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Abstract: In the development of digital agriculture, agricultural robots play a unique role and confer
numerous advantages in farming production. From the invention of the first industrial robots in
the 1950s, robots have begun to capture the attention of both research and industry. Thanks to the
recent advancements in computer science, sensing, and control approaches, agricultural robots have
experienced a rapid evolution, relying on various cutting-edge technologies for different application
scenarios. Indeed, significant refinements have been achieved by integrating perception, decision-
making, control, and execution techniques. However, most agricultural robots continue to require
intelligence solutions, limiting them to small-scale applications without quantity production because
of their lack of integration with artificial intelligence. Therefore, to help researchers and engineers
grasp the prevalent research status of agricultural robots, in this review we refer to more than
100 pieces of literature according to the category of agricultural robots under discussion. In this
context, we bring together diverse agricultural robot research statuses and applications and discuss
the benefits and challenges involved in further applications. Finally, directional indications are put
forward with respect to the research trends relating to agricultural robots.

Keywords: agriculture robot; complex environments; robot navigation; robot manipulation

1. Introduction

The number of hungry people has been mounting due to the COVID-19 pandemic,
and surpassed 80 million in 2021, as reported by World Health Organization (WHO) [1].
Moreover, to handle the challenges of the aggravation of population ageing and acceleration
of the pace of life, traditional labour-intensive and risky farm work should be empowered
by more automated control work for promising outcomes. In the aspect of academic
study, many researchers have dedicated significant efforts to studying agricultural robots,
especially during the COVID-19 pandemic, as shown in Figure 1. Therefore, it is reasonable
to explore agriculture further using advanced technology in order to keep promoting the
current status. It should be mentioned that agriculture robots and intelligent automatic
systems are usually equipped with versatile sensing and fast-learning units [2], which
provide encouraging capabilities. In addition, much effort has been put towards achieving
complete automation and improving the operating efficiency of agriculture robots.

Agriculture robots generally refer to machines designed for farming production use [3].
As an integral member of the robot family, they usually possess advanced perception
abilities, autonomous decision-making abilities, control, and precise execution abilities.
Furthermore, they can achieve accurate and efficient production goals even under complex,
harsh, and dangerous environments. In Ref. [4], the authors proposed a mechanism for
considering the coupling effect of temperature and pressure, and investigated the accuracy
of the flow characteristics, which is helpful in the development of agriculture robots.
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Figure 1. Trend of indexed publications related to agriculture robots based on search keywords
“agriculture robot” and “agricultural robot” (data collected from Scopus and processed by authors).

Rovira et al. [5] developed navigation algorithms based on perception, which is
the critical technology used for navigation. A UAV designed by Alsalam et al. [6] for
agriculture implemented a configuration approach to fulfil decision-making. In terms of
control, Zhang et al. [7] developed high-precision control to enable field robots to achieve
efficient phenotyping. Due to their soft properties, tomatoes must be picked carefully.
Therefore, Wang et al. [8] designed a flexible end effector to pick tomatoes, with a successful
rate of 86%. These advancements in agriculture robots have inspired progress in other
types of robots, such as industrial robots. Inspired by these applications, in [9] the authors
proposed a new method for quantifying the energy consumption of pneumatic systems
that combines air pressure, volume, and temperature.

Due to the practical requirements for labor-saving and efficient agricultural produc-
tion, the categories of agriculture robots have been continuously expanding, and their
application scenarios have become more diversified. In light of their different objects, agri-
cultural robots are usually divided into field robots [10], fruit and vegetable robots [11], and
animal husbandry robots [12]. Furthermore, based on an analysis of the relevant literature,
the research on agricultural robots mainly involves field robots and fruit and vegetable
robots, especially in the harvesting domain. Although different agriculture robots are
characterized by their respective application scenarios, they bear a number of similarities
in core technologies. For example, a stable mobile platform, multi-sensor collaboration,
advanced visual image processing technology, sophisticated algorithms, and flexible lo-
comotion control are usually indispensable in constitute an agricultural robot. Moreover,
other related techniques are presented together in Figure 2.

Figure 2. Core technologies involved in agricultural robotic applications.
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The rest of this manuscript is structured as follows. An overall introduction to the
implementation of agricultural robots is provided in Section 2. In Sections 3–5, field robots,
fruit and vegetable robots, and animal husbandry robots are introduced in terms of their
features, functions, categories, and applications. Section 6 provides a comparative review
of agriculture robots based on several criteria. Section 7 discusses the legislative aspects
of agricultural robots. In Section 8, a detailed discussion is offered to clarify the existing
challenges and recent noteworthy advancements in agricultural robots. Finally, Section 9
draws a concise conclusion and offers an outlook for the future of agricultural robots.

