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Abstract: In this research paper, we present a comprehensive analysis of the current state of soft
robots actuated with pneumatic artificial muscles and emphasise their distinct advantages over
rigid robots, including exceptional flexibility, adaptability, and safety. Our study explores the design
principles of soft robots, drawing inspiration from biological systems and human hands, and identifies
promising avenues for further development. The emergence of hybrid robots is also recognised as
a significant advancement, particularly in scenarios requiring high precision. The article explores
mathematical models encompassing kinematics, dynamics, and statics, as well as alternative model-
free approaches. These theoretical frameworks are instrumental in understanding and manipulating
the behaviour of soft robots. However, despite substantial progress, soft robots’ practical application
and simulation face limitations, primarily due to the demanding requirements and implementation
challenges associated with their deployment. Consequently, this paper highlights the need for
continued research and advancements to bridge the gap between the theoretical potential and
practical utilisation of soft robots.
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1. Introduction

Soft robotics has emerged as a promising field of research, offering a new paradigm
for designing and developing robotic systems with unparalleled flexibility, adaptability,
and safety [1–4]. By employing soft, flexible, and stretchable materials, soft robots possess
unique characteristics that differentiate them from their rigid counterparts.

One of the fundamental aspects of soft robotics lies in its choice of materials [5]. Soft
robots are constructed using materials that are inherently pliable, flexible, and stretchable.
These materials exhibit reversible and variable properties, allowing robots to undergo sub-
stantial deformations while retaining their structural integrity. This exceptional flexibility
enables soft robots to adapt to various tasks and interact safely with their surroundings,
particularly in dynamic and uncertain environments.

Moreover, the compliance inherent in soft robotic systems contributes to their ability
to match the properties of their environment. [6] The continuum topology of soft robots
offers infinite degrees of freedom [7–10], facilitating smooth and natural movements and
enabling them to seamlessly house all essential components. This characteristic further
enhances the interaction capabilities of soft robots with objects and living beings, leading
to improved human–machine collaboration and cooperation.

Safety is a paramount concern when it comes to human–robot interaction. With their
inherent compliance and adaptability, soft robotics ensures a high level of safety for both
the robot and its human counterparts [11]. The pliable nature of these robots reduces the
risk of injury in the event of accidental collisions or physical contact. Furthermore, soft
robots possess adaptive capabilities that allow them to navigate and operate in unknown
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and unstructured environments, making them suitable for various applications, including
healthcare, rehabilitation, and assistance.

Soft robots are not limited to their physical structure but also incorporate flexible
and stretchable electronics and power sources. These advancements enable seamless
electronic components and power supply integration, allowing soft robots to be self-
contained and self-sufficient. This integration opens opportunities for novel functionalities
and behaviours in soft robotic systems, enhancing their versatility and expanding their
potential applications [12].

In addition to their physical and electronic characteristics, soft robots offer high be-
havioural diversity. Their pliable nature allows for a wide range of motion and locomotion
patterns, suitable for applications that require dexterous and delicate interactions [13].
Furthermore, soft robotics draws inspiration from biological systems, enabling the develop-
ment of robots that mimic or emulate the capabilities of living organisms. This bio-inspired
aspect enhances soft robotic systems’ adaptability, efficiency, and versatility.

Soft robotics also tolerates lower accuracy, speed, and force applications [14]. While
traditional rigid robots excel at high-precision tasks, soft robots thrive in applications with
more relaxed accuracy requirements. Their inherent compliance allows them to tolerate
imprecise movements and interactions, opening avenues for domains where precision is
not the primary focus. Moreover, soft robots tend to have lower weight and cost than their
rigid counterparts, expanding their accessibility to various applications and reducing the
economic barriers associated with robotic technology.

Soft robots can be classified into various categories based on their actuation meth-
ods, including pneumatic, hydraulic, magnetic, piezoelectric, electric, and hydroscopic
approaches. Among these, pneumatic actuation has gained considerable popularity due
to its affordability and high load capacity. However, in practical applications, pneumatic
actuators face certain limitations, including slow activation speeds and limited control-
lability [15]. To overcome these challenges, researchers have pursued innovative design
approaches to enhance pneumatic actuators’ performance in the realm of soft robotics.
These efforts aim to optimise the functionality and effectiveness of pneumatic actuation,
thereby expanding the possibilities for soft robotic applications.

This review aims to comprehensively explore various aspects of soft pneumatic con-
tinuum arms and robots, including design principles, mathematical modelling, control
strategies, and simulation applications.

This paper is divided into six sections: Section 1 introduces the main features of
soft robots, their advantages over rigid robots, and the fields of their potential applica-
tions. Section 2 describes the design-specific features of soft continuum robots with PAMs.
Section 3 describes the mathematical modelling of soft continuum robots with PAMs, specif-
ically demonstrating methods for modelling their kinematics and dynamics. Section 4
outlines the different types of soft robot control systems, describing their key features.
Section 5 describes the applications that exist for simulating soft continuum robots with
PAMs. Section 6 summarises and outlines future work directions.

2. Design of Soft Continuum Robots with PAMs
2.1. McKibben Soft Manipulator

The pneumatic continuum arm represents an innovative design concept in robotics,
offering a versatile and adaptable solution for various applications. One of the main
components of such an arm is the pneumatic artificial muscle (PAM). The pneumatic
artificial muscle comprises two essential components: a silicon rubber tube serving as a
bladder and a braided fibre mesh sleeve enveloping the bladder. The bladder is hermetically
sealed at both ends, facilitating the controlled intake or release of compressed air through a
gas inlet/outlet at one extremity. Inflation of the bladder increases volume, causing axial
contraction of the surrounding sleeve due to its limited lateral expansion capacity [16].
Notably, the maximal attainable degree of contraction exhibited by these muscle actuators
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is conventionally constrained to approximately 25% of their nominal length. [17]. Figure 1
visually explains the operational mechanism underlying pneumatic artificial muscles.
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Figure 1. Operating principle of PAMs [17].

The McKibben muscle represents the predominant variant of this muscular construct.
It encompasses a malleable cylindrical chamber, primarily comprising elastomeric material,
which serves as its structural foundation. Additionally, it incorporates two extremities
designed to facilitate attachment and actuation. Moreover, an external mesh comprised of
non-extensible fibres is intricately wound in a helical arrangement around the inflatable
chamber, firmly affixed to the extremities [18]. However, its main disadvantage is its low
contraction rate [19]. Figure 2 presents the design of the McKibben actuator.
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Figure 2. McKibben actuator design by Yang [19].

