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Abstract: In this study, the focus is on the magnetic path formation and its effects on the performance
of a counter-rotating dual-rotor permanent-magnet flux-switching machine (CR-DRPMFSM) for
direct-drive counter-rotating wind power generation, based on different stator slot and rotor pole
combinations. To fully exploit rotor-shaft bore and improve fault-tolerant design, as well as increase
torque density, dual-rotor topologies with the capability for dual electrical and dual mechanical ports
are investigated. Moreover, the direct-drive counter-rotating wind power generation technique offers
a brushless topology, thus reducing maintenance cost and improving energy conversion efficiency
compared to single-blade wind turbine systems. Using finite element analysis (FEA), the inherent
magnetic coupling of the series and parallel paths shows varied impacts on the electromagnetic
performance of four different CR-DRPMFSMs based on the slot/pole combinations (MI to MIV)
considered in this study. The key electromagnetic performance indices, such as torque, cogging
torque, torque ripple, power factor, and efficiency, show proportionate variation to the coupling
level. A comparative analysis shows that MI exhibits higher average torque, lower torque ripples,
and high efficiency, reaching 90% with a power factor of 0.6. As an optimal design, an MI test
prototype is developed. The experimental test prototype validates the FEA results under no-load and
on-load conditions.

Keywords: dual-rotor flux-switching machine; counter-rotating; magnetic coupling; permanent
magnet; wind power generation

1. Introduction

Due to their high torque density and compact construction, dual-mechanical- and
electrical-port machines have recently attracted research interests. To this end, unique
machines with simple, sturdy structures and high torque and power densities, such as dual-
rotor permanent-magnet flux-switching machines (DRPMFSMs), have been proposed [1–5].
Two rotors, the inner and outer rotors, sandwich a single stator in the structure of DRPMF-
SMs. As a result, machine performance, particularly torque, is enhanced.

On the other hand, due to concerns about the cost of PM materials, recent studies have
considered magnet-less variants of dual-rotor machines to cut down on hardware cost while
boosting the torque density based on the so-called brushless stator-mounted wound-field
flux-switching machines [6]. In addition, flux controllability of magnet-less dual-rotor flux-
switching machines makes it attractive for specific application areas [7,8]. Notwithstanding,
DRPMFSMs are comparatively preferred to their wound-field variants since they eliminate
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field copper losses present in wound-field designs, potentially improving efficiency. In
addition, DRPMFSMs enable high air-gap flux density and torque density capabilities. Even
when compared to high-temperature superconducting (HTS) dual-rotor flux-switching
machines [9], DRPMFSMs are more cost effective for the same performance, while offering
better temperature capabilities than HTSs which require cryogenic cooling since PMs
can operate at higher temperatures. However, because of the structure’s high degree
of integration, there are mutual electromagnetic effects such as magnetic field coupling
between the inner and outer machines’ fields.

There are numerous studies conducted on dual-rotor permanent-magnet (DRPM)
machines to reduce the non-negligible impacts of magnetic coupling effects. Design-wise,
the flux-weakening effects of magnetic coupling can possibly be mitigated by choosing
the right design topologies, such as unique PM structures [10] or different winding con-
figurations [11]. The authors of [12] also adopted a novel control strategy as a means of
suppressing the detrimental magnetic coupling effects.

In [13], the magnetic coupling consequence is examined from the standpoint of airgap
harmonic groups in the context of DRPMFSMs, with the main emphasis on the effects of
the positive and negative coupling harmonics and how they affect torque performance,
back-EMF, and overload capacity. This study, however, does not consider various stator
slot and rotor pole combinations.

With an emphasis on PM field distribution, back-EMF and air-gap flux density between
the inner and outer stator tooth numbers, the effect of magnetic coupling on co-axial
DRPMFSMs is explored in [14] for hybrid electric vehicles. This study does not provide any
information available on the impact on other electromagnetic performance indices, such as
power factor, torque, efficiency, and torque ripple. In summary, a comparative analysis on
the shortcomings of existing dual-rotor machine winding topologies is provided in Table 1.

Table 1. Comparison of dual-rotor topologies.

Refs. Winding Shortcomings and Comments

[2] Drum winding Mechanically coupled rotor and, therefore, counter rotation is not possible.
Mutual coupling effect exists but is not analyzed.

[6] Concentrated toroidal winding
Pancake structure and, therefore, is not feasible for counter rotation.
Integral rotor structure by mechanically coupling of inner and outer
rotor with end disc

[7] Group concentrate for armature winding
and toroidal winding for field excitation

Mechanically coupled rotor and, therefore, counter rotation is not possible.
Due to group winding, the magnetic path formed is longer. As a result of
armature winding groups, the mutual effect is higher.

[9] Toroidal field winding
Armature winding overlapped field coils

Modular segmented stator creates manufacturing complexity.
High-temperature superconductor (HTS) winding is adopted and,
therefore, requires cryogenic cooling.

Therefore, to the best of the authors’ knowledge and based on the existing literature,
information about magnetic coupling effects on the electromagnetic performance of the
series and parallel teeth of DRPM machines is still lacking, particularly for counter-rotating
DRPMFSMs (CR-DRPMFSMs) designed for direct-drive wind power generation systems,
as illustrated in Figures 1 and 2. The proposed CR-DRPMFSM design employs concentrated
dual armature windings with low-cost ferrite PMs, which are both housed on a single
stator. The stator is positioned between the inner and outer rotors which rotate in opposite
directions. The proposed CR-DRPMFSM has a unique mechanical assembly, as illustrated
in Figure 1b, which produces counter rotation via its dual rotors.