2. Implementation of Agricultural Robots

With the rapid evolution of robotics, innovating in the field of agricultural robots
continues, and they are widely used in diverse agricultural production areas. In general,
agriculture robots can be catalogued into three types based on their application scenarios,
ranging from fields and orchards to farms. Moreover, agricultural production is a long-term
cycle. Seeding, planting, nurturing, harvesting, and processing are crucial steps towards
agricultural industrialization. Therefore, agricultural robots can be classified using the
industrial chain as well (Figure 3).

Figure 3. Agricultural robots along the industrial chain [13–17].

The conditions for agricultural production are versatile and complex, which requires
agriculture robots to be equipped with outstanding adaptability, precise navigation, and
obstacle avoidance ability. Therefore, they are mainly manufactured with four parts to
conduct their assignments: a vision system, a control system, mechanical actuators, and a
mobile platform, as shown in Figure 4.

Figure 4. Components of agricultural robots [18,19].



Machines 2023, 11, 48 4 of 24

Accordingly, these four parts exert their own influence on agricultural production.
First, the vision system can transform captured data into images using various cameras,
such as thermal, RGBD, TOF, and multi-spectral cameras. Thermal images are conducive to
detecting hidden vegetables, as proven by Hespeler et al. [20]. Second, the control system is
the brain of the robot, playing an instrumental role decision-making and motion planning.
Third, advanced mechanical actuators are a prerequisite for precise operation, especially
for tender fruits and vegetables. Lastly, mobile platforms enable robots to navigate, avoid
obstacles, perform detection, and carry out tasks [21–25] (Figure 5).

Figure 5. Implications of robotic components [14,19,20,26–30].

3. Field Robots

Field robots usually refer to autonomous, decision-making, mechatronic, and mobile
operation devices that can accomplish various crop production tasks semi-automatically
or automatically. In this section, 35 pieces of literature are reviewed, including 25 robots
and their respective modes of locomotion. Most field robots are designed to locomote
using wheels; the use of caterpillars and drones is rare. Interestingly, the implementation
of drones is centered on crop protection via spraying of pesticides. Typical assignments
include tilling, seeding, crop protection, information collection, and harvesting [31].

3.1. Tillage Robots

Tillage robots refer to intelligent machines that are utilised to cultivate the land. As we
all know, tillage is a monotonous and labour-intensive task. Tillage robots can free farmers
from heavy labour while enhancing the efficiency and quality of cultivation, and play an
instrumental role in digital agriculture.

The machinery of tillage robots is relatively developed owing to arduous exploration.
As a result, recent advancements in tillage robot technology mainly lie in updating robot
systems. Owing to severe population ageing, the Japanese are quite concerned about the
automation of agriculture production. Early in 2013, Tamaki et al. [32] developed a robotic
system with three robots for large-scale paddy farming. In the automated system, the first
element is a tillage robot navigated by RTK-GNSS and inertia measurement unit (IMU)
or GPS compass that can locomote between the paddy fields. In a way, this invention
previewed Japan’s promising future of agriculture robots. In 2021, Panarin [33] developed
existing software for tilling robots, partly aiming to ensure adaptation between software
systems and manufactured robots. Furthermore, customer requirements have been fully
satisfied by using ROS (Robot Operating System) [33] and adapting digital robots to their
surroundings. In addition to typical tillage robots, robotic tractors contribute to tilling
operations to a great extent [34,35]. Recently, John Deere rolled out an electric robot tractor
called Sesam 2, which can produce 300 kW (400 hp) of power and play a key role in both
tilling and harvesting. Moreover, it is able to achieve synergy with several other robots [36].
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3.2. Seeding Robots

Sowing is the primary process in field production. Therefore, seed-sowing robots are
conducive to sowing seeds in exact positions, saving both time and cost for farmers.

To date, many functional seeding robots have been invented and put into extensive
practice. The precision seeding robot for wheat shown in Figure 6 [37] was designed with
four wheels, servo motors, and stepper motors. According to the trial results, its seeding
rate surpassed 93% in typical sowing speed. In [18], the authors proposed a seeding
robot that can dig soil, plant seeds, and cover them with soil. The function of adding
fertiliser and watering is available as well. In 2019, Raj et al. [38] designed and tested an
automatic robot for seeding and microdose fertilising. It was expected that the robot could
plant different seeds, and the trial outcome displayed outstanding prototype performance.
Kumar et al. [28] developed an intelligent seed-sowing robot controlled by an IoT system
which was able to achieve complete seeding automation. Stepper motors and DC motors
were utilised to power the robot.

Figure 6. Wheat precision seeding robot [37].

3.3. Crop Protection Robots

Generally speaking, traditional crop protection involves spraying poisonous pesticides
manually, which adversely affects farmers’ health. In order to diminish exposure to pesti-
cides, an intelligent robotic system [39] was developed to automatically spray pesticides
based on a control algorithm for navigation and a high-efficiency trajectory calculating
algorithm. Deshmukh et al. [40] studied and analyzed a multi-purpose pesticide spraying
robotic system using a fuzzy control system; it was able to locate infected plants and then
spray the appropriate pesticide.