Several studies [20–23] utilise McKibben’s muscles in soft robots. Pritts et al. [20]
presented a continuum manipulator design, employing six to eight McKibben drives
opposite each other to achieve biaxial bending. The design comprises flexible sections
connected by rigid baseplates, enabling high rotation (30–35 degrees per section and
50 degrees for the entire arm) and a lifting capacity of 25 pounds in vertical motion. Al-
Fahaam et al. [21] designed a soft exoskeleton glove incorporating a novel drive called an
extensor, which flexes a pneumatic artificial muscle. The drive utilises reinforced artificial
McKibben muscles to create bending motion under pressure. For locomotion, Faudzi
et al. [22] discussed a soft amphibious robot utilising thin and soft McKibben actuators.
This robot features a unique leg and body flexion mechanism, enabling movement on flat
and sloping surfaces, sand, and water, with various gaits such as trotting and crawling.
Including a plastic plate between the actuators allows for lateral movement, mimicking
the locomotion patterns of biological creatures such as lizards and salamanders. Lastly,
another study by Faudzi et al. [23] proposed a soft manipulator utilising McKibben muscles
as actuators. Inspired by the body structure of a snake, the robot incorporates thin, flexible
plastic plates extending up to 32 cm.

Other more advanced types of manipulators include straight fibre muscles (SFMs) by
Nakamura [24], linear bidirectional actuators by Saggin et al. [25], and bending pneumatic
actuators by Carello et al. [26].
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2.2. Bioinspired Arms

The surge in pneumatic continuum arms development can be attributed to their poten-
tial to supplant human involvement in specific mechanical operations within the industrial
sector. It is worth highlighting that while soft robots cannot entirely replace their rigid coun-
terparts, they hold promise for executing specific tasks associated with manipulating and
transporting delicate, fragile, and easily vulnerable objects. Primarily, these robots emulate
the mechanical movements exhibited by the human hand. Nevertheless, researchers have
also expressed interest in exploring the movements performed by various animals, includ-
ing snakes, octopuses, frogs, and even origami structures. Additional research has focused
on novel actuator designs [27,28] dedicated to the multi-degree-of-freedom soft pneumatic
actuator (MDoF SPA), which can extend or rotate in direct response to pressurised air being
inputted into distinct chambers.

Several studies have focused on developing soft robotic manipulators inspired by the
human hand. Al-Ibadi et al. [29] investigated the rotating behaviour of the human arm and
designed a soft robot arm inspired by human arm performance. The proposed continuum
arm featured contraction actuators and a self-bending contraction actuator (SBCA) to enable
rotation and bending in different directions. Petre et al. [30] conducted experiments on a
FESTO-origin pneumatic muscle by analysing its contraction under varying pressures and
loads. The results showed that the muscle exceeded the specified maximum contraction,
achieving up to 27% contraction. Yukisawa et al. presented a pneumatic continuum arm
with three segments and three actuators per segment [31]. This arm offered elongation of
up to 180% and a maximum tension force of 150 N, enabling object grasping and desktop
interaction. Al-Ibadi et al. [32] proposed a soft robot arm utilising a self-bending contractor
soft actuator to address rigidity issues. This arm exhibited a high bending angle (up to
213 degrees) and a payload capacity of 2 kg. Al-Ibadi et al. also studied a novel continuum
robot arm based on pneumatic artificial muscle [33]. Self-bending contraction actuators
(SBCAs) were incorporated into this design to fulfil design requirements such as low weight
and multi-degree-of-freedom.

Furthermore, Tuleja et al. [34] investigated opposing pneumatic muscles (PAM) to
mimic human hand mechanics. Al-Ibadi et al. [35] presented the design and implementation
of an extensor PAM that could bend and extend, offering versatility for various applications.
The study developed mathematical models for the actuator’s behaviour and validated
them with experimental data. Park et al. [36] introduced a pneumatic artificial muscle
actuator with embedded contraction sensing, enabling controllability and reliable sensor
signals. Experimental results demonstrated that PAMs exhibit enhanced power capabilities
compared to conventional drives, enabling them to lift a 3 kg load. In this study, we
explored three hand configurations: (a) a PAM with a spring; (b) two PAMs with the same
parameters; and (c) two PAMs with different parameters, as shown in Figure 3.
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Another popular design involves pneumatic muscles, inspired by the octopus. Hassan
et al. [37] introduced ActiveBraid, a continuum manipulator inspired by muscle hydrostats.
It uses six longitudinal tendons to achieve bending in three main directions, enabling single
and multiple bends throughout the 3D space. The manipulator achieves a maximum flexion
angle of 35◦ and a total shortening of approximately 44% when three tendons are retracted
simultaneously.

Grissom et al. [13] presented the OctArm series, which has soft robotic arms driven by
air muscle extensors with three control channels per section. OctArm IV exhibits rapid and
precise movements with impressive extension and rotation capabilities, while OctArm V
demonstrates high load capacities.

Furthermore, Kang et al. [38] studied a robotic continuum arm driven by pneumatic
muscle actuators, replicating the muscular structures of live octopus arms. Their experi-
mental results demonstrate the arm’s ability to perform stereotyped movements such as
lengthening, bending, reaching, and grasping. These studies collectively contribute to
advancing pneumatic muscle-driven robotic continuum manipulators inspired by octopus
biology. Another study by Kang et al. [39] focused on the development of a 670 mm long
soft robotic arm comprising six stacked modules, initially sized at 100 mm and actuated by
identical parallel pneumatic muscle actuators. Its most distinctive feature is its grasping
movement, which can extend and contract the PAM on the opposite side of the target
object. This manoeuvre is a departure from the natural behaviour of octopus arms while
still upholding comparable functionality. Figure 4 presents the octopus-inspired arm.

Machines 2023, 11, x FOR PEER REVIEW 5 of 23 
 

 

Another popular design involves pneumatic muscles, inspired by the octopus. Has-
san et al. [37] introduced ActiveBraid, a continuum manipulator inspired by muscle hy-
drostats. It uses six longitudinal tendons to achieve bending in three main directions, en-
abling single and multiple bends throughout the 3D space. The manipulator achieves a 
maximum flexion angle of 35° and a total shortening of approximately 44% when three 
tendons are retracted simultaneously.  

Grissom et al. [13] presented the OctArm series, which has soft robotic arms driven 
by air muscle extensors with three control channels per section. OctArm IV exhibits rapid 
and precise movements with impressive extension and rotation capabilities, while Oc-
tArm V demonstrates high load capacities. 

