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Abstract: In this paper, we propose a misalignment correct method and a particle detection algorithm
to improve the accuracy in the quality inspection of the LCD module after the anisotropic conductive
film (ACF) bonding. We use only one camera to acquire images of multiple positions in order
to establish the transformation from the image space to the world coordinate. Our method can
accurately determine the center of rotation of the carrier table and calculate the deviation of position
and angle of the tested module. Compared to traditional ways that rely on multiple cameras to
align the large-sized product, our method has the advantages of simple structure, low cost, and fast
calibration process. The particle detection is performed after positioning all bumps of the bonded
module. The gray morphology-based algorithm is developed to detect the extreme point of every
particle and refine the particle result through blob analysis. This method reduces the over-checking
rate and performs better on the detection precision for dense particles. We verify the effectiveness of
our proposed methods in our experiments. The alignment error can be less than 0.05 mm, and the
accuracy of the particle detection is 93% while the recall rate is 92.4%.

Keywords: conductive particles; LCD module; ACF bonding; automated optical inspection;
visual-alignment

1. Introduction

Liquid crystal display (LCD) panels have been widely used in smartphones, car
monitors, and other industries. To fit the proliferated applications with different sizes and
shapes, LCD modules are expected to be more integrated, thinner, and of higher resolution.
Anisotropic conductive film (ACF) bonding technology, as the key process in the production
of LCD modules, is extremely important in order to achieve a higher signal density and
smaller overall package, which can enable the LCD modules more light-weighted and
miniaturized. To reduce the size of the module, circuit components such as integrated
circuits (ICs) and flexible printed circuits (FPCs) are expected to be connected to display
panels at a higher level of integration.

ACF is an important material that serves as a connector to achieve such a level of
integration. The authors of [1–3] examined the mechanical reliability of the ACF and con-
sidered it as a low-cost and reliable material that can be used in semiconductors packaging.
As shown in Figure 1, with the ACF, multiple components can be integrated into the display
panel to form a compact LCD module. Such a material can achieve both a mechanical and
electrical link between the substrates of peripheral circuits to that of the LCD.

Figure 2a shows a detailed bonding process, in which the ACF is first attached to the
panel substrates, and the substrates of ICs or FPCs can be further glued to it to realize
a reliable connection between components. This process is called ACF bonding. As
Figure 2b shows, the ACF mainly composes of conductive particles and polymer resin.
The conductive particles provide the ability of conductivity, while the resin works as an
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adhesive to hold the LCD panel tightly with other circuits. ACF allows the two components,
namely, the LCD panel and ICs or FPCs in our application, to create a reliable bond and
enable electrical interconnection. Similar conducting polymer and metal nanoparticle ink
have also been developed in [4,5] to fabricate materials with higher conductivity, thus
improving the electrical performance of printed electronics. Mainly used processes include
bonding integrated circuits (ICs) or flexible printed circuits (FPCs) onto the glass substrates,
which are called chip-on-glass (COG) and flex-on-glass (FOG), respectively.

IC chip

FPC

IC chip

FPC

Figure 1. ACF can reduce the size of the LCD module and achieve a higher level of integration.

FPC

IC chip

(a)

(b)

ACF

Heat && Pressure

Figure 2. (a) Demonstrates the diagram of the bonding process; (b) is zoomed in to show the
composition of the ACF.

The conductivity of the ACF is explained in Figure 3a, where the ACF is sandwiched
between the two substrates. After a period of heat and pressure, the indium tin oxide
(ITO) bumps of the substrates are bonded closer, thus trapping some conductive particles.
The interconnection is established by these trapped particles, and the power and signal
can be transmitted from external components into the display module. After the ACF
bonding process, the appearance of the bump areas taken by the camera is shown in
Figure 3b. Conductive particles on the bump areas can be viewed from those taken images.
As conductivity is a significant indicator of the quality of LCD modules, extensive studies
have been conducted to investigate the factors that contribute to poor conductivity. The
traditional method directly tests the resistance of the LCD module after the bonding
process, which is time-consuming and may inflict damage to test modules. According to
studies [6–11], the number and distribution of conductive particles are essential factors to
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the conductivity. Therefore, it has become a popular method for LCD manufacturing to
verify the conductivity by calculating the number of conductive particles. However, the
manual inspection method depends on sophisticated instruments to perform the detection,
and due to the low efficiency of labor work, random sampling is usually used in the industry.
Such a sampling method is less accurate, and with the mass production of LCD panels,
inspection methods that rely on human labor cannot satisfy the growing manufacturing
scale. Meanwhile, due to the small size of conductive particles, whose diameter is normally
3–5 µm, it is difficult to obtain high-resolution information about particles using human
eyes or traditional instruments.