However, ordinary crop protection tends to incur overuse of pesticides, which raises
production expenses and does harm to the environment [41]. More precise crop protection
methods are expected to cope with this issue. One well-known piece of equipment is the
Yamaha R-MAX, developed by the Japanese, which is a leading platform in aerial pesticide
spraying [42]. Ghafar et al. [43] developed a cost-saving spraying robot to satisfy the
need for spraying pesticides and fertilizers, shown in Figure 7. As shown in Figure 8, Iost
et al. [44] introduced novel technologies for small drones, including sensing and actuation
drones. By collaborating with each other, the intelligent system provides sustainable pest
control. A new modular system for precision farming was put forward in [45] based on the
technology of individual nozzles and computer vision. The application of these machines
can both protect the environment and save farming expenses.
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Figure 7. Agricultural robot prototype moving along a crop path [43].

Figure 8. (a) State-of-the-art open-loop remote sensing paradigm and (b) closed-loop IPM paradigm
envisioned in [44]. Sensing drones can be used to detect pest hotspots, while actuation drones can be
used for precision distribution of solutions.

Apart from pest control, overall environmental management pertains to crop protec-
tion as well. Martini et al. [46] proposed an automated gardening robot that can automat-
ically plant and monitor soil and water. Similarly, based on DTMF, Srivastava et al. [47]
developed a multi-function field robot that can measure soil moisture, irrigate and spray
pesticides, etc. Furthermore, it can be controlled remotely. Sori et al. [13] developed a robot
for weeding in paddy fields. This robot, equipped with two wheels, touch sensors, and
a turning azimuth sensor, can pull weeds by stirring up the soil and blocking sunlight,
potentially improving crop yield in view of experimental results.

Several advanced technologies have been applied to crop protection robots, such as
the ant colony algorithm, trajectory method, and optimized robot systems. An et al. [48]
proposed a more precise and efficient ant colony algorithm for plant protection robots,
aiming to improve the reliability and accuracy of path planning. For the agricultural
development of crop planting in western China, a region characterized by fragmentary
cropland, Ma et al. [49] determined a novel trajectory method by analyzing the arrangement
of crops using the ant colony algorithm. In Figure 9, Nascimento et al. [50] optimized an
autonomous pesticide spraying robot system, enabling the sprayer to detect rows and
activate nozzles.



Machines 2023, 11, 48 7 of 24

Figure 9. Tractor-mounted boom sprayer [50].

3.4. Field Information-Collecting Robots

Although collecting information in the field can be laborious and gruelling, the data
gathered as a result assists farmers in making invisible decisions. In light of this, field
information-collecting robots have been developed to accomplish this assignment. At the
University of Saskatchewan, Bayati et al. [51] developed, implemented, and verified a
field-based high-throughput plant phenotyping mobile robotic platform to monitor Canola
plants. Wide-range images of plant canopies can be gathered and analyzed by the platform
automatically. This innovation has been demonstrated to improve the productivity of
farms while decreasing costs in the long run. As shown in Figure 10, Cubero [52] de-
veloped a field robot called Robhortic for detecting pests and diseases in horticultural
crops. After three trials in carrot fields, its performance was outstanding, with a detection
rate of 66.4% and 59.8% in the laboratory and field, respectively. An ROS-driven mobile
robot [53] was specially designed to navigate the area and collect phenotyping data, with
an error rate of only 6.6% and 4% for plot volume and canopy height, respectively. Ulti-
mately, this work has aided in expediting the evolution of agricultural robots, especially in
phenotype monitoring.

Figure 10. A remotely-driven RobHortic operating in a carrot field, showing the external appearance
of the robot [52].

The technological development of information-collecting robots has included break-
throughs in neural network algorithms and visual navigation. Gu et al. [54] enhanced a field
information-collecting robot’s convolutional neural network algorithm by manipulating the
path tracking to ensure stable movement, minor deviation, and human–machine separation.
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3.5. Crop Harvesting Robots

As is well known, rice cutter machines have been available for many years. Based
on the existing mechanical framework [55–57], many algorithms have been developed to
automate such harvesters. In 2022, Geng et al. [16] developed an automatic corn harvester
system able to fulfil trial requirements with a deviation rate of 95.4% at normal harvester
speeds. Notably, these advancement represent a benchmark for improving the automatic
row alignment process. Li et al. [58] developed and applied a deep-learning algorithm
based on ICNet to assist a robotic harvester with accurate obstacle detection in real-time, as
shown in Figure 11. This automatic harvester, equipped with a pruned model, was able
to realize collision avoidance with a success rate of 96.6% at an average proceeding speed.
Considering the deficiencies of the current navigation algorithms used in harvester robots,
Li et al. [59] developed an enhanced detection algorithm that reached a success rate of
94.6%, higher than the least squares method. However, precise corner detection was hard
to attain. Having improved the PSO algorithm, Pooranam [60] invented a robotic swarm
harvester to help farmers with large-scale reaping, threshing, and cleaning. Using a simple
mathematical operation, they were able to optimize course of harvesting. Considering
the large overshoot and long convergence time caused by large initial heading errors,
Wang et al. [61] explored a novel trajectory planning algorithm for harvesting robots that
could enhance stability, thereby improving operational performance.

