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Abstract: In order to improve the vibration reduction performance of damping treatments, a new
damping structure consisting of a uniform base layer and two periodically alternating free layers was
examined in this study. Closed-form solutions for both the band structure and the forced response
of the periodic bi-layer beam were theoretically derived and verified via numerical solutions using
the finite-element method. The results showed that the structure with periodic free-layer damping
(PFLD) treatment reduced broadband vibrations, and the levels of reduction were dominated by
Bragg scattering in the band gaps and damping in the passbands. The vibration experiment verified
the derived theory’s accuracy and showed that the PFLD treatment could increase vibration reduc-
tion levels in low-frequency band gaps compared with traditional free-layer damping treatments.
The effects of the parameters—cell lengths, sub-cell-length ratios, and thickness ratios—were also
discussed, providing further understanding of the vibration reduction performance of the bi-layer
beam with the PFLD treatment, and this can be used to help designers optimize the periodic bi-layer
beam to achieve better performance.

Keywords: periodic bi-layer beam; band gap; vibration control; propagation constant; damping
treatment

1. Introduction

As thin-walled flexible structures easily vibrate and thereby radiate excessive noise,
various vibration and noise reduction methods, in which applying damping treatments
are of great importance, have been proposed and used in engineering. Free-layer damping
(FLD) treatments [1–3] and constraint-layer damping (CLD) treatments [4–6] have been
considered two of the main implementation methods, and these damping treatments have
been widely used in engineering, including—but not limited to—aircraft skins, submarine
hulls, and automobile panels [7–9].

Due to its low cost, easy design, and high reliability, the FLD treatment has won the
recognition of both researchers and engineers since it was introduced by Oberst [10]. The
FLD treatment is the most straightforward configuration for introducing damping into
structures. In an FLD treatment, a viscoelastic material (VEM) is freely attached to the
surface of a flexible structure. Due to the alternating extension and compression of the
damping layer, the vibration energy can be dissipated in an FLD treatment, thus reducing
excessive vibration and noise.

Although the FLD treatment is convenient to implement, its damping dissipation
ability needs to be improved to further reduce vibration energy. Thus, various damping
structures have been proposed, studied, and implemented in engineering applications, such
as constraint-layer damping structures, multiple-damping-layer structures, and irregular-
damping structures [11]. By using these improved passive damping structures, vibrations
can be further reduced. The vibration reductions arising from these damping treatments
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are caused by the energy dissipation introduced by the VEM in the damping layer. How-
ever, the vibration reduction performances of current damping structures vary with fre-
quency [12]. The wave attenuation in the low-frequency domain is inferior to that in the
high-frequency domain, owing to the larger wavelengths of low-frequency waves, where
the strain energy dissipated per unit of length in the low-frequency domain is significantly
reduced compared with that in the high-frequency domain.

In order to improve the low-frequency vibration performance, smart CLD (SCLD)
treatments or active CLD (ACLD) treatments have been researched in recent years [13,14],
where the elastic constraint layer is replaced by piezoelectric or smart materials. Through
passive control from the viscoelastic material and active control from the piezoelectric
material, the attenuation performance can be improved in a broader frequency range.
However, due to their complicated control strategies and high costs, the SCLD and ACLD
treatments cannot be widely used in various engineering applications. Hence, new control
methods for damping structures require further investigation.

In recent decades, phononic crystals and acoustic metamaterials have been extensively
studied due to their remarkable abilities in controlling vibrations and noise [15–17], and
they have provided new ways to improve the attenuation performance of a damping
structure. Phononic crystals and acoustic metamaterials generally consist of periodic cells,
and they can generate band gaps because of their periodicity. The waves can be significantly
reduced in the band gaps due to the Bragg scattering effect [18] or the locally resonant
effect [19].

Most previous works on periodic structures, including phononic crystals and acoustic
metamaterials, have focused on single-layer periodic structure types, where each cell is
joined end to end to another. These studies have included periodic single-layer beams [20],
plates [21], and shell [22] structures, and they have provided essential methods, mech-
anisms, or conclusions. Only a few studies have focused on multi-layer periodic struc-
tures [23–25]. However, most of the above studies were based on numerical calculation
methods without analytical solutions or experimental verification. Unknown mechanisms,
phenomena, or possible applications in the multi-layer periodic structures remain, and
their vibration attenuation characteristics need to be further analyzed, although a number
of studies on single-layer periodic structures have been conducted.