Substrate 1

Substrate 2 Substrate 2
ACF

Substrate 1

Heat Pressure

Conductive Non-conductive

(a) (b)
Figure 3. (a) Explains the conductivity principle of the ACF; (b) shows part of the bump areas after
the bonding process.

To improve the detection efficiency and accuracy without potential contact damage,
the automated optical inspection (AOI), equipped with novel optical imaging methods and
machine vision algorithms, has been developed by studies [12–20]. The AOI primarily uses
the image sensor to acquire high-quality digital images of products and then draws upon a
machine vision algorithm to identify the target objects in those images based on the features
of the target. Many studies attempt to align the object module to the fiducial position to
ensure a consistent imaging condition thus helping improve the detection result. For a
large module, multiple cameras-based methods [21–24] are preferred because of higher
precision. However, such methods usually repeatedly calculated the offset to reduce the
alignment error, for example, an iterative algorithm proposed in [21]. Moreover, studies
including [22,24] required multiple shots and movements for alignment, and they assumed
a fixed center of rotation of the platform, which cannot be applied to other applications
when the module sizes change. The utilization of a specialized marker and alignment
layers were employed by the author of [25] in order to achieve precise positioning of the
microlens within the array. In our proposed misalignment correction method, one single
camera is used to take images of the feature mark on the both ends of the LCD module.
This method can enhance the accuracy of alignment while reducing the alignment time by
determining the center of rotation and calculating the displacement of the tested module in
one stage.

It remains challenging to accurately and quickly detect the number of particles on
the small bumps relative to a large entire image of the LCD module. The author of [13]
combined differential interference contrast (DIC) prism with the CCD camera and achieved
effective and high-contrast imaging of particles. The particles in the image represented
spheres composing a bright part and a dark part. The author of [12] improved the Prewitt
mask to calculate the image gradient and extract the extreme points using Otsu thresholding.
Another study [26] also took the gray distribution of the particles as the feature to separate
the original image into a light and a dark part. They then selected the more informative
part by comparing the image entropy of the two parts. After clustering gray values in the
selected image part, the center regions of particles were determined by the first two values
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in clusters. However, the aforementioned methods perform poorly in detecting particles
when imaging illumination is weak or the particles are heavily overlapped. The gradient-
based method is sensitive to the gradient change which makes it easy to recognize more
particles than are actually there, especially along edge areas of the image. The clustering-
based method has an unstable result in varying illumination conditions and leads to a low
detection rate compared to the total number of particles to be checked. In this paper, we
also propose a novel particle detection algorithm to improve the detection accuracy of the
ACF task. This algorithm emphasizes the region of each particle based on the gray dilation
morphology and then restores all particles by finding the extreme points of particles. The
main contributions of this article are listed below.

(1) A novel misalignment correction method is proposed to determine the transition
and rotation of the carrier table to ensure a consistent imaging area, which can be
achieved by taking twelve images in one iteration. The requirement for assembly
accuracy of the alignment module is reduced through the proposed method.

(2) A robust and fast detection algorithm is presented for checking the number of
conductive particles.

(3) A complete AOI system is constructed to meet the demand for in-line process inspec-
tion, which can perform miscellaneous tasks including alignment calibration and
correction and particle detection.

This paper is organized as follows. In Section 2, the system design is presented,
followed by the misalignment correction method and particle detection algorithm. Details
of the experiment results are provided in Section 3. Finally, a conclusion and limitation of
the current work are given in Section 4.