Figure 11. Robotic combine harvester and installed devices [58].

4. Fruit and Vegetable Robots

Manpower cannot fully meet the rapid requirements of the agricultural products mar-
ket. Alternatively, smart robotics can be an efficient solution to increase the planting areas
for the markets in combination with changes in cultivation, preservation, and processing
technology. In this section, five major types of fruit and vegetable robots are be introduced,
including transplanting robots, patrolling robots, pesticide spraying robots, gardening
robots, and picking robots.

4.1. Transplanting Robots

With regard to transplanting performance, accuracy and stability are two critical
indicators. Therefore, Jin et al. [62] proposed an advanced control approach using manipu-
lators for hydraulic transplanting robots. As a result, the control accuracy and stability of
transplanting was improved. Yang et al. [63] developed a transplanting robot with three
degrees of freedom. A subsequent trial was conducted, and the result showed that the
transplanting robot could achieve a success rate of 95.3% even as the acceleration reached
30 m/s2. Han et al. [64] constructed and evaluated a multi-task transplanting robot that
could reach a success ratio of 90% even at a speed of 960 plants/min per gripper. Future
research that integrates agronomic and mechanical requirements is expected. Further-
more, the design of more inexpensive products for smallholder farmers is anticipated. In
Figure 12, Liu et al. [65] designed an advanced transplanting robot for sweet potatoes
which was distinguished by two-degree-of-freedom path control. Notably, this machine
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can automatically implement diverse transplanting strategies in light of different terrain
types. The minimum qualified rate of seedling erection angle and planting depth was 94.7%
and 94.8%, respectively, satisfying the practical requirements of mechanical transplanting
of sweet potatoes.

Figure 12. 1. Transplanting robot arm; 2. Transplanting position; 3. Crawler chassis; 4. Control box; 5.
Filling robot arm [65].

4.2. Fruit and Vegetable Patrolling Robots

Fruit and vegetable patrolling robots usually navigate autonomously, collect various
information, and finally transmit feedback gathered information to farmers. The data they
gather incorporates fruit and vegetable maturity, environmental parameters, and pests.
Based on colour proportion analysis, Zhou et al. [66] improved a scouting robot to detect
tomatoes and measure their maturity using YOLOV4. It is worth mentioning that the
identification accuracy rate is extremely high, reaching 95%, and the detection speed is
more than 5 frames/s in the natural greenhouse. Iida et al. [67] designed an information-
collecting robot to collect environmental information, such as CO2 content, temperature,
and humidity. In addition, they validated the usefulness of the proposed robot through
a prototype.

Wang et al. [68] developed a patrolling robot on the basis of the Web of Things,
which can send processed warning information to users, thus instructing farmers to plant
scientifically. Introducing the Web of Things to agricultural production is beneficial in
intelligent planting applications. To detect early pests, Martin et al. [69] developed an
ROS-based architecture dubbed Robotframework (Figure 13) that successfully combines
various robotic skills, such as navigation and manipulation. These innovative solutions
enable the possibility of new mobile robotic manipulators.

Figure 13. GreenPatrol robotic platform entering a greenhouse [69].
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4.3. Pesticide Spraying Robots

Similar to spraying pesticides on field crops, spraying pesticides on fruits and vegeta-
bles is a burden on the environment due to excessive spraying ranges. Therefore, many
pesticide spraying robots have been designed to achieve more precise spraying via various
methods, such as servo-controlled nozzles, flow control systems, and ultrasonic sensors.
A great deal of research effort and attention has been focused n the area of pesticide
spraying robots.

Cantelli et al. [30] invented an autonomous spraying robot containing two parts,
a vehicle and a spraying control system. Then, experimental tests were conducted to
prove that synergy between the two parts could achieve a safer and more precise spraying
operation. Bhat et al. designed a semi-autonomous robot [70] able to climb Areca Nut
trees and then spray pesticides using servo-controlled nozzles. In this way, higher quality
and output can be attained. This additionally solves problems involving the limitations
of human labor. An autonomous pesticide sprayer [71] was developed and implemented
to spray pesticides precisely while incorporating obstacle avoidance ability. Moreover, it
can be applied to different crops, including pineapples, tomatoes, rock melons, and more.
Further exploration was considered from the perspective of spraying pressure, waterproof
structure, and upgrading of the monitoring system.