In order to promote the study of the vibrations of multi-layer periodic structures, in
a past study, the authors extended the single-layer structure to a bi-layer structure [26],
where the band-gap performance and vibration reduction characteristics of a bi-layer
periodic beam consisting of a four-component cell were studied. The considered structure
(Figure 1) performed well with a broad band-gap width and provided more band-gap
tuning possibilities. However, in a practical application, this structure generally could not
bear too great a load as each sub-cell was typically bonded to others by glue. In addition,
the upper and bottom layers were considered to have identical rotations in the theoretical
model for the purpose of concision. Thus, the model was only appropriate for a structure
whose upper-layer material parameters did not significantly differ from those of its bottom
layer. Moreover, the previous model did not consider damping, and its vibration reduction
was generally induced by Bragg scattering.
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Figure 1. A sketch map of the four-component periodic bi-layer beam from a previous study [26].
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In previous studies, damping treatment research and band-gap structure research have
been separated as two independent research domains, and few relevant studies combining
the two exist. Integrating the attenuation advantages of both band-gap structures and
damping structures will have important implications for vibration reduction. In order to
broaden the practical vibration reduction applications of periodic bi-layer structures in
engineering, the authors’ previous work [26] was extended in this study.

In this paper, a new concept for damping treatments, namely a periodic free-layer
damping (PFLD) treatment, is proposed. In PFLD, a hard VEM and a soft VEM are
alternated along the axial direction and are bonded upon a base layer. The considered
structure has been improved from the previous four-component type to a three-component
type, where components C and D, as shown in Figure 1, are replaced with a homogeneous
material. In the present theoretical model, the upper layer and bottom layer rotations were
considered to be two independent variables, and the order of the bi-layer beam’s partial
differential equation was increased from six to eight, allowing for the material parameters
of both layers to have considerable differences. In addition, the damping parameter was
also considered in the new model by using a complex modulus. By appropriately tuning the
material or geometric parameters, PFLD was able to provide better vibration attenuation
performances over a broader frequency range through both the Bragg scattering and
damping effects. Owing to its superior attenuation performance, this PFLD structure
may have great potential in reducing vibrations in aircraft skins, submarine hulls, and
automobile panels in the future.

2. Theory and Formulations
2.1. Description of the Bi-Layer Beam

A model of the bi-layer beam with an elastic base layer and a viscoelastic free layer
is shown in Figure 2. The following assumptions were considered in establishing the
theoretical model: (a) the bottom layer comprised a linear elastic material, and the upper
layer was a linear VEM with complex Young’s and shear moduli; (b) the upper and lower
layers were modeled as Timoshenko beams, including the effects of shear deformation,
rotatory inertia, and longitudinal deformation; (c) slipping did not occur between the upper
and bottom layers; and (d) the transverse displacements in both layers were identical at the
same position along the axial direction.
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Figure 2. Coordinates of and notations for the bi-layer beam.

The material parameters of the bi-layer beam are specified by the Young’s modulus
Ei, shear modulus Gi, density ρi, Poisson’s ratio υi, and shear coefficient ki = 5/6 [27],
where i = 1, 2. The upper layer is considered to be a linear viscoelastic model with complex
Young’s modulus E2 = E2s(1 + jη) and shear modulus G2 = G2s(1 + jη), where E2s and
G2s are the storage moduli, and η is the structural loss factor. The bi-layer beam’s length,
width, and thickness are specified as L, b, and hi, respectively. The transverse displacement,
longitudinal displacement, and local rotation of each layer are specified as w, ui, and ϕi,
respectively.

2.2. The Dynamic Stiffness Theory

As the longitudinal displacement at the interface between the upper and bottom layers
can be expressed as u12 = u1 + h1 ϕ1/2 = u2 − h2 ϕ2/2, the longitudinal displacement u2
can be given as u2 = u1 + h1 ϕ1/2+ h2 ϕ2/2. The total strain energy Epot and total kinematic
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energy Ekin can be obtained by referring to references [28,29], and they can be expressed
as follows: 

Epot =
1
2

2
∑

i=1

∫ L
0

[
Ei Aiu′i

2 + Ei Ii ϕ
′
i
2 + kiGi Ai(w′ − ϕi)

2
]
dx

Ekin = 1
2

2
∑

i=1

∫ L
0

[
ρi Ai

( .
w2

+
.
u2

i

)
+ ρi Ii

.
ϕ

2
i

]
dx

, (1)

where Ai = bhi and Ii = bh3
i /12 are the cross-sectional area and area moment of inertia,

respectively. The dots and primes in Equation (1) denote partial differentiation with respect
to the time variable t and space variable x, respectively. The work carried out by the external
force can be expressed as follows:

We = (N1u1 + M1 ϕ1 + M2 ϕ2 + Qw)
∣∣∣L0 , (2)

where N1 is the base layer’s axial force, Mi is the ith layer’s bending moment, and Q is the
total shearing force. By using Hamilton’s principle (δ

∫ t1
t0

(
Ekin − Epot −We

)
dt = 0) and the

harmonic oscillation assumptions u1 = U1ejωt, ϕ1 = Φ1ejωt, ϕ2 = Φ2ejωt, and w = Wejωt,
the equations of motion of the bi-layer beam can be obtained as follows:

a11DΦ1 + a12DΦ2 +
(

a13 + a14D2
)