2. Materials and Methods
2.1. Automatic Inspection System

The architecture and major modules of the inspection system are shown in Figure 4.
Table 1 lists the parameters and manufacturers of the main modules of the automatic
inspection system. The loading and unloading modules are placed at both ends to connect
with an existing assembly line. Specifically, the load unit receives LCD modules from the
upstream line after they complete the bonding process, while non-defective products can be
conveyed to the next stage through unload unit. As shown in Figure 4, the system mainly
includes five core modules. The conveyor module contains a robotic gripper equipped with
a suction cup to softly attach the detected material from upstream and then lay it on the
carrier table. The pre-alignment camera is then triggered to acquire the image of the LCD
module at both ends of the corner, where we search the mark pattern as the feature point for
calibration and alignment calculation afterward. As shown in Figure 5, the mark pattern
is a special shape usually printed on the circuit board of the module and can be used as a
feature point because of its distinctiveness. The carrier table can be controlled to translate
and rotate according to the result of misalignment correction. After the alignment process,
the CCD camera is initiated to scan the LCD module and acquire the high-resolution image
of the entire bump region where the particle detection algorithm is used to check the
number and distribution of conductive particles. The CCD line scan camera is adopted
because of the heavily disproportionate aspect ratio of the bonding area of the LCD module,
for example, can be 3200 × 60,000. Finally, the good product is conveyed to the unloading
unit while the not-good product is filtered to the NG output basket.

As we can see, the imaging quality of conductive particles is important to the detection
result. In the industrial setting, however, the line scan camera may struggle to maintain
a consistent distance from the module being tested due to the constraints of the practical
mechanical structure. Fluctuations in distance can cause the camera to lose focus, resulting
in a blurry image of particles. In order to maintain a proper depth of field, typically
within a range of 5–8 µm for our instrument, a laser displacement sensor is implemented
to enable non-contact distance measurement. This sensor is able to help the line scan
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camera adaptively adjust the distance relative to the target region and ensure the quality of
the image.

Figure 4. An overview of the automatic inspection system which mainly includes conveyor modules,
pre-alignment modules, CCD inspection modules, carrier modules, and NG output modules. Tested
LCD modules are first aligned by the misalignment correction algorithm, then the bump images are
acquired by the CCD line scan camera, and finally, the conductive particles are detected.

Table 1. Parameters and manufacturers of major modules in the inspection system.

Category Model Number Manufacturer Properties

X-axis linear actuator GTH5 series TOYO Stroke length: 500 mm
Y-axis linear actuator ETH14 series TOYO Stroke length: 500 mm

Θ-axis direct drive rotary motor LD series ZCOE Angular accuracy: ±30′′

Angular repeatability: ±2.5′′

Pre-alignment camera MV-CA013 series HIKROBOT Resolution: 1280× 1024
Max. frame rate: 90 fps

TDI line scan camera VT-3K7C series Vieworks Resolution: 3200
Line rate: 100 khz

Laser displacement sensor ZS-HLDC/LDC Series Omron Max. resolution: 0.25 µm/px
Max. response speed: 110 µs
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Figure 5. Different shapes of marks: (a) represents a cross mark; (b) represents a dark cross sand-
wiched between four bright squares; (c) represents a square surrounded by four triangles. The mark
shape can be used according to practical manufacturer setting. We can extract the center of the marker
as the key point for calibration and alignment.

2.2. Misalignment Correction

The pre-alignment camera installed on the carrier table is responsible for this process.
The major procedure of the alignment correction is presented in Figure 6. A reference
image is selected to prepare a matching template as a shape model. It normally chooses a
distinguished shape in the region of interest (ROI) of the image as the feature mark. Figure 5
shows some different types of marks in the COG and FOG bonding process. Shape-based
pattern search is a technique that detects reference marks automatically. We use this way to
generate a shape model by specifying the range of rotations of the mark, the contrast of the
local gray value, and the minimum size of the object. In most cases, we choose the center of
the mark as the feature point after the matching process.

Save the mark for pattern match

Calculate the rotation center

Translations of carrier table
&&

record mark position

Calibrate the model

Rotations of carrier table
&&

record mark position

Set reference position and angle

Calculate the angle difference
between reference and current

object

Offset the angle difference

Calculate Δx and Δy

Offset the translation difference

Calibrate Phase Alignment Phase

Figure 6. This flowchart indicates the steps to simultaneously calibrate the camera and calculate the
center of rotation of the machine.

A 12-point calibration method is introduced to auto-calibrate the camera system and
calculate the rotation center of the carrier table simultaneously, from which nine points are
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used to calculate a homogeneous transformation matrix based on Zhang’s method [27],
and three points for finding the center of rotation. Such twelve points are derived from
different images that are acquired in nine positions and three different angles. Figure 7
shows a sample of twelve images, in which the feature points of the mark are searched
based on the described pattern search technique. The center of the mark region is chosen
as the feature point. After recording the coordinates of feature points, the corresponding
positions of these feature points in the world coordinate were then calculated through the
homogeneous transformation matrix.