Furthermore, Kang et al. [38] studied a robotic continuum arm driven by pneumatic 
muscle actuators, replicating the muscular structures of live octopus arms. Their experi-
mental results demonstrate the arm’s ability to perform stereotyped movements such as 
lengthening, bending, reaching, and grasping. These studies collectively contribute to ad-
vancing pneumatic muscle-driven robotic continuum manipulators inspired by octopus 
biology. Another study by Kang et al. [39] focused on the development of a 670 mm long 
soft robotic arm comprising six stacked modules, initially sized at 100 mm and actuated 
by identical parallel pneumatic muscle actuators. Its most distinctive feature is its grasp-
ing movement, which can extend and contract the PAM on the opposite side of the target 
object. This manoeuvre is a departure from the natural behaviour of octopus arms while 
still upholding comparable functionality. Figure 4 presents the octopus-inspired arm. 

 
Figure 4. Octopus-inspired arm prototype by Kang et al. [39]. 

Innovative designs inspired by snakes have been explored in a series of studies on 
soft robotic systems (Figure 5). Al-Ibadi et al. [40] introduced a novel double-bend pneu-
matic muscle actuator inspired by snake lateral undulation. This actuator can bend in op-
posite directions from its two halves, enabling distinctive horizontal and vertical move-
ments. Leveraging this concept, they designed a continuum robot arm capable of parallel 
ground-level object manipulation by integrating the double-bend actuator with a soft 
gripper. They also propose using self-bending contraction actuators to enhance system 
efficiency, resulting in improved performance and form for the continuum arm. Faudzi et 
al. [23] developed a soft manipulator inspired by the body structure of a snake. This robot 
had McKibben muscles as actuators and thin, bendable plastic plates and thin silicone 
tube muscles positioned on the sides of its body. The robot underwent testing with various 
input configurations, successfully demonstrating smooth snake-like motions with differ-
ent time delays. Notably, the robot demonstrated its practical capabilities by performing 
a pick-and-place experiment. Lopez et al.’s research [41] explores energy-efficient kine-
matic design in PAM-driven snake-inspired robot locomotion. Although the observed in-
efficiency in achieving desired forward velocities raises concerns for real-world applica-
tions, the muscle-driven approach offers the advantage of bio-inspired adaptability for 
navigating complex terrains. Analysing joint-level movement underscores the significance 

Figure 4. Octopus-inspired arm prototype by Kang et al. [39].

Innovative designs inspired by snakes have been explored in a series of studies on soft
robotic systems (Figure 5). Al-Ibadi et al. [40] introduced a novel double-bend pneumatic
muscle actuator inspired by snake lateral undulation. This actuator can bend in opposite
directions from its two halves, enabling distinctive horizontal and vertical movements.
Leveraging this concept, they designed a continuum robot arm capable of parallel ground-
level object manipulation by integrating the double-bend actuator with a soft gripper.
They also propose using self-bending contraction actuators to enhance system efficiency,
resulting in improved performance and form for the continuum arm. Faudzi et al. [23]
developed a soft manipulator inspired by the body structure of a snake. This robot had
McKibben muscles as actuators and thin, bendable plastic plates and thin silicone tube
muscles positioned on the sides of its body. The robot underwent testing with various
input configurations, successfully demonstrating smooth snake-like motions with different
time delays. Notably, the robot demonstrated its practical capabilities by performing a
pick-and-place experiment. Lopez et al.’s research [41] explores energy-efficient kinematic
design in PAM-driven snake-inspired robot locomotion. Although the observed ineffi-
ciency in achieving desired forward velocities raises concerns for real-world applications,
the muscle-driven approach offers the advantage of bio-inspired adaptability for navi-
gating complex terrains. Analysing joint-level movement underscores the significance
of addressing actuation delays in realising precise and efficient snake-like locomotion,
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highlighting a crucial aspect of refining the overall design. Figure 5 depicts snake-inspired
PAM-driven robots.
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Fan et al. [42] developed a frog-inspired robot using pneumatic muscles as joint ac-
tuators to mimic a frog swimming with three degrees of freedom in its leg. The robot’s
pneumatic system included internal chambers, a micro-air pump, and high-speed switching
valves to perform tasks independently. Simulation-based analysis of pneumatic system dy-
namics highlights the importance of flow velocity in optimising muscle pressure response,
highlighting the feasibility and potential of muscle-driven pneumatic robots. Figure 6
illustrates the structure of a frog-inspired robot.

Machines 2023, 11, x FOR PEER REVIEW 6 of 23 
 

 

of addressing actuation delays in realising precise and efficient snake-like locomotion, 
highlighting a crucial aspect of refining the overall design. Figure 5 depicts snake-inspired 
PAM-driven robots. 

(a) (b) 

Figure 5. (a) Continuum snake-inspired robot arm by Al-Ibadi et al. [40]; (b) a muscle-driven snake 
robot by Lopez et al. [41]. 

Fan et al. [42] developed a frog-inspired robot using pneumatic muscles as joint ac-
tuators to mimic a frog swimming with three degrees of freedom in its leg. The robot’s 
pneumatic system included internal chambers, a micro-air pump, and high-speed switch-
ing valves to perform tasks independently. Simulation-based analysis of pneumatic sys-
tem dynamics highlights the importance of flow velocity in optimising muscle pressure 
response, highlighting the feasibility and potential of muscle-driven pneumatic robots. 
Figure 6 illustrates the structure of a frog-inspired robot. 

 
Figure 6. A frog-inspired robot by Fan et al. [42]. 

Zaghloul et al. [12] presented advancements in the fabrication and performance of 
origami-inspired soft pneumatic actuators (OSPAs) (Figure 7). Their rapid fabrication 
method enabled the creation of OSPAs of different sizes and materials, achieving a high 
force-to-weight ratio. Fatigue tests demonstrated the superior performance of the accor-
dion pattern OSPA compared to other designs. 

Figure 6. A frog-inspired robot by Fan et al. [42].

Zaghloul et al. [12] presented advancements in the fabrication and performance of
origami-inspired soft pneumatic actuators (OSPAs) (Figure 7). Their rapid fabrication
method enabled the creation of OSPAs of different sizes and materials, achieving a high
force-to-weight ratio. Fatigue tests demonstrated the superior performance of the accordion
pattern OSPA compared to other designs.