W = 0(
a21 + a22D2

)
U1 +

(
a23 + a24D2

)
Φ1 +

(
a25 + a26D2

)
Φ2 = 0(

a31 + a32D2
)

U1 +
(

a33 + a34D2
)

Φ1 +
(

a35 + a36D2
)

Φ2 + a37DW = 0(
a41 + a42D2

)
U1 +

(
a43 + a44D2

)
Φ1 +

(
a45 + a46D2

)
Φ2 + a47DW = 0

, (3)

and the corresponding generalized forces can be given as follows:
N1 = a22DU1 + a24DΦ1 + a26DΦ2

M1 = a24DU1 + a34DΦ1 + a36DΦ2

M2 = a26DU1 + a36DΦ1 + a46DΦ2

Q = −a11Φ1 − a12Φ2 + (a11 + a12)DW

, (4)

where D is the differential operator, defined as D = d/dx, and the coefficients aij are
defined in Equations (A1)–(A24) in Appendix A.

The four second-order differential equations can be simplified to a single eighth-order
differential equation as follows:(

D8 + c1D6 + c2D4 + c3D2 + c4

)
X = 0, (5)

where X can be any of U1, Φ1, Φ2, and W. The coefficients c1 to c4 can be expressed by the
coefficients aij in Equations (A1)–(A24). The solution form of Equation (5) can be assumed
as X = X0erx, and substituting it into Equation (5) yields the following:

r8 + c1r6 + c2r4 + c3r2 + c4 = 0. (6)

By solving the above polynomial equation, eight roots (r1 to r8) can be obtained. The
generalized displacements d(x) = [U1(x), Φ1(x), Φ2(x), W(x)]T and the generalized forces
t(x) = [N1(x), M1(x), M2(x), W(x)]T can then be expressed as follows:{

d(x) = D(x)ϕ

t(x) = T(x)ϕ
, (7)
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where D(x) and T(x) are two matrices with four rows and eight columns, given in Ap-
pendix A. The term ϕ is given as ϕ =

[
ψ1 ψ2 · · · ψ8

]T.
For convenience, the generalized displacements and forces at the left end of the bi-

layer beam are denoted as dL = DLϕ and tL = TLϕ, respectively, where DL = D(0) and
TL = T(0). The corresponding generalized displacements and forces at the right beam end
are denoted as dR = DRϕ and tR = TRϕ, respectively, where DR = D(L) and TR = T(L).

2.3. Band Structure

A unit cell of the bi-layer beam is shown in Figure 3, and it consists of sub-cell A and
sub-cell B with lengths of LA and LB, respectively.
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Figure 3. A unit cell of the bi-layer beam with the PFLD structure.

According to Equation (7), the generalized displacements and forces at both ends of
sub-cell A and sub-cell B can be expressed as follows:{

dAL = DALϕA; dAR = DARϕA; tAL = TALϕA; tAR = TARϕA

dBL = DBLϕB; dBR = DBRϕB; tBL = TBLϕB; tBR = TBRϕB
, (8)

where ϕA and ϕB are the coefficient vectors of sub-cells A and B, respectively. At the
interface between sub-cell A and sub-cell B (xA = 1 or xB = 0), the generalized displace-
ments and forces satisfy the continuous condition and equilibrium condition, indicating
the following: {

dAR = dBL
tAR = −tBL

. (9)

By using the Bloch–Floquet periodic conditions [30],{
dAL = e−µdBR
tAL = −e−µtBR

, (10)

the characteristic equation for calculating the band structure can be obtained as follows:

(T− eµI)ϕA = 0, (11)

where µ = δ+jγ is the propagation constant in which δ is the decay constant and γ
is the phase constant [31]. In Equation (11), I is an eight-by-eight identity matrix and
T = K−1

3 K4K−1
2 K1, where K1 =

[
DAR TAR

]T, K2 =
[
DBL −TBL

]T, K3 =
[
DAL TAL

]T,

and K4 =
[
DBR −TBR

]T. The band structure of the periodic bi-layer beam can be deter-
mined by solving Equation (11) with the eight roots of the propagation constant.

2.4. Forced Response

A finite periodic bi-layer beam with N cells is shown in Figure 4, where both ends of
the beam are set as free boundary conditions. A harmonic force Fs = Fs0ejωt is applied at
the left end of the beam.
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φ Pφ ,  (14)

where 1
AB B Ai i

−=P K K   and ( )
1 1

B B A1 A i i ii
− −

+=P H H K K   in which [ ]T
A AR ARi i i=K D T  , 

[ ]T
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Therefore, Aiφ  and Biφ  can be expressed by 1Aφ  as follows: 

1
A 1A
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i
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−
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φ P φ
φ P P φ
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For a finite periodic bi-layer beam with a transverse force applied at the left beam 
end, the generalized forces at the left and right beam ends can be given as 
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Figure 4. A finite bi-layer beam with the PFLD structure.