Figure 7. (a) Uses the 12-point misalignment correction method to determine the center of rotation
and to calculate the offset of translation. These twelve sample images are taken by a pre-alignment
camera installed above the carrier table; (b) calculates the physical rotation center on the occasion of
a large radius and a small angular interval.

The homogeneous transformation matrix stands for a correspondence between differ-
ent coordinate systems which can be shown in Equation (1). The image point and the trans-
formed point in the real world are denoted as (xi, yi), (Xi, Yi) in homogeneous coordinates.Xi

Yi
1

 = HMat2d ·

xi
yi
1

 (1)

A simplified transformation matrix that only consists of translation and rotation is
represented as the Equation (2). Tx and Ty are the translation in the X- and Y- axis directions
and ra–rd denote the rotation parameters.

HMat2d =

ra rb Tx
rc rd Ty
0 0 1

 (2)

For a test subject, nine translation images and three rotation images are captured by
controlling the motion of the carrier table. In each position, the coordinate of the feature
point in the image space is measured by searching reference marks in view of an image
while the corresponding location in the real world is recorded. The rotation angle of the
carrier table is also included during this procedure. Nine of these pairs of points are used
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to approximate the transformation matrix which is expected to minimize the distance error
between those pairs of points following the Equation (3).

min

∑
i

∥∥∥∥∥∥
Xi

Yi
1

− HMat2d ·

xi
yi
1

∥∥∥∥∥∥
2 (3)

Once the calibration process is finished, one point in image space can be transformed
into that in the real world, thus enabling the calculation of the physical rotation center.

The rest three points are then offered to find the center of rotation. As a rotating angle
can have an effect on the position of points in both X- and Y-axis directions, it is necessary
to correct the angle deviation before translating the tested object to align with the reference
one. Due to a different design of the mechanic structure, the rotation center of the carrier
table can vary a lot, which leads to different impacts on the deviation of points. The main
idea of calculating the rotation center of the carrier table, known as fitting a circle, is to
obtain multiple points by rotating the carrier table and calculating the point of the circle
which is supposed to cover those points in the real world. This method is based on an
assumption that a pure rotational motion should form a track of a circle for a point on the
plane. Given that we can acquire the physical rotation angle of the carrier table, the center
of the circle can be calculated by each two of the three points as well as their included angle.

As demonstrated in Figure 7b, A(X1, Y1) and B(X2, Y2) are two points transformed
from image space to the real-world coordinates. The midpoint D(X0, Y0) of the line AB
through (X1, Y1) and (X2, Y2) is (X1+X2

2 , Y1+Y2
2 ), from which we can form the parametric

equation of perpendicular bisector through C and D.

X = X0 + t∆X

Y = Y0 + t∆Y (4)

Because line CD is perpendicular to line AB, the slope of CD is reciprocal to that of
AB, which can be expressed as

∆Y
∆X

= − 1
Y1−Y2
X1−X2

= −X1 − X2

Y1 −Y2
(5)

Therefore, Equation (4) can be transformed into

X =
X1 + X2

2
+ t(Y1 −Y2)

Y =
Y1 + Y2

2
+ t(X1 − X2) (6)

Additionally, we can obtain the following equation from the lengths of AD and CD
and their included ∠ACD

AD =

(
X1 −

X1 + X2

2

)2
+

(
Y1 −

Y1 + Y2

2

)2

=
(X1 − X2)

2 + (Y1 −Y2)
2

4
CD = (t(Y1 −Y2)

2) + (−t(X1 − X2)
2) (7)

= t2
[
(X1 − X2)

2 + (Y1 −Y2)
2
]

∠ACD =
θ

2
= arctan

AD
CD

= arctan
1
2t
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Therefore, we can derive the relationship between t and the included angle θ as

t =
cos θ

2

2 sin θ
2

=
sin θ

2(1 + cos θ)
(8)

Therefore, we have

Cx =
X1 + X2

2
+

sinθ(Y1 −Y2)

2(1− cosθ)

Cy =
Y1 + Y2

2
+
−sinθ(X1 − X2)

2(1− cosθ)
(9)

R =
√
(X1 − Cx)2 + (Y1 − Cy)2

where (Cx, Cy) represents the center of the fitting circle and R specifies the radius. Three
centers are given through the formula above and averaged to improve the accuracy of the
center of the fitting circle.