Oberti et al. [14] developed a modular agriculture robot in the CROPS project [14] to
achieve autonomous disease detection and selective pesticide spraying operation, which
could mitigate pesticide overuse. In addition, they designed the first fully automatic selec-
tive system for spraying pesticides geared towards specialty crops. As shown in Figure 14,
Seol et al. [72] proposed a flow control system for a smart spraying robot using semantic
segmentation. Thereafter, contrastive field experiments were carried out, demonstrating
that the proposed system outperformed existing control approaches. Tewari et al. [73]
developed a robotic selective sprayer using sensitive ultrasonic sensors. Based on ultra-
sonic sensing technology, the nozzles spray exclusively toward the tree canopy, reducing
pesticide usage in orchards by 26%. A robotic spraying system based on the SegNet model
was proposed in [74] to spray pesticides in orchards, composed of hardware configuration,
semantic segmentation, and depth data fused with trained RGB data. In field experiments,
their environmentally friendly spraying robot showed satisfactory properties.

Figure 14. Intelligent spraying system [72].

Compared with typical pesticide-spraying robots, the “X-Bot” designed by Ozgul
and Celik is much smaller [75], as shown in Figure 15. The semi-automatic mobile robot
presents potential energy savings and can spray pesticides and repel insects without any
human assistance.
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Figure 15. X-Bot operating in a field [75].

It is worth mentioning that the remote control can be attained through Bluetooth
communication. Mane et al. [76] proposed a pesticide spraying robot with an interface
controller for feasible remote control. Moreover, they fabricated and tested a prototype that
was able to satisfy all major requirements.

4.4. Gardening Robots

Due to the dynamic circumstances generated by seasonal changes and plant growth,
a garden with unique characteristics is challenging for autonomous gardening robot sys-
tems [77–82]. The garden map for robot navigation applications is influenced during
gardening robots’ cutting of hedges, because its appearance and geometry are changed at
this stage. Hence, the existence of pitches and the gardening robot movements plan should
be considered in navigation techniques. A great deal of research attention has been focused
on this area.

In the TrimBot 2020 project, a robotic lawn mower was proposed, the first outdoor
robot intended to trim bushes and prune roses. Strisciuglio et al. [83] pioneered a prototype
using innovative path planning and visual servo systems. A robotic irrigation system [84]
was specially developed to irrigate indoor gardens. An Arduino microcontroller increases
the water flow when a moisture sensor detects dry soil. Moreover, an automatic fertilizer
sprayer was developed to compensate for one deficiency of this work.

In [85], a pruning manipulator with five degrees of freedom was designed for jujube,
as shown in Figure 16. Subsequently, a performance test was conducted, verifying the
excellent properties of the automatic equipment, with minimal positioning error and an
average success rate higher than 85.16%.

Figure 16. The pruning test [85].
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Based on an automatic irrigation system, small-sized gardening robots [86] have been
designed and tested to assist people in growing plants, as shown in Figure 17. Thanks to
the use of sprinkler controllers and moisture sensors, plants were able to grow faster by as
much as 20% under the care of gardening robots. In future work, more sensors are expected
to be accessed, and image-based machine learning can be highlighted. Islam et al. [87]
designed a multi-functional gardening system that could be implemented on rooftops
and nurseries. This semi-autonomous assistance system can supply water and detect leaf
disease. However, the gardening robot is limited by the solar charging system, which is
unavailable with insufficient daylight. Cheung et al. [88] at the City University of Hong
Kong designed an automatic mobile gardening system made up of four parts, namely, a
monitoring kit, artificial intelligent classifier, mobile application, and cloud storage, with
the aim of increasing planting efficiency.

Figure 17. (Color online) Weeds (a) before cutting with a cutter blade and (b) after cutting with a
cutter blade [86].

4.5. Fruit and Vegetable Picking Robots

Fruit and vegetable picking robots usually refer to automatic machines designed for
large-scale detection and picking of fruits and vegetables in modern agriculture [89–92].
Robotic harvesters are classified into bulk and selective robotic harvesters [93], and in-
clude kiwi-picking robots, apple-picking robots, strawberry-picking robots, tomato-picking
robots, and more [11]. In addition, numerous examples have proven that fruit and vegetable
picking robots have become a prevalent topic among agriculture robots.

Williams et al. [27] developed a kiwi fruit-picking robot. This type of kiwi fruit-
picking robot consists of a machine vision system, end effectors, and four harvesting
arms. Specifically, the robot employs a convolution neural network (CNN) which performs
semantic segmentation on images of the canopy. However, due to obstructions and loss,
only 51% of kiwi fruits were successfully picked by the novel robotic kiwifruit harvesting
system in the test orchard.