Additionally, a computationally efficient design approach enhances the work out-
put of OSPAs. These findings contribute to developing more efficient and versatile soft
pneumatic actuators.
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2.3. Hybrid Robotics

The main disadvantage of soft robots is their low positioning accuracy, which restricts
their practical use. To address the inherent conflict between safety considerations and
positioning accuracy, a practical approach involves incorporating rigid components into
the structure of soft robots. This integration overcomes certain limitations and expands the
potential applications of soft robots. Consequently, extensive research has been dedicated
to developing hybrid robot technologies that combine the desirable qualities of soft and
hard robotics.

Continuum robots with hybrid drives have shown the potential to overcome limita-
tions. Harsono et al. [43] implemented a two-plane main structure that enhances rigidity.
The stiffness control mechanism contributes to improved position accuracy.

Yang et al. [44] highlighted the design of soft-rigid manipulators with modular char-
acteristics. These manipulators exhibited enhanced load capacity and reduced weight
compared to other soft robotic manipulators. The integration of soft and rigid elements
enables greater versatility in movement.

Sharbafi et al. [45] introduced the novel concept of a hybrid electric–pneumatic actuator
(EPA) as an enhanced variable impedance actuator (VIA) by combining pneumatic artificial
muscles (PAMs) and electric motors (EMs). Unlike other VIAs, the EPA incorporates PAMs
that provide adaptable compliance and contribute to powerful actuators with muscle-like
properties, operating in tandem with EMs. This integration leverages the precise control
of EMs and the compliant energy storage of PAMs, which is beneficial for efficient and
adjustable locomotion. Experimental and simulation findings, validated by a new dynamic
model of PAMs, demonstrate that this hybrid approach improves energy efficiency and
performance without significantly increasing control complexity or weight. Figure 8 shows
the design of a hybrid electric–pneumatic actuator.
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Ohta et al. [46] proposed a novel bioinspired robotic arm that combines the positive
qualities of rigid and soft robotics. The arm has seven degrees of freedom and is pneu-
matically powered using custom-built McKibben-type pneumatic artificial muscles. The
hand and wrist motions are actuated through servomotors, while the arm is equipped with
potentiometers in each joint for detecting joint angle changes.

Sun et al. [47] introduced a novel hybrid continuum robot design, as shown in Figure 9.
Incorporating pneumatic muscles and elastic rods allows the robot to switch between
motion modes for large-scale movement and precise positioning. A locking mechanism
enables rigidity adjustments to suit different tasks.
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Nazari et al. [48] described a continuum arm design that combines soft and rigid
elements. A redundant rigid chain provides additional structural strength, while pneumatic
artificial muscles power the arm.

3. Mathematical Modelling of Soft Continuum Robots with PAMs
3.1. Kinematics Modelling

Kinematics models play a crucial role in understanding and controlling the movements
of soft robots. It can be divided into two main categories: forward kinematics and inverse.

Forward kinematics in soft robots can predict the resulting pose or configuration of
the robot according to actuation inputs. They determine how the robot’s soft body deforms
by changing shape in response to applied forces or control inputs. The forward kinematics
analysis provides insights into the robot’s motion, such as its position and orientation,
which is crucial for planning tasks such as reaching specific points, avoiding obstacles, and
ensuring safe interactions with the environment.

One of the prevailing methodologies for articulating forward kinematics involves
the Jacobian framework. The researchers Lei et al. [49] demonstrated this approach in
their investigation, with the primary objective of scrutinising variable stiffness within a
robotic system comprising pneumatic artificial muscles (PAM). In pursuit of this inquiry,
they harnessed the displacements of the robot’s foot in both horizontal and vertical axes,
as denoted by Equation (1), and employed the Jacobian J(q) formulation, as shown in
Equation (2). By leveraging the parameters a and b, which are linked to the stiffness ellipse,
we successfully derived Equation (3), which elucidates the angular stiffness of the robot’s
joints by applying the Jacobian matrix. Figure 10 presents this leg with a kinematics model.

J(q) =
{

x = l1 + l2cosθ2 + l3cos(θ3 − θ2)
y = l2sinθ2 − l3sin(θ3 − θ2)

(1)
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In Equation (1), l1 and l2 represent lengths associated with the leg segments, while θ2
and θ3 are angular displacements of the forward-swing hip joint and knee joint.

J(q) =

[
∂x
∂θ2

∂x
∂θ3

∂y
∂θ2

∂y
∂θ3

]
=

[
J11 J12
J21 J22

]
=

[
−l2sinθ2 + l3sin(θ3 − θ2) −l3sin(θ3 − θ2)
l2cosθ2 + l3cos(θ3 − θ2) −l3cos(θ2 − θ2)

]
(2)

kθ2 = A1
a2b2 =

J2
11(a2sin2θ+b2cos2θ)+2J11 J12(a2−b2)sinθcosθ+J2

21(b2sin2θ+a2cos2θ)
a2b2

kθ3 = A4
a2b2 =

J2
12(a2sin2θ+b2cos2θ)+2J12 J22(a2−b2)sinθcosθ+J2

22(b2sin2θ+a2cos2θ)
a2b2

(3)

Another popular way to describe forward kinematics is to use the constant curvature
model presented in [50]. This research investigates three spatial domains: the actua-
tor space, configuration space, and task space, linked through two mappings—robot-
independent and robot-dependent. The robot-independent mapping connects curva-
ture κ (4), plane angle ϕ (5), and arc length la (6) in the configuration space to a three-
dimensional task space, whereas the robot-dependent mapping bridges the actuator space
to the configuration space.

κ =
2
√

l2
1 + l2

2 + l2
3 − l1l2 − l2l3 − l1l3

d
(4)

Equations (4), (l1,l2,l3) represent the lengths of the three chambers; d is the average
distance between the actuator coaxial centre and each of the three chambers’ coaxial centres.