According to Equation (7), the generalized displacements and forces at both ends of
sub-cell iA and sub-cell iB can be given as follows [26]:{

diAL = DiALϕiA; diAR = DiARϕiA; tiAL = TiALϕiA; tiAR = TiARϕiA

diBL = DiBLϕiB; diBR = DiBRϕiB; tiBL = TiBLϕiB; tiBR = TiBRϕiB
, (12)

where ϕiA and ϕiB are the coefficient vectors of sub-cell iA and sub-cell iB, respectively.
At the interface between sub-cell iA and iB (xiA = LA or xiB = 0) and the interface

between sub-cell iB and (i + 1)A (xiB = LB or x(i+1)A = 0), the generalized displacements
and forces satisfy the continuous condition and equilibrium condition, indicating the
following: {

diAR = diBL; tiAR = −tiBL (i = 1, 2, · · ·, N)

diBR = d(i+1)AL; tiBR = −t(i+1)AL (i = 1, 2, · · ·, N − 1)
. (13)

Substituting Equation (12) into Equation (13) yields the following:{
ϕiB = PABϕiA

ϕ(i+1)A = PϕiA
, (14)

where PAB = K−1
iB KiA and P = H−1

(i+1)AHiBK−1
iB KiA in which KiA =

[
DiAR TiAR

]T, KiB =[
DiBR TiBR

]T, HiB =
[
DiBR TiBR

]T, and H(i+1)A =
[
D(i+1)AL −T(i+1)AL

]T
.

Therefore, ϕiA and ϕiB can be expressed by ϕ1A as follows:{
ϕiA = Pi−1ϕ1A

ϕiB = PABPi−1ϕ1A
. (15)

For a finite periodic bi-layer beam with a transverse force applied at the left beam
end, the generalized forces at the left and right beam ends can be given as t1AL =[
0 0 Fs0 0

]T and tNBR =
[
0 0 0 0

]T, respectively. As ϕNB = PABPN−1ϕ1A, the
equations of motion for the finite periodic bi-layer beam can be expressed as follows:[

T1AL

TNBRPABPN−1

]
ϕ1A =

[
t1AL

tNBR

]
. (16)

From Equation (16), the coefficient ϕ1A can be calculated. Thus, the coefficient vectors
of all the other sub-cells can be determined using Equation (15), and the generalized
displacements and forces of all the sub-cells can finally be acquired using Equation (7).

3. Numerical Results
3.1. The Attenuation from the Bragg Scattering

In order to illustrate the flexural wave attenuation performance of the periodic bi-
layer beam, both the propagation constant in an infinite periodic structure and the forced
vibration response of a finite periodic structure were calculated using the theory proposed
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in Section 2. The material parameters and dimensions of the unit cell used in the numerical
calculation are given in Table 1.

Table 1. The material parameters and dimensions of the unit cell.

E (GPa) G (GPa) ρ (kg/m3) υ L (m) b (m) h (m)

Free layer A 0.186 0.062 900 0.499 0.2 0.02 0.005
Free layer B 86.9 35.6 2460 0.220 0.2 0.02 0.005
Base layer 77.6 28.7 2730 0.352 0.4 0.02 0.002

The damping of the base layer and the two free layers was first set to zero to illus-
trate the attenuation performance induced by the Bragg scattering. The flexural wave-
propagation constants are shown in Figure 5. As shown in the figure, three band gaps
showed up in the frequency range 0–650 Hz, namely 26.0–43.8 Hz, 121.4–233.1 Hz, and
339.0–498.9 Hz, as shown in the gray-shaded regions. As calculated, the band-gap widths
of the three band gaps were 17.8 Hz, 111.7 Hz, and 159.9 Hz, with a total bandwidth
of 289.4 Hz. The total band-gap ratio reached 44.5% in the frequency range of interest
(from 0 Hz to 650 Hz), indicating that nearly half of all flexural waves below 650 Hz could
be attenuated.
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Figure 5. The propagation constants of the infinite bi-layer beam with an undamped PFLD structure:
(a) decay constant and (b) phase constant.

In order to validate the correctness of the model, the flexural-wave phase constant
was also calculated using the finite-element method (FEM) with COMSOL-Multiphysics
software (Version 5.2). A single-cell geometry, as shown in Figure 3, was meshed with a
hexahedral element type, and there were 8000 elements in the model. The meshing reso-
lution was far more adequate for the frequency range considered in this work (0–650 Hz).
The Bloch periodic boundary condition was applied at both ends of the cell. Through para-
metric frequency sweep analysis and characteristic frequency analysis, the phase constant
could finally be determined.