With regard to apple-harvesting robots, Kuznetsova et al. [94] developed a machine
vision system based on a YOLOv3 algorithm with pre- and post-processing for detecting
apples. By employing pre-and post-processing, the fruit detection rate increased from 9.1%
to 90.8% compared with standard YOLOv3. Notably, only 19ms was required to detect
each apple; objects mistaken for apples accounted for 7.8%, while 9.2% of apples were
unrecognized. A complete and totally autonomous picking robot [26] was implemented by
the agricultural R&D-company Octinion to detect and pick ripe fruits without damaging
them. The efficiency of the prototype was high, picking strawberries in only 4 s. Based on
RGB-D, Li et al. [95] invented a trustworthy algorithm for harvesting robots (Figure 18) to
automatically locate lychee clusters, facilitating collection in large-scale environments. In
field experiments, only 0.464 s was required to deal with a single lychee string.
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Figure 18. Robotic system for lychee harvesting [26].

Within the overall procedure for harvesting sweet peppers, a new robotic harvester
was developed by Lehnert [96]. Using a vision-based algorithm, a 3D localisation and
grasp selection method, and an end-effector, it obtained a harvesting success rate of 58%, a
grasping success rate of 81%, and a detachment success rate of 90% for the sweet pepper,
which represents a breakthrough. Although these results cannot yet satisfy commercial
needs, it is possible to foresee a promising future for this autonomous sweet pepper
harvester. Based on deep learning, thermal images were used in [20] to detect chili peppers
in complex environments, which is more efficient than RGB images. Using thermal cameras
can make the harvesting process more efficient; this study opens up new possibilities for
harvesting in low-light environments.

Distinct from rigid grippers, flexible soft grippers can gently interact with objects.
Peng et al. [97] summarized the advancements and relative excellence of soft robotic grip-
pers in vegetable and fruit picking and their robustness in adapting to different require-
ments. Then, they briefly introduced the notion and status of soft robotic grippers. They
concluded that progress on the development of soft grippers has been made in materials,
chemistry, and other multidisciplinary areas, and that challenges remain in manipulating
methods, controllability, and mechanical design.

5. Animal Husbandry Robots

Due to lengthy investment cycles and the high stakes of animal husbandry production,
animal husbandry tends to suffer massive crises. When a crisis situation occurs, the yield of
meat and dairy declines accordingly, increasing the expense of production. Therefore, the
need for a more intelligent strategy that can manage farms efficiently has begun to catch
the public’s eye.

5.1. Breeding Robots

Poultry and livestock breeding is an essential part of agricultural production, with
generous profits. Therefore, enhancing poultry and livestock breeding can be of high
significance. Disinfection is the most fundamental, valuable, and comprehensive way to
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improve breeding, and has attracted extensive attention among the various methods used
to improve breeding.

To deal with the labour-intensive work of disinfection, Feng et al. [98] designed an
efficient disinfecting robot. Afterwards, an experiment was conducted to test its perfor-
mance, and the results showed that the disinfecting robot satisfied the basic requirements
very well. In 2021, Feng et al. [99] upgraded a robot that can be controlled automatically
and remotely for disinfectant-spraying in poultry houses. Accordingly, this research serves
as technical support for intelligent production.

Based on the Internet of Things, Li et al. [100] developed an intelligent device to
monitor the environment of enclosed henhouses, trying to find the relationship between the
production environment and laying rate. In general, they found that suitable temperature
and increased ventilation are two key factors for laying hens. Li et al. [101] employed
internet technology in chicken breeding. The intelligent and remotely controlled system
they developed can monitor the chickens and update real-time information through various
sensors. Hence, the chicken house in the woods can become an organic whole through the
use of such a network.

5.2. Animal Feeding Robot

Feeding livestock and poultry on time is another labour-intensive assignment, and
it is difficult to accurately determine the quantities of fodder. The automation of animal
feeding can reduce the costs of both feed and labour while eliminating feed waste. In light
of this, roboticizing the process becomes the universal direction in animal feeding.

Peng et al. [102] proposed and designed a robotic pig-feeding system to decrease the
demand for artificial labour and guarantee a pleasant environment for pig breeding, leading
to a great improvement in production efficiency. In Nepal, Karn et al. [103] introduced a
feeding system for cattle that followed the pre-determined trajectory and placed the feed
by the fence. In the designed work environment, the developed robotic vehicle enabled
successful operation. On the basis of force feedback, Rumba et al. [104] proposed an
iterative pile-pushing algorithm to estimate the feed-pushing robot path in dairy cattle
farms. Notably, the related change can contribute to intelligent dairy farms.