ϕ = arctan

(√
3(l2 + l3 − 2l1)

3(l3 − l2)

)
(5)

la =
l1 + l2 + l3

3
(6)

Numerous studies have explored forward kinematic modelling within the continuum
and flexible robotic systems, each presenting distinctive characteristics. For instance, Al-Ibadi
et al. [51] introduced a novel-length model tailored to single extensor pneumatic muscle
actuators. They demonstrated its integration within a parallel-structured continuum arm,
enabling versatile bending behaviour. Similarly, Liu et al. [52] designed a foldable soft
manipulator featuring three pneumatic actuators and foldable arms, facilitating shape trans-
formation between contracted and expanded states. This innovative delta robot is well-suited
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to pick-and-place operations within a hemispherical working space. Moreover, researchers
have made notable strides in spatial intrinsic continuum robots driven by pneumatic artificial
muscles (PAMs), offering variable stiffness and flexible motions [53–55]. A lightweight
and compliant multi-joint continuum manipulator, actuated by thin McKibben pneumatic
artificial muscles, has also been developed [56]. As a result of these advancements, forward
kinematic modelling has become more versatile and dexterous. Furthermore, Xu et al. [57]
conducted a comprehensive study of a kinematic model tailored to multi-section contin-
uum arms driven by pneumatic muscle actuators. This model exhibits general applicability
and accommodates systems with intricate and multifaceted kinematic characteristics, thus
substantially contributing to forward kinematics in continuum robotic arms.

Conversely, inverse kinematics determines the actuation inputs required to achieve a
soft robot’s desired pose or configuration. It searches for the appropriate control signals
or forces that result in a specific deformation or motion of the robot. Inverse kinematics
is needed to precisely control the arm’s movement, grasp items securely, and manipulate
objects according to a desired force and orientation. Figure 11 presents an example of
inverse kinematic modelling of a hybrid-driven waist rehabilitation robot containing a belt
and three PAM systems [58].
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The inverse kinematics of the current robot can be represented by Equation (7), which
contains the transposed matrix needed to calculate the length of the PAMs.[

ϕ σ Hb
]T (7)

Here, φ is the angle between axis s and axis X; σ is the angle between the horizontal
plane and the belt; and Hb is the vertical length of the bending waist.

The rotational matrix E, which transforms coordinates from frame OdXdYdZd to frame
OXYZ, can be described by Equation (8), while φ and σ are provided.

E =


sin2 ϕ + cosσ·cos2 ϕ (cosσ− 1)cosϕ·sinϕ sinσ·cosϕ

(cosσ− 1)cosϕ·sinϕ cos2 ϕ + cosσ·sin2 ϕ sinσ·sinϕ
−sinσ·cosϕ

0
−sinσ·sinϕ

0
cosϕ

0

Lscosσ
Lssinσ

Hb
1

 (8)

In Equation (8), Ls is the s coordinate Od for in-frame Osv.
Numerous scholarly contributions emphasising the intricate domain of continuum

robots have advanced the field of kinematic modelling in soft robotics. Inverse kinematic
modelling has played a central role in this context, enabling precise control of robotic
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movements. Several studies merit attention for their noteworthy contributions in this
regard. To commence, several studies have proposed closed-form kinematic models tailored
exclusively to intrinsic continuum robots [59]. These models are of paramount importance
in inverse kinematics because they help determine the joint angles or actuator commands
required to achieve a desired end-effector position.

Furthermore, notable enhancements have been achieved in modelling soft arms [60],
integral components of continuum robots. These improved models have extended the
capabilities of inverse kinematic solutions, enabling more accurate control of soft arm move-
ments. In addition to soft arm modelling, novel kinematic models have been introduced to
address the challenges associated with multi-section continuum arms [61]. These models
contribute to advancing inverse kinematics by providing a framework for precise control
in multi-segmented robotic structures.

Furthermore, introducing piecewise affine curvature (PAC) models [62,63] to inverse
kinematic modelling has been particularly influential. These PAC models, characterised
by their piecewise representation of robot curvature, not only enhance kinematic predic-
tions but also provide a valuable framework for precise control. They help determine
optimal joint configurations for continuum robots during inverse kinematics computations.
Furthermore, researchers have developed path-planning algorithms tailored exclusively
to continuum-arm robots [64]. These algorithms are crucial in inverse kinematic control,
enabling efficient and optimised trajectory planning for continuum robotic systems. These
contributions have significantly expanded our understanding of inverse kinematic mod-
elling in soft robotics. They provide the foundational knowledge for developing more
sophisticated and versatile soft robot systems.

Moreover, these advancements have the potential to revolutionise hybrid robotic
systems, particularly in surgical applications. In this context, it is pertinent to mention delta
robots with flexible actuation, which use reverse pneumatic artificial muscles (RPAMs)
as a critical component. This work, spearheaded by Fernando et al. [65], underscores
the practical application of inverse kinematic modelling within a specific robotic system,
demonstrating the practical significance of these advancements.

Table 1 presents the research direction for soft robot kinematics.

Table 1. Direction of research for soft robot kinematics.

Authors Type of
Kinematic

Range of
Investigated

Pressures/kPa

Type of
Manipulator

Number of
Chambers

Number of
Segments

Object of
Study

Lei, et al. [49] Forward 0–180 McKibben pneumatic
artificial muscle 4 2 Stiffness

Wang et al. [50] Forward 0–35
Pneumatically driven

low-pressure soft
actuators (PLSAs)

3 1 Position,
orientation,

Al-Ibadi et al. [51] Forward 0–500 Soft extensor
continuum arm 4 1 Length, force,

orientation

Liu, Z. et al. [52] Forward 20–100 Soft 3 3 Position

Kim, et al. [53] Forward 0–30
Extensor-contractor

fabric-based
antagonistic actuator

1 1 Stiffness

Peng, Y. et al. [56] Forward 15–35 McKibben pneumatic
artificial muscles 3 3 Position,

orientation, forces

Kang, et al. [59] Forward 60–600 McKibben pneumatic
artificial muscle 3 4 Position, orientation

Godage et al. [61] Forward,
inverse

hydraulic muscle
actuators (HMA) 3 3 Position, orientation

Fernando et al. [65] Forward,
inverse 0–125

Reverse Pneumatic
Artificial Muscles

(RPAMs)
3 1 Position



Machines 2023, 11, 936 12 of 23

3.2. Dynamics Modelling

Developing dynamic models for soft robotic manipulators has garnered significant
attention. These models aim to capture the unique characteristics of soft robots, such as
high compliance, adaptive grasping, and smooth bending, while considering material
nonlinearities, hysteresis, and external loadings. The most commonly used methods for
modelling continuum arm motion dynamics are the Lagrangian formulation and the
Cosserat rod theory.

The Lagrangian formulation, based on Lagrange’s equations of motion, is a powerful
tool for analysing the dynamics of complex systems, including soft robots. In this method,
the dynamics of the robot are derived from the system’s Lagrangian, which represents the
difference between its kinetic and potential energies [66]:

d/dt (∂L/∂ (q dot)) − ∂L/∂q = Mq + Cq + G (9)

where q represents the generalised coordinates of the system; L is the Lagrangian of the
system; M is a generalised inertial matrix; C is a centrifugal/Coriolis force matrix; and G is
a conservative force vector.