The comparison results given in Figure 5b show that the model had excellent agree-
ment with the FEM, which validated the accuracy of the theoretical model.

The vibration response of the finite periodic undamped bi-layer beam with five unit
cells was then further examined. A unit harmonic force was applied at the left end of
the periodic beam, and the normalized acceleration level at the right end was used to
assess the flexural-wave attenuation and propagation performance, which was defined as
20log10

(
a

arefFs0

)
, where a is the acceleration, aref = 10−6 ms−2 is the referenced acceleration,

and Fs0 is the applied force.
As shown in Figure 6, three vibration-response valleys depicted in gray can be ob-

served, and their frequency bands matched well with the band gaps of the infinite periodic
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beam shown in Figure 5. The forced vibration calculation model given in this research was
also validated by the FEM, as shown in Figure 6. From the above analysis, it can be seen
that the periodic bi-layer beam had good filtering characteristics for flexural waves. When
damping was not considered, the propagation of flexural waves within the band gaps was
suppressed, while the waves outside the band gaps could be smoothly transmitted from
the left end to the right end of the beam.
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Figure 6. Vibration response at the right end of the finite periodic bi-layer beam (the gray-shaded
regions indicate the band gaps of the infinite periodic bi-layer beam).

3.2. The Combined Effects of the Bragg Scattering and Damping

For the bi-layer beam with an undamped PFLD structure, the vibration in the band
gaps could be significantly attenuated while the waves in the passbands continued to
smoothly propagate. In order to further reduce the overall vibration, the damping of free
layers was considered. The concept of a complex modulus was used in the analysis to
assess the damping effects. Thus, the Young’s modulus of the material could be given as
E = Es(1 + jη), where Es and η represent the storage modulus and damping loss factor,
respectively.

In the following analysis, the base layer and free layer B were used with an elastic
material where damping was not considered, and the free layer A was used with a vis-
coelastic damping material, with the damping loss factor represented by ηA. The material
and geometric parameters remained consistent with the values in Table 1, except for the
loss factor parameters. Figure 7 shows the attenuation constants of the infinite periodic
structures and the vibration responses of the right end of the finite periodic structures, with
the various damping loss factors of free layer A.
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Figure 7. (a) The decay constants of the infinite periodic bi-layer beam and (b) the vibration responses
of the finite periodic bi-layer beam.
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As shown in Figure 7a, within the band gaps, the attenuation constant slightly in-
creased with the increase in the loss factors, and the effects of the damping loss factors
could be ignored. Outside the band gaps, the free layer’s damping loss factor significantly
affected the attenuation constants. One of the main reasons for the weak effect of the
damping on the attenuation constants in the band gaps can be stated as follows: the band-
gap generation mechanism in the periodic bi-layer beam was the Bragg scattering. In the
band-gap frequency range, the incident wave was strongly reflected because of periodicity.
Thus, in the wave-propagation process, the reflected wave carried most of the energy;
however, the transmitted wave carried very little energy. The effect of material damping is
to dissipate the energy of transmitted wave energy along the foregoing wave-propagation
direction. As the transmitted wave energy was very little, the effect of the damping on
the vibration reduction was quite weak in the band gap. However, out of the band-gap
frequency range, the transmitted wave carried most of the energy, and the damping could
significantly affect the attenuation constant.

When ηA was equal to zero, the attenuation constant in the passbands was zero,
meaning that the flexural wave freely propagated without attenuation. As the value of ηA
increased, the attenuation constants outside the band gaps also gradually increased; thus,
the ability to suppress flexural waves was gradually strengthened. The vibration response
of the finite period bi-layer beam shown in Figure 7b also showed that after considering
the damping effect of the free layer, an excellent flexural wave suppression effect was also
achieved outside the band gap.

From the above analysis, it can be seen that when damping was introduced into the
free layer, the attenuation of the flexural waves within the band gaps was mainly controlled
by the Bragg scattering effect, and outside the band gaps, it was mainly controlled by
the damping dissipation effect. The combined effect of the above two effects enabled the
structure to achieve good vibration suppression effects throughout the entire broadband
range, both within and outside of the band gaps.

3.3. Parametric Analysis

The effects of the dimensional parameters on the band-gap location f , band-gap width
fb, decay level Lδ f , and vibration response were examined. The parameters of the periodic
bi-layer beam were set as shown in Table 1, and the total length of the finite periodic bi-layer
was 2.0 m. The above parameters remained unchanged unless otherwise stated.

The effects of the cell length L on the band-gap properties were first considered,
with the length L varying from 0.1 m to 1 m, and LA = LB. As shown in Figure 8, with
the increases in L, the band-gap locations, band-gap widths, and decay levels decreased
for both the first and second band gaps. Thus, a large cell length was advantageous
for reducing lower-frequency vibrations. However, increasing the cell lengths led to
reduced band-gap widths and decay levels. Therefore, cell length should be appropriately
designed to suppress vibrations at a targeted frequency, with sufficient band-gap widths
and decay levels.