According to the flowchart in Figure 6, in the alignment phase, we first measure the
angle of the reference image whereby we can obtain the deviation of the angle between
the test image and the reference one. The camera can take images on the left and right
side of the LCD module, respectively. Through searching for the feature marks printed on
both sides, two feature points can be drawn to form a line that can act as a baseline. To
compare the different angles of two lines, points have to be transformed to a uniform world
coordinate. The transformed positions are then normalized by rotation center (Cx, Cy) to
take the center as the origin point. By calculating θt and θc for reference angle and current
angle, the difference of angle can be represented as ∆θ = θt − θc. Secondly, the offset of
translation is determined. Based on the design that the center of rotation is the origin of the
coordinate, the radius and angle of a point in polar coordinate can be expressed as

r =
√

X2
c + Y2

c , θ = arctan
Yc

Xc
(10)

Then, the rotated points (Xr, Yr) can be obtained by

Xr = rcos(θ + ∆θ)

Yr = rsin(θ + ∆θ) (11)

Either point of left or right side feature point can be used to calculate the offset of
translation. We use (Xr, Yr) and (Xt, Yt) to denote rotated point by ∆θ and the reference
point, respectively. Finally, the translation offset can be obtained by

∆X = Xr − Xt

∆Y = Yr −Yt (12)

After determining the rotation center and the translation offset, the tested module can
be aligned to the reference position as Figure 8 shows.
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Figure 8. Expected result after the misalignment correction process.

2.3. Bump Positioning

After aligning the test object with the reference one, the positional deviation can be
reduced thus contributing to accurately positioning bump areas containing the particles
to be detected. The aligned LCD module is scanned by a line scan camera installed under
the carrier table. Figure 9 shows a scanned image in the COG process. The cross-shaped
pattern on the top right of the image serves as the positioning mark, while the red and blue
regions in the image stand for ITO bumps. Two major types of bumps are annotated in
Figure 9, which are block-like regions for type I and bar-like regions for type II, respectively.

As a whole imaging region consists of numerous bumps and other irrelevant pixels
that make up a large portion of the image, it is difficult and time-consuming to extract valid
information. Bump positioning intends to segment essential regions from the whole image
and allows the detection algorithm to operate on every smaller region, which can reduce
the size of detection areas and improve efficiency. Considering that the bump positions
of a type of component are relatively fixed, we can construct a standard file with position
information of all bump areas in it. Such information can be stored in the form of values
relative to the position of the mark, which can be quickly determined by the shape-based
match method. The feature mark is first searched in the test image, then the bump areas can
be annotated with information in the standard file. The standard file can also be finetuned
to adapt to the bump distribution in different LCD modules.

Figure 9. The local image of LCD module containing bump and mark areas.

2.4. Particle Detection

The number of particles captured is calculated in every segmented area of the bump.
ACF conductive particles represent microspheres and deform with different levels of press
strength. During the bonding process, these particles are trapped between the bump
areas, causing those areas to show uneven pits. Figure 10a extracts a sample of well-
deformed conductive particles, while (b) shows a local image of particles taken under the
inappropriate pressure condition.
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Figure 10. (a) Well deformed conductive particles; (b) over-deformed particles.

We can observe that the properly pressed particles appear as distinct light and dark
parts in the image, while over-deformed particles have a weak contrast compared with
neighbor areas. Based on such an observation, the particle areas are intended to be recog-
nized by locating the extreme point of gray value of every particle. However, many false
extreme points occur possibly caused by sharp changes in the gray-scale values of the edge
of the bump or the intersection area between particles.

To reduce the effect of edge and intersection area on the detection accuracy, we first
smooth the original image Figure 11a by the gaussian kernel, as shown in Figure 11b.
We denote the original image as I(x, y) and the smoothed image as Ig(x, y). During the
smoothing process, the original image is filtered by the 2D gaussian kernel G(x, y) which
can be formulated as the Equation (13)

G(x, y) =
1

2πσ2 exp−
x2+y2

2σ2 (13)

where x is the distance from the origin in the horizontal axis, y is the distance from the
origin in the vertical axis. The smoothed image can be denoted as

Ig(x, y) = I(x, y) ∗ G(x, y). (14)

Subsequently, we perform a gray value dilation on the smoothed image with a struc-
turing element b in order to highlight the region of each particle. An example of output
image after the gray value dilation is shown in Figure 11c. The gray-scale value of the
dilated image is defined with the maximum value of the overlapped region between the
structuring element and the target image. Such processing can be demonstrated as

[I ⊕ b](x, y) = max
(s,t)∈b

I(x− s, y− t) (15)

where s and t denote the distance from the origin in both directions. According to the size
of structuring element b, the s and t should be in [−size, size]. We can regard the structuring
element as another filtering kernel because it serves to further reduce the variation of local
gray values. As a result, the gray values of a particle region are equivalent to the maximum
value of this region, which is usually the gray value of the center of the particle. Following
the process in Figure 11d, the dilated image is compared with the smoothed image to
create a differential image where the extreme points of every particle are expected to be
emphasized. To achieve this, we normalize the mean gray value of the smoothed image to
128 following the Equation (16)

Ig(x, y) = Ig(x, y)× 128
Mean

(16)

then the differential image Id(x, y) is created by the Equation (17).