The Lagrangian formulation incorporates various physical effects, such as internal
and external forces, damping, and energy dissipation mechanisms.

The Cosserat rod theory represents a soft robot as a series of interconnected rod
elements. Each element is characterised by its position, orientation, and curvature. The
dynamics of the soft robot are described by a set of partial differential equations, such as
linear (10) and angular (11) momentum, which govern the motion and deformation of these
rod elements. These equations incorporate the effects of external forces, internal stresses,
and the material properties of the soft robot.

ρ·A × ∂2(bar{r})/∂t2 = ∂·(QT·S·σ/e)/∂s + e × bar{f } (10)

In Equation (10), ρ represents the material density; A represents the cross-sectional
area of the rod; ∂2(bar{r})/∂t2 represents the second derivative of the position vector bar{r}
with respect to time; ∂·(QT·S·σ/e)/∂s represents the partial derivative of the term QT·S·σ/e)
with respect to the arc length parameter s; Q is a matrix; S is a matrix related to material
properties; σ is the stress tensor; e is the cross-sectional area; and e × bar{f } represents the
product of the cross-sectional area e and the external force vector bar{f }.

ρ × I/e × ∂ω/∂t = ∂(B × κ/e3)/∂s + (κ × B × κ)/e3 + (Q × ∂(rs¯)/e × S × σ) + (ρ × I × ω//e)× ω +

(ρ × I × ω/e2) × ∂e/∂t + e × c
(11)

In Equation (11), ρ represents the mass density of the rod; I is the moment of inertia
matrix of the rod; e represents the cross-sectional area of the rod; ∂ω/∂t represents the rate
of change of the angular velocity vector with respect to time; ∂(B × κ/e3)/∂s represents
the partial derivative of the term (B × κ/e3) with respect to the arc length parameter s;
(κ × B × κ)/e3 represents the cross product of the curvature vector κ and the product of the
matrices B and κ, divided by e3; (Q × ∂(rs¯)/e × S × σ) represents the interaction between
the matrices Q; rs¯ (the derivative of the reference frame position vector with respect to
s), S, and the stress tensor σ; (ρ × I × ω/e) × ω represents the Lagrangian transport term,
where the angular velocity ω interacts with the moment of inertia matrix I, mass density ρ,
and cross-sectional area e; (ρ × I × ω/e2) × ∂e/∂t represents the unsteady dilation term,
where the rate of change of the cross-sectional area (∂e/∂t) interacts with the moment of
inertia matrix I, mass density ρ, and angular velocity ω; and e × c represents the external
couple term, where an external couple c interacts with the cross-sectional area. Table 2
presents the direction of research for dynamic soft continuum actuators.

The Lagrange formula has diverse applications in continuum manipulator research,
as suggested by various researchers. Their work ranges from singularity-free kinemat-
ics and dynamic models to material-based formulations, offering real-time control and
trajectory-tracking capabilities to enhance the performance of continuum arms. Therefore,
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Mustaza et al. [67] introduced a material-based dynamic model for multi-chamber soft
continuum manipulators, offering real-time control capabilities through a modified Kelvin-
Voigt model. Godage et al. [68] presented a dynamic spatial model for variable-length
multi-section continuum arms, ensuring numerical stability and accuracy. To account for
material hysteresis and non-linear properties of the material used for PAM [69–71], Mishra
et al. [72] proposed a mathematical model for a pneumatically actuated multi-segment
conic manipulator and demonstrated its effectiveness in trajectory tracking. The developed
model made it possible to reduce the standard absolute error associated with hysteresis by
a factor of 4 compared to the model obtained through the theory of Cosserat rods.

Trivedi et al. [73] developed a dynamic model that, given the non-linearity of the
material and gravity loading, allows the robot to follow a trajectory more accurately.

Furthermore, Godage et al. [74] addressed their research on singularity problems
with an improved dynamic model for pneumatic muscle-actuated continuum arms. Sofla
et al. [75] researched compliant robotic manipulators using fluidic muscles and incorporat-
ing a modified Bouc–Wen model.

Researchers have leveraged diverse methodologies to enhance dynamic modelling
techniques and advance the soft robotics field. Drawing from the profound insights of the
Cosserat rod theory, which offers a versatile framework for analysing the behaviour of
flexible structures, Wang et al. [76], who adopted the paradigm of variable-stiffness beam
structures, ingeniously captured the modelling of soft continuum robots’ behaviour. De
Payrebrune et al. [77] investigated the applicability of a constitutive relation to pneumat-
ically actuated soft robot arms. Moreover, Abbasi et al. [78] proposed cascaded control
architectures and compensation methods for hysteresis in soft pneumatic actuators. Gilbert
et al. [79] used the Cosserat rod theory to model bending deformation in soft continuum
robotic manipulators. Pourghasemi et al. [80] introduced a conceptual framework for a soft
pneumatic manipulator with a trilateral drive system bolstered by a strengthened fibrous
encasing. They meticulously computed this manipulator’s dynamic characteristics using
the Cosser rod theory and incorporated radial pressure considerations that increased model
precision by 16%.

Table 2. Direction of research for soft robot dynamics.

Author Theoretical Basis Relative Error Object of Study

Meng et al. [66] Lagrange formula settle out to 0 length and velocity
Mustaza et al. [67] Lagrange formula <5% Position, length, angle
Godage et al. [68] Lagrange formula ~0.02% Length
Mishra et al. [72] Cosserat-rod theory settle out to 0 Angles
Trivedi et al. [73] Cosserat rod theory ~5% Length, angles
Godage et al. [74] Lagrange formula 11% Length

Sofla et al. [75] Lagrange formula 7% Angles, position
Wang et al. [76] Deflection theorem <8.5% Angles, length

Pourghasemi et al. [80] Cosserat rod theory 1.27% Position, angles
Li et al. [81] Cosserat rod theory 5.4% Position

Alessi et al. [82] Cosserat rod theory 4.83% Length

Furthermore, our study supports Li et al.’s [81] proposed resolution of differentially
experimental postulations intrinsic to the Cosserat Rod framework using the piecewise
linear deformation method. This approach can be adeptly applied to a pliable, slender,
manipulative construct. Fundamentally, this technique involves segmenting the spatial
domain into discrete segments, each manifesting distinct deformation characteristics. Sim-
ulations showed that this method yields a maximal absolute divergence of only 5 mm,
indicating a nominal deviation of approximately 5.4%.

