signals with different ¢ (set to 1, 2, 3, and 4), and the analysis results are displayed in
Figure 6. In the experiment, N = 3000, m =2, ¢ = 6, and s = 25.
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Figure 6. Effect of parameter t on RCMFDE.
According to Figure 6, the mean RCMFDE entropy curves of the white noise are nearly
the same at different values of t. However, as t increases, the standard deviation of the
entropy values rises. Therefore, the parameter ¢ is set to 1.
To summarize, the key parameters of the RCMFDE are set as follows: N = 3000, m = 2,
c=6,t=1,and s = 25.
Further, the suggested RCMFDE approach for feature extraction is compared against
MFDE [17] and MPE [8] approaches. Figure 7 illustrates the analysis outcomes for these
three approaches for two noise signals.
2.5 2.5
RCMFDE . . MFDE
—o— white noise u —e—  white noise
g --#-- blue noise 8 -®-- bluc noisc
s
% 2.0 So0f
& k)
Gy
o S
g >
215 5 1.5
= 2
g 53]
[sa]
\.‘..‘I-I-III*I‘III*I~I’I—I*I \.""-I-lll-l-l-l-.-l-l'.I“.-l
1.0 I I I | 1.0 | | | I
10 15 20 25 5 10 15 20 25
Scale factor s Scale factor s
1.0 0.10—
MPE whitetioise white noise RCMFDE white noise MPE
. blue noise RCMFDE blue noise MPE
blue noise 0.08+ ) )
m white noise MFDE
E 0.9 .§ blue noise MFDE
s £0.06
E; 2
E =
z < 0.04
§0.38 8
g A
- 0.02
0.7 | : . 0.00 +
10 15 20 25 5 10 15 20 25

Scale factor s

Scale factor s

Figure 7. Comparison results of different entropy theories.

The following conclusions can be obtained from Figure 7.
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First, the differentiation of these two noises by the MPE is not better than that by
MFDE and RCMFDE, indicating that MFDE and RCMFDE can mine the useful feature
information with distinguishability.

Second, compared with the RCMFDE, the average MFDE entropy curves have certain
fluctuations on enormous scales with higher standard deviations, confirming that the
RCMFDE with the refined composite idea can improve entropy instability and bias of
the original MFDE. Moreover, the RCMFDE can obtain more stable feature extraction
results. The above analyses demonstrate the potency and superiority of the suggested
RCMEFDE method.

3. Planetary Gearbox Fault Diagnosis Scheme
3.1. Supervised Isometric Mapping

The fault feature set extracted by RCMFDE has a redundancy that affects the subse-
quent classifier recognition. Consequently, the dimensionality reduction approach should
be used to perform the second feature extraction. The S-Iso combines supervised learning
theory with nonlinear manifold learning, showing good dimensionality reduction perfor-
mance. Thus, it was used to reduce the fault feature set’s dimensionality. Given a feature
set A =[ay, ap, ..., a4], the following is a summary of the S-Iso steps:

19.  The supervisory distance matrix Ds = {ds(a;,a;) } is constructed as follows:

V1—expl(=d(a;,a))) /9], L(a;) = L(aj)

(10)
\expl(@(ai,a)) /] = A, L(a;) # Llay)

ds(ai/ Ll]) =

where d(a;, a;) is the Euclidean distance between points 4; and a;, L(a;) is the label of
a;, L(a;) is the label of a;, ¢ is the whole sample pairings’ average Euclidean distance,
and A is the weight parameter.

20. The neighborhood graph was created using the K-nearest neighbor algorithm. If 4; is
the nearest neighbor point of a;, there exists an edge connection with length ds(a;, a;);
otherwise, the edge length between these two points is infinite.

21.  The geodesic distance matrix Dy = {d, (a;, a;) } was approximated using Dijkstra’s algorithm:

dg(ai, aj) = min{ds(a;, a;), ds(a;, a;) +ds(a;, a)} (11)

where min{ } is the smallest value in the set.
22.  The dimensionality reduction result of Dg can be obtained by multidimensional scaling.

3.2. Marine Predators Algorithm-based Support Vector Machine

The recognition performance of the SVM classifier is vulnerable to the penalty param-
eter ¢ and the kernel parameter g. The advanced marine predators’ algorithm (MPA) was
employed to adjust the parameters and overcome this shortcoming.

23. The input training and testing sets are normalized. The initialized population is 20,
the maximum number of iterations Tmax is 100, and the predator positions are (c, g)
with a maximum and minimum of [100, 100] and [0.001, 0.001], respectively.

24. The mean false recognition rate of the training set following three cross-validations
constitutes the fitness function. Therefore, the entire optimization process is aimed at
finding the global minimum.