Id(x, y) = Ig(x, y)− [I ⊕ b](x, y) + 128 (17)
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In the differential image, the central parts of particles are brighter than neighbor pixels
indicating the existence of particles.

Figure 11. This flowchart shows the procedure of particle detection. The original image (a) is
smoothed to image (b), (b) is dilated by a structuring element to produce (c), (d) highlights the
particle centers, (e) remove noisy objects by features of the particle, and the final result is presented
in (f). The processing and visualization of images are supported by OpenCV.

To refine the detection result, we also adopt the blob analysis to exclude noisy objects.
During the blob analysis, detected objects are checked case by case, such as a sample shown
in Figure 11e. Some gray features of particles can be used to enhance the reliability of
the detection result. For example, the gray strength of the particle is assumed to exceed a
certain threshold while the result with a lower strength should be removed. In addition,
since the standard deviation of the brightness in the particle region should be within a
certain range, we can extract the particle objects based on this criterion. After excluding
noisy objects, the detection results in Figure 11f can be visualized by the detected centers of
particles and a specified particle radius.

The number and density of particles in a given region can be determined from the
results depicted in Figure 11f. Normal particles tend to be numerous and have a relatively
uniform and dense distribution, while over-deformed particles can be identified by a small
number of particles and a sparse distribution in the image analysis. In practical production,
the threshold for distinguishing between normal and over-deformed particles should be
determined based on the specific criteria of the plant.

3. Results and Discussion
3.1. Experiment Setup

As depicted in Figure 4, the majority of the system consists of mechanical compo-
nents and sensor sets. The mechanical components primarily consist of robotic grippers
responsible for loading and unloading LCD modules, a carrier platform equipped with
translation and rotation motors, and a large horizontal track providing X-axis movement
for pre-alignment cameras. The sensor sets, including the pre-alignment camera, line
scan camera, and laser displacement sensor, are essential tools in the detection system.
A detailed configuration can be found in Table 1. In terms of the parameters for the de-
tection algorithm, a Gaussian kernel with a size of 3× 3 and a σ of 0.6 was chosen, and
the structuring element employed a circle with a radius of 8 pixels. In the blob analysis,
the strength threshold of particles is set to 8, and the range of brightness within a particle
region is 20–220.

3.2. Calibration Result

In our experiment, we first calibrated the homogeneous transformation matrix between
the image space and the world coordinate and calculated the center of rotation of the carrier
table. In Figure 12, we show the relationship between the captured images in terms of
physical position, where subfigures 1–9 are captured by translating the carrier by 1 mm,
while subfigures 10–12 are captured by rotating the carrier by 0.25◦.
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Figure 12. The relationship between the captured images in terms of physical position.

Table 2 shows the pixel location and the physical location of twelve images. The
calibration result is shown in the last column. The location and rotation in the world
coordinate were determined by the relative distance to the origin of the carrier table.
We derived the homogeneous transformation matrix HMat2d through images 1–9 while
calculating the center of rotation through images 10–12. As the center of rotation of the
carrier platform was far from the location of captured images, three centers were calculated
by two images and the included angle following the Equation (9) and then averaged to the
final center.

Table 2. The pixel location and the physical location of twelve images and the calibration result.

Image
Index

X in Pixel
(px)

Y in Pixel
(px)

X in
Carrier
(mm)

Y in
Carrier
(mm)

θ in Carrier
(◦)

Result
(mm)

1 451.501 703.999 −26.4627 325.3494 0

HMat2d 1

2 657.752 695.463 −27.4627 325.3494 0
3 862.519 688.233 −28.4627 325.3494 0
4 855.523 481.747 −28.4627 324.3494 0
5 846.937 278.084 −28.4627 323.3494 0
6 642.295 285.407 −27.4627 323.3494 0
7 436.527 292.669 −26.4627 323.3494 0
8 444.942 497.018 −26.4627 324.3494 0
9 649.725 490.896 −27.4627 324.3494 0

10 780.087 301.71 −27.4627 324.3494 −0.25 Cx =
160.812

11 518.451 678.46 −27.4627 324.3494 0.25 Cy =
182.984

12 649.441 490.792 −27.4627 324.3494 0 R = 235.439

1 HMat2d =

 −0.00486334 0.000181669 −24.3918
0.000180196 0.00486517 321.846
0 0 1

.