As shown in Figure 19, Pavkin et al. [105] conceived a robotic feeding pusher to
enable robot modernization. Later, they developed an experimental model to test their
simulation model; the results showed that the automatic robot can significantly facilitate
the process of feeding by conducting labor-intensive operations. However, the animals
at the feed table posed a challenge for the accuracy of the vision system. In Figure 20,
Tian et al. [106] designed a pusher robot able to navigate automatically using a 3D lidar
system. Moreover, they proposed an advanced obstacle avoidance method to overcome
problems in complicated open situations. These developments contribute to intelligent
dairy farming.

Figure 19. Physical analogue of a robot pusher: 1. Outlet of the feed additive dispenser; 2. Pusher
auger; 3. Filler with closer [105].
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Figure 20. Pusher robot [106].

5.3. Milking Robots

Usually, milking is performed in specified sessions, and the cows cannot determine
the timing of being milked. However, the advent of AMS has revolutionized the process
and even the whole dairy industry, helping farmers to gain much more respectable returns.
Nowadays, milking robots are available throughout the day, and farm management has
evolved in a more organized way. Hence, many scientists have taken an interest in this
topic.

Sitkowska et al. [107] developed an automatic robot system (AMS) to allow farmers to
monitor cow performance traits. By analyzing the data collected through AMS, researchers
were able to find the relationships between performance features and milk yield, improving
milk yield and economic benefit. They pointed out that the optimal milking plan referred
to milking at a frequency ranging from 2.6 to 2.8 per day and milking speed of 2.6 kg/min.
Iweka [108] developed an NIRS sensing system for a milking robot to determine the quality
of non-homogenized milk from the perspective of SCC and three main milk constituents.
This can provide farmers with feedback control, contributing to high-quality milk and
precision dairy farming.

The vision system plays a paramount role in automatic milking. A novel milking
robot [109] (Figure 21) with RGBD cameras, image segmentation, and an algorithm was
designed for achieving automatic milking. Although elementary, the idea proved feasible
in the initial experiment. Nonetheless, further engineering improvements can be expected,
and further validation in real scenarios remains required. A new 3D vision system that
can locate the milking cups precisely was developed by Akhloufi [110], and was able to
improve the performance of milking robots. Pal et al. [111] conceived an intelligent vision
system for milking systems using the technologies of RGBD imaging, thermal imaging,
and ToF camera imaging. Moreover, the application scenarios of this advanced detection
system included the sheds and carousel parlors.

Figure 21. Kinematic model of a milking robot [109].
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5.4. Egg Collecting Robots

Collecting eggs in large-scale poultry houses is dirty and dull; autonomous equipment
can considerably improve this situation. As shown in Figure 22, Vroegindeweij et al. [112]
successfully developed and evaluated a mobile robot that can navigate autonomously, keep
an eye on the poultry, avoid obstacles, and collect eggs, which indicates a bright future for
intelligent poultry houses.

Figure 22. PoultryBot among hens in the test environment [112].

6. A Comparative Review of Agricultural Robots Based on Several Criteria

In this section, a comparative review of agriculture robots is provided on the basis
of several criteria, including the mode of locomotion (wheels, caterpillars, drones), the
size of robots (small, medium, large), application scenarios (indoor, outdoor, or both),
sensors employed (GPS, RGB, IR, LiDAR, etc.), autonomy (autonomous, semi-autonomous,
manual), and the distinction between research prototypes and commercial products.

After conducting a thorough analysis, we find that most agriculture robots are de-
signed to locomote using wheels, while the use of caterpillars and drones is rare, as shown
in Table 1.

Table 1. Modes of locomotion used by agriculture robots.

Modes Robots Reviewed Main Examples

Wheels 21 [37,43,45,52]
Caterpillars 7 [40,58]

Drones 6 [42,44]

Based on the current study, we find that smaller-sized robots have received the most at-
tention from researchers (Table 2). For example, in [32], Pikulkaew Tangtisanon introduced
a small gardening robot with a decision-making watering system. However, larger-sized
robots have been studied by many researchers as well.

Table 2. Size of agricultural robots.

Size Robots Reviewed Main Examples

Small 25 [32,44,86,113]
Medium 9 [114,115]

Large 17 [116–119]

Indoor agriculture has become a popular research trend in recent years, and in-
door robots have consequently received a great deal of attention (Table 3). In [120],
Marsela Polic et al. proposed a robotic system for indoor organic farming. A networked
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autonomous gardening system with applications in urban/indoor precision agriculture
was described by Nikolaus Correll et al. in [121].

Table 3. Application scenarios of agricultural robots.

Scenarios Robots Reviewed Main Examples

Indoor 27 [84,120–122]
Outdoor 19 [83,123]

Both 13 [124,125]

All robots perceive signals through a sensor, with RGB (Red-Green-Blue) sensors,
vision sensors, and GNSS being the most common (Table 4). There exist other sensors that
allow robots to identify their surroundings, such as light detection and ranging (LiDAR)
sensors, multispectral sensors, infrared (IR) sensors, etc.