25. The predators and prey locations are updated. The process can be divided into
three phases:

26. Initial optimization phase (T’ < Tmax/3). This phase is the survey phase (i.e., the preda-
tor is moving faster than the prey), and the corresponding model can be described
as follows:

M;=Rg® (E;,—Rg®P;)i=1, ,n

P; = P, + 0.5R ® M (12)
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where Rg denotes a random vector based on Brownian normal distribution, E and
P are the optimal predators and prey locations, respectively, R is a random vector
between [0, 1], the symbol & is entry-wise multiplications, M is step size vector, and
T is the current iteration.

i. Middle optimization phase (Tmax/3 < T < 2Tmax/3). This phase is the
coexistence of survey and exploitation (i.e., the predator moves at speed
similar to that of the prey), and the corresponding model can be expressed as:

Mi:RL®(EZ'—RL®PZ')iZl,...,Tl/Z (13)
P; =P; +05R® M;
M,; = RB®(RB®Ei—Pi)i:n/2,...,n
P; = E; + 0.5CF @ M; (14)
CF = (1 — T/ Tpnax) *"/ ™)
where Ry, is a random vector depending on the Lévy normal distribution and
CF is an adaptation parameter that regulates the predator step size.

ii. Post-optimization phase (T > 2Tmax/3). This phase is the development stage
(i.e., the predator moves slower than the prey), and the corresponding model is:

Ml':RL®(RL®E1'*P,‘)1'=1,...,1’Z

P; =E;+ 0.5CF ® M; (15)
27. Iterative stagnation due to local optimal points is avoided as follows:
P — P; + CF[Xmin + R ® Xmax — Xmin)] @ Hif r < F 16)
! Pi—f—[F(l—l’)ﬁ—i’KPrl—Prz) if1’>F

where F = 0.2. Binary vector H can either be zero or one. Xmax and Xp,in are the maxi-
mum and minimum values, respectively, r € [0, 1], and r; and r, are random numbers.

28. The prior historical location is replaced if the current prey position’s fitness value is
lower than its historical value. Otherwise, the historical prey location is retained for
the next iteration.

29. The optimization is stopped once the number of iterations is maximal, and the opti-
mization results can be output. Then, the SVM prediction model is built according to
the optimization parameters.

30. Intelligent defect diagnosis was achieved by feeding the testing set into the predic-
tion model.

3.3. Proposed Fault Diagnosis Scheme for Planetary Gearboxes

Based on the RCMFDE, S-Iso, and MPA-SVM, a novel fault diagnosis method for
planetary gearboxes was proposed according to the following steps (Figure 8):

31. Sensors were used to record the vibration signals of the planetary gearbox in different
states. A 1:9 ratio exists between training and test samples.

32. The RCMFDE was used to extract features for each group of signals. The parameters
of the RCMFDE are setas N = 3000, m =2, c =6, t =1, and s = 25. Then, 25 entropy
features can be obtained for each sample.

33. The dimensionality of the RCMFDE feature set decreased using the S-Iso, and the
feature set with low dimensions can be constructed.

34. The training sample feature set and the testing sample feature set are normalized. The
MPA-SVM prediction model is constructed using the training set, and this prediction
model receives the testing set as input to achieve intelligent fault diagnosis.
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Vibration Signal Acquisition
I
Y L]
Training samples Test samples
v v
RCMFDE feature RCMFDE feature
extraction extraction
I ]
1]
S-Iso dimensionality reduction

Training sample
dimensionality reduction

Test sample dimensionality
reduction results

results
Normalization Normalization
process process

Intelligent diagnosis results

Figure 8. Fault diagnosis scheme for planetary gearboxes.

4. Planetary Gearbox Fault Diagnosis Experiment
4.1. Experimental Platform and Signal Acquisition

The proposed fault diagnosis scheme was utilized to analyze experimental data from
a planetary gearbox. Figure 9 depicts the drivetrain dynamics simulator experimental
platform, which primarily consists of three-phase asynchronous motor, motor controller,
two-stage planetary gearbox, two-stage parallel gearbox, and magnetic powder brake. The
number of gear teeth in the planetary gearbox is listed in Table 2.

Motor Accelerometer Magnetic Powder
Controller Sensor Brake

Figure 9. Experiment platform.
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Table 2. The number of gear teeth in the planetary gearbox.