The effects of the sub-cell-length ratio α = LA/LB on the band-gap properties were also
considered, where sub-cell A corresponded to a low-modulus and low-density material, and
sub-cell B corresponded to a high-modulus and high-density material. In this parametric
analysis, the parameter α varied from 0.1 to 10, with L = 0.4 m (remaining unchanged).
As shown in Figure 9, with the increases in α, the band-gap locations, band-gap widths,
and decay levels generally decreased for the first band gap. However, the variation trends
became more complicated for the second band gap. As shown in Figure 9b,c, both the band-
gap width and decay level for the second band gap first decreased and then increased, and
they finally decreased with increasing α values, reaching their maximum values of 189.8 Hz
and 16.6 dB at α = 0.5 and α = 0.8, respectively. Thus, designing the sub-cell-length
ratio values as the above two values was advantageous for better vibration attenuation
performance in the band gap. As the attenuation out of the band gaps mainly came from
the damping dissipation by the free layer material of sub-cell A, we determined that the
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value of α should not be too small. Otherwise, the vibration out of the band gaps would
not be acceptably suppressed. As shown in Figure 9d, for the case where α = 0.2, although
the first band-gap frequency was very low, the bandwidth was wide and the vibration
suppression ability in the band gap was strong, and so vibrations in the frequency range
150–450 Hz were considerable. The overall attenuation performance in the case where
α = 0.2 was inferior to that of the case where α = 1. Therefore, the sub-cell-length ratio
should be set to a moderate value to obtain better vibration suppression both inside and
outside of the band gap.
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Figure 8. The effects of the cell length L on the (a) band-gap locations, (b) band-gap widths, (c) decay
levels, and (d) vibration responses.

The effects of the thickness ratio β = h2/h1 on the band-gap properties are shown in
Figure 10, where the base layer’s thickness remained unchanged at h1 = 2 mm.

As shown in Figure 10a, with the increases in β, the band-gap starting frequencies
of the two band gaps gently varied, while the band-gap cutoff frequencies gradually
increased, resulting in the band-gap widths increasing with the increasing thickness ratio β
(Figure 10b). The increase in β was also beneficial for obtaining strong attenuation abilities
in the band gaps, as shown in Figure 10c. It can also be obtained from Figure 10d that when
the thickness ratio was increased, the vibration suppression effect both inside and outside
of the band gap would be enhanced. The enhancement inside the band gap was caused by
the increased effective modulus and the density difference between sub-cell A and sub-cell
B, resulting in increased Bragg scattering. In comparison, the enhancement outside of
the band gap was caused by the increased energy dissipation induced by the free layer’s
damping. It can be seen from the above analysis that when designing a periodic bi-layer
beam, the thickness ratio should be designed with a value that is as large as practical
engineering will allow.
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Figure 9. The effects of the sub-cell-length ratio α = La/LB on the (a) band-gap locations, (b) band-gap
widths, (c) decay levels, and (d) vibration responses.
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Figure 10. The effects of the thickness ratio β = h2/h1 on the (a) band-gap locations, (b) band-gap
widths, (c) decay levels, and (d) vibration responses.

4. Experiment Verification

In order to verify the analytical model and the practical attenuation performance, a
periodic bi-layer beam specimen, as shown in Figure 11, was fabricated and tested. The
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base layer of the specimen was made of aluminum, and the periodic free layers were made
of polymer rubber (PMRB) and polymethyl methacrylate (PMMA). The specimen consisted
of eight cells, where the single units are as shown in Figure 12. For each cell, sub-cell A and
sub-cell B had identical dimensions, with lengths of 100 mm, widths of 50 mm, base layer
thicknesses of 1.85 mm, and free layer thicknesses of 5 mm.
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Figure 11. The tested periodic bi-layer beam specimen.
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Figure 12. A single unit of the periodic bi-layer beam.

The densities of the aluminum, PMRB, and PMMA were measured as 2690.6 kg/m3,
984.0 kg/m3, and 1153.1 kg/m3, respectively. The Young’s modulus and the loss factor of
the aluminum were set as 77.6 GPa and 0.001, respectively, while those of the PMRB and
PMMA were tested in an experiment, as shown in Figure 13.
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Figure 13. Test results of the polymer rubber (PMRB) and polymethyl methacrylate (PMMA) for the
(a) Young’s moduli and (b) loss factors.