Table 4. Sensors used by agricultural robots.

Sensors Robots Reviewed Main Examples

GNSS 18 [32,51,113]
RGB sensor 32 [44,109–111,126–129]

Infrared(IR) sensor 17 [87,108]
Light detection and ranging

(LiDAR) sensor 14 [106,126]

Vision sensor 19 [126–128]
Multispectral sensors 8 [56,68,130]

Most of the agriculture robots described in this review are autonomous, as shown in
(Table 5). The broad use of fully autonomous agricultural robots reduces labor costs and
greatly increases the efficiency of farming work. Meanwhile, semi-autonomous robots are
an indispensable element of agricultural robots. For instance, in [75] Ege Ozgul and Ugur
Celik offered a semi-autonomous robot named “X-Bot” to improve efficiency and precision
in agricultural tasks. On the other hand, manual robots were rarely found in our review.

Table 5. Categorization of agricultural robots based on their degree of autonomy.

Degree of autonomy Robots Reviewed Main Examples

Autonomous 78 [31,32,35,38,39,45,46,50,61,64,
71,76,96]

Semi-autonomous 29 [43,75,131,132]
Manual 14 [133,134]

Last but not least, the distinction between research prototypes and commercial prod-
ucts is worth mentioning. Currently, the commercialization of agricultural robots is insuffi-
cient and needs further exploration, as shown in (Table 6). In our review, many different
research prototypes were found. For instance, in [33] the creation of software for robots
intended for spot mechanical tillage was a major focus of researchers Roman N. Panarin
and Lubov A. Khvorova. In addition, there has been a great deal of research on the use of
commercial robotic products in agriculture, as can be seen in [31,43,135].

Table 6. Commercialization of agriculture robots.

Commercialization Robots Reviewed Main Examples

Research prototype 16 [33,34,37,61]
Commercial product 12 [31,43,135]
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7. Legislative Aspects of Agriculture Robots

In reviewed publications related to agriculture robots, we have seen the rapid evolu-
tion of technologies and the resulting potential economic benefits. However, widespread
application is hampered by inconsistent and nonstandard legislative codes, which originate
from dynamic and complicated environments, various manipulation objects, and gaps
among countries [135–137]. This has led to considerable controversy [138]. In order to
manage agriculture robots and boost large-scale applications, efforts are being made to
update existing laws [139]. Hence, future work in this area is encouraged, with the aiming
of safeguarding effective operation in all cases.

8. Discussion

This section concludes and discusses the recent advancements with respect to agricul-
ture robots, as well as the challenges and present trends in related research work. Nowa-
days, agricultural robots are being developed rapidly thanks to theoretical innovations and
various cutting-edge technologies, including multi-modal perception, decision-making,
control, and execution abilities. These advancements presage a bright future for precision
agriculture and intelligent farming.

However, because the agricultural environment is complicated and dynamic, many
more agricultural robots are either employed in small-scale applications or remain in the
prototype phase, including pesticide spraying robots, gardening robots, and strawberry
picking robots [26,67,83] described in this review. Moreover, other problems involving
agriculture robots have barely been explored or remain in the nascent stage, such as energy
consumption, accuracy of GNSS, the cost of robot fabrication, and the maintenance of robots
or robotic systems [25,140–144]. For instance, it is well known that the vision system is
regarded as the “eyes” of agriculture robots, and there is a considerable tradeoff between the
cost and quality of cameras for agriculture use, as stated by Khan et al. [113]. Furthermore,
in most developing countries land use for agriculture is usually not as intensive as is the
case for large-scale farmland in developed countries. In addition, farmers may not hold
sufficient capital to purchase efficient agriculture robots. Therefore, it is reasonable to
expect more affordable and high-quality agriculture robots.

Apart from autonomous machinery, advanced control systems, and socioeconomic
factors, it is worthwhile to consider interaction with the agri-environment. New approaches
are required to facilitate more natural and user-friendly interaction in agricultural pro-
duction. Breakthroughs have been made in human–robot interaction, such as modelling,
semantic action recognition, and risk-averse optimization approaches [145–149]. Never-
theless, further exploration is needed due to unstructured and uncontrollable objects and
environments. Moreover, based on the publications reviewed here, future efforts should be
devoted to agronomics, sensors, and the realization of full automation.

9. Conclusions

This study has reviewed the current status and applications of various agricultural
robots by categorizing three primary types of agricultural robots, namely, field robots,
fruit and vegetable robots, and animal husbandry robots. About fourteen kinds of robots
have been described in detail in terms of their features, functions, and applications. In
addition, we have discussed the challenges accompanying the advancement of agricultural
robots. Hopefully, this review can provide inspiration for researchers to grasp the future
trends in the study of agricultural robots, which include but are not limited to human–robot
interaction, agronomics, sensors, and the realization of full automation.
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