Number of Gear Teeth
Component
First Stage Second Stage
Gear ring 100 100
Planet gear 40 (Number of planet gears is 3) 36 (Number of planet gears is 4)
Sun gear 20 28

The vibration acceleration signals of the planetary gearbox were acquired using the
acceleration sensor, including a single normal state, three bearing fault states, and four
gear fault states (Table 3). The waveforms are plotted in Figure 10. For each state, 200 sets
of vibration signals were collected at a sample rate of 3000 Hz, and each set of signals
contained 3000 sample points. Then, 180 sets were utilized as testing samples, while 20 sets
were randomly chosen as training samples. Thus, 1600 sample sets were obtained for
eight states of the planetary gearbox, and the total number of training samples and testing
samples was 160 and 1440, respectively.

Table 3. Fault states of planetary gearboxes.

Fault State Abbreviation Label
Normal NOR 1
Bearing with rolling roller failure BRF 2
Bearing with inner ring failure BIF 3
Bearing with outer ring failure BOF 4
Sun gear with wear failure GWF 5
Sun gear with broken tooth failure GBF 6
Sun gear with crack failure GCF 7
Sun gear with missing tooth failure GMF 8

0.04 : : o] 004
0.00 0. OOWMWM
-0.04 ' : -0.04
~ 0.02 | | == 0.02
2 0.00 OOOWWMMM«
E 0.02 I | -0.02
5 0.02 : : 0.03
=
= 0.00 0. OOWWMW
2002 ' ' -0.03
0.01 : | = 0.04
0.00 0.00
-0.01 ' ' -0.04,
0 10

. 200 3000 1000 2000 3000
Sample point Sample point

Figure 10. Vibration signals of planetary gearboxes.

4.2. Fault Feature Extraction

The RCMFDE was first utilized to extract 25 entropy features for each group of samples
based on the suggested planetary gearbox fault diagnosis scheme. However, to confirm the
benefits of the RCMFDE, the RCMFDE was compared with the MFDE and MPE, and the
feature extraction results using three entropy-based methods for planetary gearbox signals
are shown in Figure 11.

The following conclusions can be obtained from Figure 11.
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Figure 11. Feature extraction results of three methods.

First, when the scale is one, the entropy values of the normal state are higher than that
of fault states in the RCMFDE and MFDE feature extraction results, while the entropy values
of the normal state are lower than that of fault states in the MPE feature extraction results.
For practical purposes, when the planetary gearbox is in a normal condition, the collected
vibration acceleration signals are characterized by strong irregularity, increasing the entropy
values. Conversely, gathered signals will have regular pulses when the planetary gearbox
malfunctions, decreasing entropy values. Therefore, compared with the MPE, feature
extraction results of the RCMFDE and MFDE are more realistic.

Second, the mean entropy curves of the MPE for each state are relatively close and diffi-
cult to distinguish. At the same time, the RCMFDE and MFDE analysis results clearly show
that the planetary gearbox’s eight states can be differentiated. This phenomenon confirms
that the RCMFDE and MFDE can fully exploit the planetary gearbox fault information.

Finally, compared with the MFDE, the average entropy curves obtained by the
RCMFDE are smoother, confirming that the proposed RCMFDE with the refined com-
posite approach can mine fault characteristics more stable.

Furthermore, the MPA-SVM classifier receives the three features in the above sets as
input for quantitative analysis, and the diagnostic results are provided in Figure 12.

According to Figure 12, the average recognition rate of the RCMFDE feature set
(i.e., 94.72%) is 0.76% and 6.59% higher than that of the MFDE and MPE, respectively,
demonstrating the validity of the planetary gearbox feature mining using the RCMFDE.
However, since the information redundancy affects the classifier recognition effect, there are
76 samples in the RCMFDE feature set with category misclassification. Therefore, it is essen-
tial to make the RCMFDE set less dimensional via the dimensionality reduction technique.
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Figure 12. Recognition results of three feature sets.

4.3. Fault Feature Dimensionality Reduction

According to the suggested method for identifying faults with planetary gearboxes,
the S-Iso manifold mapping approach makes the RCMFDE feature set less dimensional.
Moreover, the RCMFDE is compared with currently used techniques like PCA, LDA, and
Isomap. Figure 13 shows the results of pre-3D visualization. The optimal dimensionality re-
duction is determined as five using the maximum likelihood estimation, and the remaining
parameters are optimally selected by multiple experiments, as listed in Table 4.

According to Figure 13, compared with the LDA and S-Iso, the visualization outcomes
of the PCA and Isomap show severe confounding of faulty samples. This is because the
unsupervised dimensionality reduction techniques PCA and Isomap do not fully utilize
the sample labeling data. Thus, the dimensionality reduction of the PCA and Isomap is
not as effective as dimensionality reduction methods LDA and S-Iso. Moreover, compared
with the LDA, the S-Iso distinguishes eight states of the planetary gearbox without serious
sample overlap, verifying the feasibility of applying the S-Iso to reduce the dimensionality
of planetary gearbox feature sets.