Similarly, Alessi et al. [82] applied a dynamic Cosserat rod model to a 3D-printed
pneumatic soft robotic arm. This model accounted for actuators’ irregularities and incor-
porated a simplified representation of the pneumatic actuation system’s time-dependent
response. The model further involves tuning pressure-strain relations for individual
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pneumatic chambers and capturing the behaviour of proportional pressure-controlled elec-
tronic valves. By harnessing the Cosserat rod theory, these contributions demonstrate the
versatility and applicability of this theoretical framework in advancing the understanding
and capabilities of soft robotic systems.

The choice between Lagrangian mechanics and the Cosserat rod theory for modelling
soft robots depends on the specific characteristics and goals of the analysis. Lagrangian
mechanics is suitable for a simplified understanding of overall dynamics, which is ideal
for simple soft robot designs or scenarios with minimal deformation effects. On the other
hand, the Cosserat rod theory excels when complex or highly flexible soft robot structures
involve intricate bending, twisting, and deformations.

4. Control of Soft Continuum Robots with PAMs
4.1. Model-Based Control

Model-based control strategies are a prominent approach to soft robot control. The
fundamental principle behind model-based control is to develop an accurate mathematical
representation or model of soft robot dynamics. Model-based control encompasses two
main domains: predicting robot behaviour via model-based predictions, linearising the
structural framework, and mitigating the influence of hysteresis on robot motions, compris-
ing PAMs. Elgeneidy et al. [83] presented a data-driven approach using empirical models
to predict and control the bending angle of a soft pneumatic actuator. Bruder [84] proposed
a data-driven approach to consistently controlling soft continuum manipulator arms under
variable loading conditions by incorporating a linear Koopman operator model (Figure 12).
This operator has a linear transformation that operates on functions of a system’s state
variables, allowing us to study the evolution of these functions over time.
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Equation (12) presents the mathematical formula connecting the Koopman operator to
the infinite-dimensional linear dynamical system.

f (y(t + τ), ũ) = Kτ f (y(t), ũ) (12)

Here, ũ represents a constant input over the interval [t, t + τ], and Kτ represents
an infinite-dimensional linear discrete dynamical system that advances the value of an
observable by τ.

Bruder et al. [85] described a Koopman model-based control method to construct
linear dynamical models and precisely control soft robots. This method reduces outliers
and noise in training data and improves model predictive control of t physical soft robotic
systems. Figure 13 presents this model-control method.
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Thuruthel [86] introduced a model-based policy-learning algorithm for closed-loop
dynamic control of soft manipulators and demonstrated the feasibility of developing con-
trollers without an analytical model. This method involves learning a forward dynamic
model, generating trajectory samples, and policy learning. The approach requires ap-
proximately 2 h of real-world data to construct a closed-loop controller. While the policy
architecture resembles Model Predictive Control (MPC), challenges include accommodating
dynamic changes and addressing variability caused by factors such as friction.

Model-based control strategies predominantly revolve around using the Bouc–Wen
Hysteresis Model (13), specifically tailored to describe hysteresis phenomena in pneumatic
muscles, with the primary objective of mitigating its influence.

dh
dt

= α
du
dt
− β

du
dt
− γ

∣∣∣∣du
dt

∣∣∣∣|h|m−1 − h (13)

In Equation (13), the variable u represents a generalised input, and h corresponds to the
hysteresis state variable, while the parameters α, β, and γ serve as gain values governing
the shape of the hysteresis loop, and m is a parameter that controls the smoothness of the
transition from an elastic to a plastic response.

Incorporating the effects of hysteresis, Qin et al. [87] introduced a control strategy that
incorporates hysteresis compensation. This strategy is described in Equation (14), resulting
in a remarkable fivefold reduction in the regulation error compared to control systems
without hysteresis compensation.

uk = kpek + ki

k

∑
i=0

ei + kc êk+1 (14)

In Equation (14), the predicted tracking error is represented by êk+1, proportional gain
for compensation by kc, and proportional and integral gains for PI controller by kp and ki.

Another study by Liu et al. [88] aimed at developing an adaptive control system using
a PI controller contained within the Buck–Wen hysteresis model. Equation (15) represents
the control rule describing the implementation of this strategy.

Ue(t) = −Kp
[
θ̂q(t)− θd(t)

]
+ KI

∫ t

0
Lq ẽq(τ)dτ − N+

q

[
Hqθq(t)−

.
θd(t) + ∏(t)θ̂(t)

]
(15)

In Equation (15), θ(t) is parameter describing the adaptive system, Lq ẽq(τ) is a vec-
tor describing error regulation, Hq is the state matrix, Kp is the proportional coefficient,
Ki is the integral component coefficient, ∏ is a vector, and θq(t), (θd) are the desired
trajectory vectors.

The outcomes derived from implementing this strategy within a controller model demon-
strate its capacity to manage external perturbations and inherent uncertainties adeptly.

In conclusion, using model-based control strategies in soft robotics with PAMs is
an effective approach. This effectiveness is underscored by the rigorous development of
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precise mathematical models, which play a pivotal role in predicting robotic behaviour,
achieving structural framework linearization, and proficiently mitigating the impact of
hysteresis, particularly in robots incorporating pneumatic artificial muscles (PAMs).

4.2. Model-Free Control

In soft robotics, empirical modelling approaches have been explored to enhance control
and performance. Al-Ibadi et al. [89] presented a mathematical model that relates muscle
elongation to applied pressure, considering weight variations and muscle orientation. Fu-
rukawa et al. [90] described a soft robot arm mimicking an octopus arm, implementing
feedback control in a master–slave system. Furthermore, Azizkhani et al. [91] investigated
control approaches for a one-segment soft robotic arm actuated pneumatically, addressing
practical issues such as sensor noise and hysteresis. Khan et al. [92] proposed an exper-
imental study on model-free control algorithms for pneumatic soft robots, comparing
different PID controllers. These empirical modelling approaches contribute to developing
soft robotics in various applications.