The experimental schematic diagram and the practical experimental setup are shown
in Figures 14 and 15, respectively. The specimen was suspended by two elastic ropes.
The signal generator and analyzer (B&K 3560B) generated an excitation signal, which
was transmitted to a vibration exciter (JZ 2A) through a power amplifier (B&K 2716). In
order to obtain the normalized vibration response and then compare it to the analytical
model, the input acceleration and input force signals were acquired using an impedance
head (B&K 8001), which was mounted on the exciter. These two signals were analyzed
using a signal analyzer (B&K 3050A) after the corresponding charge signals were amplified
and transformed to voltage signals by a charger amplifier (B&K 2692). The input force
was used as a reference signal during the post-data analysis. The excitation position was
located at the left beam end to better study the vibration transmission performance. The
vibration responses of the specimen were acquired using eight acceleration sensors (PCB



Machines 2023, 11, 949 13 of 19

M353B16), with each of the two neighboring sensors’ spaces set at approximately 20 cm.
These acceleration signals were first transmitted to the signal conditioners (PCB 482A22)
and then to the signal analyzers (B&K 3050A). The experimental data were finally processed
by the testing software in the testing computer.
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Figure 15. Practical experimental setup.

The acceleration acquired from each accelerometer was normalized by the input
force. The normalized accelerations at the excitation end and at the opposite end of the
specimen are given in Figure 16. As shown in the figure, in the frequency ranges of
approximately 65–103 Hz and 340–540 Hz, the periodic bi-layer beam provided band-
gap attenuation performances where vibrations were significantly compressed for the tail
end. The normalized accelerations from the experiment and the present theory are further
compared in Figure 17. As shown in the figure, the experimental results’ levels and varying
trends matched well with the theoretical results in the overall frequency range, except
for some specific frequencies, which validated the effectiveness of the theory. The band-
gap frequency results calculated from the present theory were slightly larger than those
obtained from the experiment. The differences may have been induced by the specimen’s
glue between the base and free layers, which was not considered in the theoretical model.
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Figure 16. The normalized accelerations at the left and right ends of the beam in the experiment (BG,
band gap).
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Figure 17. Comparisons of the experiment and the theory for the normalized accelerations (a) at the
left and (b) at the right ends of the beam.

The vibration responses tested by the other acceleration sensors are also given in
Figure 18, where the transmission characteristics along the axial direction at two specific
frequencies were further studied. As shown in the figure, for the frequency 450 Hz, located
in the band gap, the vibrations were significantly attenuated along the direction of the
wave propagation, with a decay rate of approximately 27.5 dB/m. This attenuation was
caused by both the Bragg scattering and the damping. For the frequency 287 Hz, located
out of the band gap, the vibrations along the axial direction performed as fluctuations, with
the envelope’s magnitude decreasing with the direction of the wave propagation. This
attenuation was mainly caused by the damping.
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Figure 18. Transmission characteristics of the periodic beam in the band gap (450 Hz) and out of the
band gap (287 Hz) (B.G., band gap).
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In order to further illustrate the attenuation performance of the periodic bi-layer beam,
the other three specimens shown in Figure 19 (specimens #2, #3, and #4) were also fabricated
and tested for comparison purposes. Specimen #1 was the already considered periodic
bi-layer beam. Specimens #2 and #3 were uniform bi-layer beams, with the free layers
made of purely PMMA and polymer rubber, respectively. Specimen #4 was a single-layer
aluminum-made uniform beam of the same weight as the periodic bi-layer beam.
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Figure 19. The four tested specimens of the periodic/uniform bi-layer beams and the single-layer
uniform beam.

The comparison results are shown in Figure 20. As shown in the figure, the vibration
responses of the four tested specimens were comparable in the low-frequency range. In the
high-frequency range, the vibrations of specimens #1, #2, and #3 were lower than those of
specimen #4 owing to the damping dissipation effects.
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Figure 20. The experimental comparison results of the four specimens for the normalized accelera-
tions at the right end of the beam.

It may seem unreasonable that the vibrations in the FLD-PMRB case were larger than
those of the uniform case. One of the main reasons may be stated as follows: the uniform
case’s aluminum beam thickness was set at approximately 3.8 mm, which was larger than
the FLD-PMRB case’s base layer thickness of 1.85 mm, resulting in the uniform case’s
bending rigidity being potentially larger than that of the FLD-PMRB case. In addition, the
Young’s modulus of the damping layer in the FLD-PMRB case was very small (approxi-
mately 0.002 GPa), which was quite small compared with that of the aluminum base layer
(76 GPa). In addition, at the lower frequencies, it was harder to dissipate energy through
the free layer’s damping because of the large wavelength. Therefore, the vibrations of the
FLD-PMRB case were potentially larger than those of the uniform case at the lower fre-
quencies. As shown in Figure 20, with the increases in frequency, the damping dissipation
ability gradually increased, and the FLD-PMRB case’s response became smaller than that
of the uniform case by approximately 200 Hz.