In addition, the ratio between the inter-class and intra-class spacing of the dimension-
ality reduction result was used as the performance index. The quantitative analysis results
are shown in Table 5. A higher ratio denotes a more concentrated concentration of related
samples and a more evident separation of different samples.



Machines 2023, 11, 47

14 of 17

* NOR
BRF
BIF

*  BOF

> GWF

*  GBF

*  GCF

*  GMF

Figure 13. Dimensionality reduction results using four methods.

Table 4. Parameter settings for different dimensionality reduction methods.

Method Parameter Setting

PCA Dimensionality is 5

LDA Dimensionality is 5

Isomap Dimensionality is 5; Nearest neighbor parameter is 38

Dimensionality is 5; Nearest neighbor parameter is 53; and Weighting

Slso parameter is 0.4

Table 5. Performance comparison between four methods.

Inter-Class Spacing/

Method Inter-Class Spacing Intra-Class Spacing Intra-Class Spacing
PCA 0.70 0.14 5.00

LDA 58.82 4.97 11.84

Isomap 0.99 0.18 5.50

S-Iso 1.40 0.11 12.73

Table 5 demonstrates how the linear-based dimensionality reduction approaches
(i.e., PCA and LDA) have lower quantization metrics than the nonlinear-based dimen-
sionality reduction methods (i.e., Isomap and S-Iso). This metric can be explained by the
fact that the feature set of the planetary gearbox collected using RCMFDE has nonlinear
characteristics. Therefore, the nonlinear dimensionality reduction techniques are more
appropriate for processing this category of feature set.

Additionally, compared with the unsupervised dimensionality reduction approaches
(i.e., PCA and Isomap), supervised dimensionality approaches (i.e., LDA and S-Iso) can
significantly improve the performance metrics. This performance can be attributed to
the LDA and S-Iso using the sample label information to guide the dimensionality reduc-
tion. Therefore, supervised dimensionality reduction methods have better dimensionality
reduction effects.



Machines 2023, 11, 47

15 of 17

Finally, the S-Iso had the greatest quantitative measurements compared with the three
approaches. Hence, it can be concluded that the S-Iso is more suitable for the dimension-
ality reduction of planetary gearbox feature sets by combining supervised learning with
nonlinear manifold learning.

4.4. Fault State Identification

According to the suggested planetary gearbox malfunction detection scheme, the
MPA-SVM classifier was used to identify faults in the above reduced-dimensional feature
sets. The output results are shown in Figure 14.
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Figure 14. Confusion matrices of four methods.

According to Figures 12 and 14, the MPA-SVM has higher recognition accuracy for the
reduced-dimensional feature sets compared with the original RCMFDE recognition result.
In other words, dimensionality reduction methods can remove redundant information,
obtaining the low-dimensional feature set with higher discrimination. Moreover, the
averaged recognition rate of the RCMFDE+S-Iso reaches 100%, which is 4.51%, 2.92%, and
4.17% higher than that of the RCMFDE+PCA, RCMFDE+LDA, and RCMFDE+Isomap,
respectively. This observation confirms the viability of the feature extraction method
that combines the RCMFDE and S-Iso. Finally, the proposed fault diagnosis scheme
completely and correctly identifies the labels of 1440 sets of testing samples with 100%
recognition accuracy, verifying the viability and superiority of the suggested strategy for
the planetary gearbox.

5. Conclusions

Based on the refined composite multiscale fluctuation dispersion entropy (RCMFDE),
supervised isometric mapping (S-Iso), and marine predators” algorithm-based support vec-
tor machine (MPA-SVM), a novel planetary gearbox fault diagnosis scheme was proposed
in this paper. Moreover, the planetary gearbox fault diagnosis experiments attest to the
efficacy of the suggested approach. The main conclusions of the paper are summarized
as follows:
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35. The RCMFDE is suitable for extracting fault features of gearboxes. The average
recognition rate of the RCMFDE feature set (i.e., 94.72%) is 0.76% and 6.59%, higher
than that of the MFDE and MPE, respectively.

36. The S-Iso’s visualization effect and performance index are better than the PCA, LDA,
and Isomap. Moreover, the averaged recognition rate of the S-Iso reaches 100%, which
is 4.51%, 2.92%, and 4.17% higher than that of the PCA, LDA, and Isomap.

37. The suggested fault diagnosis scheme for planetary gearboxes can accurately identify
eight states of planetary gearboxes with 100% recognition accuracy.

In this paper, the proposed fault diagnosis scheme can effectively and accurately
diagnose gearbox faults. In future work, the authors investigate the parameter settings
of the RCMFDE method. Moreover, we will combine the RCMFDE with multivariate
technique and apply it to analyze multi-channel signals.
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