3.3. Alignment Result

We selected some test samples to check the precision of our proposed method. Samples
were acquired by controlling the machine to move different offsets in Y-axis or around the
rotating axis while related information is recorded. This motion was conducted to simulate
the occasion when the robotic gripper fails to make sure that the LCD module keeps the
same position as the standard module.
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In our experiments, the line scan camera was installed at the X-axis. We moved the
line scan camera and took images of the left panel and right panel containing the feature
marks. The mark locations in both panels were recorded and compared with those in the
reference panel. Table 3 presents the positions of the left and right markers in various
settings, with the positions being unified to a coordinate system with the center of rotation
of the carrier table serving as the origin. For example, Y0.3 moves the carrier platform
in the Y-axis direction by 0.3 mm, and Y0.6-R0.3 moves 0.6 mm alongside the Y-axis and
rotates 0.3◦ around the center of rotation of the carrier table.

Table 3. The positions of the left and the right mark (unit:mm).

Setting Left Mark Right Mark

Ref. (−188.223, 141.469) (−538.615, 141.469)
Y0.3 (−187.458, 143.135) (−537.734, 141.295)
Y0.6 (−188.265, 142.068) (−538.535, 142.064)
R0.1 (−187.995, 141.828) (−538.264, 141.21)
R0.3 (−187.455, 142.542) (−537.729, 140.702)

Y0.6-R0.3 (−187.458, 143.135) (−537.734, 141.295)

Table 4 demonstrates the alignment precision as below. The rightmost column shows
the difference between the alignment result and previously recorded information, which
represents ∆X, ∆Y, and ∆θ, respectively. Such results show that our method achieves high
precision in restoring the offset of translation and rotation of tested modules.

Table 4. The result of misalignment correction in different settings (unit: ∆X(mm), ∆Y(mm), ∆θ(◦)).

Setting Left Panel Right Panel Result

Ref.
∆X = 0
∆Y = 0
∆θ = 0

Y0.3
∆X = −0.046
∆Y = 0.294
∆θ = −0.001

Y0.6
∆X = −0.043
∆Y = 0.596
∆θ = −0.001

R0.1
∆X = −0.042
∆Y = −0.002
∆θ = −0.1
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Table 4. Cont.

Setting Left Panel Right Panel Result

R0.3
∆X = −0.035
∆Y = −0.004
∆θ = −0.301

Y0.6-
R0.3

∆X = −0.035
∆Y = 0.588
∆θ = −0.301

Although the setting of the X-axis was not verified separately, the offset of the X-axis
was also calculated simultaneously during the verification of Y and θ. Considering the
similarity of the X-axis and Y-axis, the experimental results can also illustrate the alignment
accuracy of the X-axis.

Furthermore, we collected all data in three groups listed in Table 5 and analyzed how
different offsets can affect the accuracy of our proposed method. We can observe from this
table that our alignment method can keep a stable result in pure translation or rotation.

Table 5. The impact of different offset configurations on the accuracy of the alignment algorithm
(unit: X(mm), Y(mm), θ(◦)).

Configuration X Y θ ∆X ∆Y ∆θ diff X diff Y diff θ

Y0.3 1 0 0.3 0 0.046 0.294 0.002 0.046 0.006 0.002
Y0.6 0 0.6 0 0.044 0.596 0.001 0.044 0.004 0.001
Y0.9 0 0.9 0 0.045 0.897 0.001 0.045 0.003 0.001

R0.1 0 0 0.1 0.043 0.002 0.101 0.043 0.002 0.001
R0.2 0 0 0.2 0.04 0.002 0.201 0.04 0.002 0.001
R0.3 0 0 0.3 0.036 0.004 0.301 0.036 0.004 0.001

Y0.3-R0.2 0 0.3 0.2 0.038 0.298 0.201 0.038 0.002 0.001
Y0.6-R0.2 0 0.6 0.2 0.042 0.591 0.2 0.042 0.009 0
Y0.6-R0.3 0 0.6 0.3 0.035 0.588 0.301 0.035 0.012 0.001

1 Different colors are used to denote the relevance of the results. For instance, the red text “Y0.3” signifies an offset
of 0.3 mm along the Y-axis, with a corresponding difference in the result of “0.006”.