As shown in Figure 20, in the band-gap frequency range, the vibrations of the periodic
bi-layer beam were significantly reduced compared with those of the other three speci-
mens, with an average attenuation of approximately 20 dB. Thus, the PFLD treatment was
beneficial for improving the attenuation performance of the beam structure.
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5. Conclusions

Periodicity was introduced into a damping treatment to improve vibration reduction
performance, and the concept of a periodic free-layer damping (PFLD) treatment was
proposed in this study. The theoretical models of the periodic bi-layer beam’s band structure
and the forced response were established using the Hamilton principle and transfer matrix
method. The accuracy of the theoretical model was verified by the finite-element method,
showing that the analytical results matched well with the numerical simulation results.

When a viscoelastic damping material was used in a free layer of the periodic bi-layer
composite beam, the flexural wave attenuation of the structure was mainly caused by
the Bragg scattering effect, and the energy dissipation effect was caused by the damping.
Bragg scattering played a dominant role in the band gaps, and energy dissipation played a
dominant role outside the band gaps. The combined effect of the two mechanisms enabled
effective control of the propagation of the waves within and outside of the band gaps in the
low-frequency range.

The dimensional parameters of the periodic bi-layer beam significantly affected the
overall vibration reduction performance. Increasing cell lengths was beneficial for moving
the band gap toward lower frequencies, but at the same time, the widths of the band gaps
and the ability to suppress vibrations within the band gaps decreased. The sub-cell-length
ratios should be carefully designed with moderate values to balance the effect of the Bragg
scattering and the damping dissipation to achieve better performances both inside and out-
side of the band gaps. Under actual conditions, the greater the thickness ratio was between
the free and base layers, the more favorable it was for structural vibration suppression.

The experiment results showed that the PFLD treatment can increase vibration reduc-
tion levels in the low-frequency band gaps compared with a traditional FLD treatment.
This work was limited to a bi-layer beam structure with a PFLD treatment. An extension to
a plate or shell structure is possible and may provide more direct guidance for controlling
vibrations in practical structures.
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Appendix A

The coefficients aij in Equations (3) and (4) are expressed as follows:

a11 = k1 A1G1, (A1)

a12 = k2 A2G2, (A2)

a13 = −ω2
3

∑
i=1

ρi Ai, (A3)
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a14 = −a11 − a12, (A4)

a21 = ω2ρ1 A1 + ω2ρ2 A2, (A5)

a22 = E1 A1 + E2 A2, (A6)

a23 = h1ρ2 A2ω2/2, (A7)

a24 = h1E2 A2/2, (A8)

a25 = h2ρ2 A2ω2/2, (A9)

a26 = h2E2 A2/2, (A10)

a31 = a23, (A11)

a32 = a24, (A12)

a33 = ω2ρ1 I1 + ω2h2
1ρ2 A2/4− a11, (A13)

a34 = E1 I1 + h2
1E2 A2/4, (A14)

a35 = ω2ρ2 I2 + ω2h2
2ρ2 A2/4, (A15)

a36 = h1h2E2 A2/4, (A16)

a37 = a11, (A17)

a41 = a25, (A18)

a42 = a26, (A19)

a43 = ω2h1h2ρ2 A2/4, (A20)

a44 = h1h2E2 A2/4, (A21)

a45 = a35 − a12, (A22)

a46 = E2 I2 + h2
2E2 A2/4, and (A23)

a47 = a12. (A24)
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The matrices D(x) in Equation (7) are expressed as follows:

D(x) =


d11er1x d12er2x · · · d18er8x

d21er1x d22er2x · · · d28er8x

d31er1x d32er2x · · · d38er8x

d41er1x d42er2x · · · d48er8x

, (A25)

where d1j =
|[v4,v2,v3]|
|[v1,v2,v3]|

, d2j =
|[v1,v4,v3]|
|[v1,v2,v3]|

, d3j =
|[v1,v2,v4]|
|[v1,v2,v3]|

, and d4j = 1, and the vectors vi are
given as follows: vi =

[
a2(2i−1) + a2(2i)λ

2
j , a3(2i−1) + a3(2i)λ

2
j , a4(2i−1) + a4(2i)λ

2
j

]T
(i = 1, 2, 3)

v4 =
[
0,−a37λj,−a47λj

]T . (A26)

The matrices T(x) in Equation (7) are expressed as follows:

T(x) =


t11er1x t12er2x · · · t18er8x

t21er1x t22er2x · · · t28er8x

t31er1x t32er2x · · · t38er8x

t41er1x t42er2x · · · t48er8x

, (A27)

where the coefficients tij can be expressed as follows:

t1j = a22rjd1j + a24rjd2j + a26rjd3j, (A28)

t2j = a24rjd1j + a34rjd2j + a36rjd3j, (A29)

t3j = a26rjd1j + a36rjd2j + a46rjd3j, and (A30)

t4j = −a11d2j − a12d3j + (a11 + a12)rj (A31)
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