Several studies have explored innovative approaches to the challenges of controlling
and modelling soft robots using reinforcement learning (RL). Kang et al. [39] developed
a soft robotic arm inspired by an octopus’ anatomy and nervous system using reinforce-
ment learning and neural networks. Thuruthel et al. [93] proposed a first-order dynamical
equation to approximate the dynamic behaviour of soft robots, simplifying control devel-
opment without significant loss of accuracy. Torres et al. [94] investigated the information
processing capability of soft continuum arms and identified optimal conditions for im-
plementing reservoir computing. Li et al. [95] introduced ELFNet, an RL-based method
that outperformed other learning control policies for continuum robot arms with pas-
sive degrees of freedom. Zou et al. [96] presented a two-step approach for the real-time
3D shape estimation of soft manipulators that combined different methods to enhance
performance. Wang et al. [97] proposed data-driven modelling strategies using machine
learning algorithms for soft continuum robot control and highlighted the effectiveness of
learning-based approaches in compensating for modelling uncertainties. Yao et al. [98]
demonstrated RL’s potential in achieving autonomous actuation for strip-like soft robots
through intelligent deep RL algorithms. Finally, Giannaccini et al. [99] developed a novel
design for pneumatically actuated soft arms that decouples stiffness from end-effector
positioning, ensuring safety and adaptability in physical human–robot interaction.

Several articles address theoretical and practical challenges in the field of soft robotics.
Enrico et al. [100] proposed a control law using passivity-based approaches and adaptive
disturbance observers to regulate positions in Cartesian space for soft continuum manip-
ulators with pneumatic actuation. Bruder et al. [101] introduced a methodology based
on the fluid Jacobian method to predict the spatial forces generated by fibre-reinforced
elastomeric enclosures (FREEs). Gao et al. [102] presented a model-free control strategy
for continuum manipulators, ensuring angular position tracking with accuracy and global
stability. Veil et al. [103] explored a disturbance observer-based control approach to im-
prove the tracking behaviour of soft robots by actively rejecting estimated model errors
as disturbances. Gonthina et al. [104] proposed modelling variable curvature continuum
robot sections using Euler spirals, showing improved predictions compared to constant
curvature models. Al-Ibadi et al. [105] introduced a novel pneumatic soft actuator with
variable stiffness based on an antagonistic mechanism. Young et al. [106] presented a soft
robot arm inspired by the twisting movements of the human upper limb. It used pneumatic
muscle actuators and a self-bending contraction actuator to twist, contract, and bend.

5. Simulation of Soft Continuum Robots with PAMs

Soft robotics presents unique challenges due to its highly deformable and compliant
nature. Modelling and simulating these complex systems require specialised algorithms
and computational techniques that differ from traditional rigid robot simulations. As a
result, there could be a greater demand for software dedicated to simulating soft robotics.
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Despite these challenges, researchers have made significant progress in developing
software solutions tailored to the specific needs of soft robotics. One such solution is
the PneuSoRD system suggested by Young et al. [107]. This open-source control and
drive system is designed for pneumatic soft robots by controlling up to 31 pneumatic
chambers and acquiring data from 12 pressure sensors. It supports proportional and on–off
valves, provides flexibility in valve selection, and offers multiple control algorithm options.
Another notable software advancement is ChainQueen, an open-source material point
method simulator for soft robotics developed by Spielberg et al. [108]. This simulator
enhances simulation efficiency, optimisation, and co-optimisation of material properties
and geometric parameters. It provides an easy-to-use, modular application programming
interface (API) with predefined models, controllers, actuators, optimizers, and geometric
processing tools, thus allowing researchers to prototype complex experiments with minimal
lines of code quickly. ChainQueen has demonstrated its capabilities through numerous
simulated experiments. Figure 14 depicts the simulation process.
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Reinforcement learning (RL) has also been applied to soft robotics and the SoMoGym
software toolkit developed by Graule et al. [109]. This software toolkit enables the training
and evaluation of controllers using RL techniques. SoMoGym includes benchmark tasks for
assessing the performance of soft robots in various interactions while incorporating custom
environments and robots. Researchers leveraging RL can tackle previously challenging
tasks, particularly those benefiting continuum robots.

The SoRoSim MATLAB toolbox by Mathew et al. [110] can be used for the static and
dynamic analysis of soft, rigid, and hybrid robotic systems. This toolbox bridges the gap
between soft and traditional robotics modelling by supporting open, branched, and closed-
chain structures. Figure 15 depicts the simulation process using SoRoSim version 2.32.
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SoRoSim demonstrates real-time or faster computational performance for most applica-
tions, offering a comprehensive solution for modelling and analysing soft robotic systems.

6. Discussion and Conclusions

In this review, we present a comprehensive analysis of the current state of pneumatic
continuum arm and soft robots, highlighting their notable advantages compared to rigid
robots: exceptional flexibility, adaptability, and safety. The design of soft robots, taking
inspiration from biological systems and human hands, is examined, revealing promising av-
enues for further development. Additionally, the emergence of hybrid robots is recognised
as a significant advancement, particularly in scenarios demanding high precision.

Furthermore, the article explores various mathematical models encompassing kinemat-
ics, dynamics, and statics, as well as alternative model-free approaches. These theoretical
frameworks play a crucial role in comprehending and manipulating the behaviour of
soft robots.

However, it is essential to acknowledge that despite substantial progress, soft robots’
practical application and simulation have encountered limitations primarily due to their
implementation’s demanding requirements and challenges. Thus, it is imperative to bridge
this gap through research and advancement to fully unleash soft robots’ potential in
practical applications.

One of those gaps is efficient actuation because PAM devices rely on pressurised air for
actuation. Optimising the design to achieve efficient energy conversion and precise control
of muscle contractions is a challenge. Designing PAMs that can generate higher forces,
faster contractions, and more accurate movements can enhance the overall performance of
soft continuum arms.

Another gap is kinematic and dynamic modelling, because establishing accurate
kinematic and dynamic models for soft continuum arms with PAMs is challenging due to
their inherently compliant and deformable nature. Therefore, research is needed to develop
models that can accurately predict the arm’s behaviour under different loading conditions
and configurations.

Developing control strategies for soft continuum arms with PAMs is also challenging
due to these systems’ nonlinear and compliant behaviour. Research is needed to design
control algorithms that can handle the dynamic interactions between the arm and its
surroundings while ensuring stability, accuracy, and safety.

Further research on soft PAM and robots will focus on developing dynamic models
considering their characteristics and interactions with the environment. We aim to enhance
the accuracy and realism of simulations involving soft pneumatic arms. The integration
of dynamic models holds promise for expanding the scope of software applications in
this field by accurately representing the complex dynamics of soft pneumatic arms. This
integration allows them to simulate various scenarios and evaluate their performance
on various tasks. Additionally, as dynamic models advance, there will be an anticipated
expansion of application areas for such robots and arms, allowing researchers to explore
novel domains where these robots can operate effectively.
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