3.4. Detection Results

We evaluated the effectiveness of the proposed method in bump areas acquired from
both COG and FOG samples. Figure 13 shows the results of particle detection in COG
and FOG, respectively. Bump areas were segmented according to the saved file about the
relative position of bumps to the feature mark in different types of samples such as COG
and FOG. Two major types of bumps were categorized the bar-shape and the block-shape.
The bar-shape bump is long and narrow, while the block-shape bump is short and wide
that contains relatively dense particles. The target area of the block-shaped bump is smaller
in size and the visibility of particles is weaker, thus making it more difficult to accurately
inspect the number of particles.
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Figure 13. The first row is a part of the bump area of the COG sample (left) and the corresponding
result (right), while the second row displays the input and output of the FOG test in the same order.

Figure 14 looks closer at bar-like bump areas. Bumps with an insufficient number of
particles would be sent to NG output based on the manufacturer’s requirement.

Figure 14. A closer view of the result of particle counts in bar-shape bump areas. The first row is the
raw image while the second row is the detection result.

We also compared our method with Lin’s [12] and Chen’s [26] method and verified
the effectiveness of our method as shown in Figure 15. Lin’s method was sensitive to slight
changes in gray value, thus causing the algorithm to detect more particles in regions where
particles overlap densely. Such a method treated the NG module as the OK module and
may produce many false positive samples, which is inappropriate in the practical industry.
Contrarily, Chen’s method recognized the number of overlapped particles more accurately.
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However, the performance of Chen’s method depended on the initialization of the cluster
center and thus may lose a number of particles on some occasions.

The detection result in 433 particle samples of bar-shape bumps and 629 samples of
block-shape bumps are shown in Table 6. Lin’s method demonstrates a slightly improved
recall rate for bar bumps due to its tendency to generate more particle candidates than are
actually present, thereby covering a larger portion of the region on samples with smaller
dimensions. Conversely, this method exhibits a significant decline in recall performance
on samples with larger dimensions, such as the block-shape bumps. Combined with the
low precision, Lin’s method shows a high over-checking rate which will allow a number of
false products to be passed and affect negatively quality control. Chen’s precision rate is
good but the number of detected particles is lower than that in other methods when the
gray-scale value of the image is weak. In contrast, our method balances the precision and
recall rate of the detection result and performs better than the aforementioned methods.

Figure 15. Examples of different detection methods on bar-shape bumps and block-shape bumps.

Table 6. The comparison of detection results of different methods.

Bump
Type Method Detected

Number
Right
Result Precision Recall Calculation

Time (ms)

Bar-shape
Lin’s 884 402 45.5% 92.8% 13.3

Chen’s 256 218 85.2% 50.3% 43.2
Ours 430 400 93% 92.4% 1.2

Block-shape
Lin’s 870 464 53.3% 73.8% 15.15

Chen’s 382 353 92.4% 56.1% 57.7
Ours 564 537 95.2% 85.4% 5.5
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4. Conclusions

In this paper, we establish an automatic inspection system to serve multiple bonding
processes such as COG and FOG in LCD module manufacturing. A 12-point calibration
method is developed to adaptively control the position and rotation of the carrier table
and to alleviate the high requirement of assembly accuracy. This method can complete the
alignment by taking images once, which calculates a homogeneous transformation matrix
with nine pairs of points and determines the center of rotation with extra three pairs of
points. In our experiments, the alignment error can be less than 0.05 mm.

This study also proposes an automatic particle detection method based on gray mor-
phology which achieves a fast and robust inspection of the number of conductive particles
trapped in bump areas of the anisotropic conductive film. Based on the observation that
the central part of conductive particles is brighter than the neighbor region in grayscale
under our DIC imaging model, we apply the gray dilation method to the whole image and
subtract dilated image from the original input, from which the center regions of particles
are stressed out. Our experiments have examined the effectiveness of this method, in which
the precision rate is 93%, while the recall rate is 92.4%. As our proposed detection method
depends on finding the difference between the central and peripheral regions of particles,
the overlap of multiple particles may intervene in this difference, thus creating an obstacle
to accurate segmentation. In the future, further research will be conducted to improve the
representation of particles and segment those overlapped particles more accurately.
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