The proposed evaluation of the magnetic coupling effects in CR-DRPMFSMs is impor-
tant due to the following reasons:

• With a complex magnetic topology due to the two rotors, the interactions between the
flux sources and circulating fluxes are also complicated and not yet explored.
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• The magnetic coupling between the stator and two rotors, as well as between the
series and parallel teeth, could have significant impacts on torque production, cogging
torque, torque ripple, losses, etc.

• The counter-rotating (CR) topology brings additional challenges and degrees of free-
dom that require dedicated analysis.

• With a better understanding, CR-DRPMFSMs can be designed to maximize power
density, efficiency, and reliability.

• The knowledge gained would be applicable to other complex multi-rotor and flux-
modulation machine topologies.

• There are practical economic and technological benefits for the proposed direct-drive
wind power generation systems which utilize high-torque-density machines.

For the rest of the paper, Section 2 is used to discuss the characteristics of wind power
generation, while Section 3 is focused on the results and discussion on the electromagnetic
performance study based on different slot/pole configurations. This leads to an experi-
mental study to confirm the validity of the proposed design and the accuracy of the FEA
predicted results. In the end, some conclusions are drawn in Section 4.
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2. Characteristics of Wind Power Generation
2.1. Direct Drive Counter-Rotating Wind Power Generation

A pair of wind blades are attached to a dual-rotor wind turbine, which rotate in the
opposite direction. A type of dual-rotor wind turbine used to produce wind energy is the
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direct-drive counter-rotating wind turbine (DDCRWT). As previously stated, the proposed
CR-DRPMFSM in DDCRWTs comprise double rotors, i.e., inner and outer rotors, whose
shafts are then united to the DDCRWT gearless system as shown in Figure 2. It is evident
that in the case of DDCRWTs, the inner rotor of the proposed CR-DRPMFSM rotates in a
clockwise direction while being directly coupled with the shaft of the front wind turbine.
On the other hand, the outer rotor turns anticlockwise while being connected to the blades
of the rear wind turbines.

Since a DDCRWT generates more power compared to a single-rotor wind turbine
or dual-rotor co-rotating system, it is prioritized for the proposed CR-DRPMFSG. To this
end, effectiveness is examined in-depth in terms of slot/pole combinations and magnetic
coupling for the series and parallel teeth’s magnetic paths based on finite element analysis
(FEA) and experimental methods.

2.2. Magnetization Concept for Series and Parallel Stator Teeth

In the ideal single air-gap case, possible slot/pole combinations are not perturbed by
magnetic coupling effects. However, due to the tangentially magnetized sandwiched PMs
in the parallel-tooth design, there is a coupling phenomenon. For least magnetic coupling,
the possible stator slot/rotor pole combinations that form the series and parallel stator
teeth are derived as follows:

Nso = kNsin

Nso = nNsin
and


Nro = Nso

(
2 ± k

2m

)
Nrin = Nsin

(
2 ± k

2m

) (1)

where Nso is the inner machine stator teeth and Nsin is the outer machine stator teeth.
Similarly, Nro is the outer machine rotor pole number, and Nrin is the inner machine rotor
pole number. Furthermore, n is a fractional number, m defines the number of phases, and
k is a positive integer.

Based on the above-mentioned formulation and geometric derivation, the relations
of the stator teeth between the inner and outer rotors are defined as parallel, series, and
independent, as shown in Figure 3. In the case when stator teeth between the upper and
lower slots are in line and the magnetization direction of both PMs is the same (as shown
in Figure 3a), then the stator teeth formed are parallel stator teeth due to parallel magnet
path formation. Similarly, when the stator teeth are in line, but the magnetization direction
of the upper and lower PMs is in the reverse direction (as shown in Figure 3b), then the
magnetic path formed is series, and the stator teeth are termed series stator teeth. Finally,
when one of the stator teeth is in line with the other stator teeth in the middle of the stator
(as shown in Figure 3c), then the magnetic flux path formed is independent and the stator
teeth are termed independent teeth. Based on the slot/pole combinations between the
inner and outer stator teeth, the magnetic path and, hence, the stator teeth vary, resulting
in greatly varying overall electromagnetic performance.
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Thus, to investigate the impact of series, parallel, and independent stator teeth, var-
ious slot/pole combinations for the inner and outer machines were opted for as case
studies, among which four dominant cases, including 12S/14P-12S/14P (termed MI),
6S/5P-18S/42P (MII), 6S/5P-12S/22P (MIII), and 12S/10P-12S/22P (MIV), are shown in
Figure 4 with their distinct magnetic path formations and magnetic flux paths.
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Based on the flux path and magnetic circuit, the structure MI (as shown in Figure 4d)
forms a parallel magnetic circuit path due to the alignment of the stator teeth in line,
whereas between the inner and outer stators, some series circuit is also established with
flux circulation. For MII, the slot/pole combination of the inner and outer machines is
6S/5P-18S/42P, as shown in Figure 4b. It is evident that all the inner stator teeth form
parallel teeth, whereas in the outer stator, phase A forms parallel and phase B/C form
independent teeth. In addition, the inner parallel teeth with all the outer independent
teeth of phase B/C form a sort of PI-type series magnetic circuit. For MIII, the slot/pole
combination of the inner and outer machines is 6S/5P-12S/22P, as shown in Figure 4c.
It can be clearly seen that inner series and parallel teeth are formed in the inner stator,
whereas series, parallel, and independent teeth are formed in the outer stator. Moreover,
the inner and outer series form a sort of series–series magnetic circuit, whereas the inner
series with the outer independent teeth result in a PI-type series magnetic circuit. It is
important to note that for MII and MIII topologies, a series magnetic circuit is generated
with the nearest inner parallel stator teeth. Finally, structure MIV (as shown in Figure 4d)
is formed from the combination of a very common structure, i.e., 12 slots/10 poles and
12 slots/22 poles, for optimal topology. Based on the magnetic circuit formation, it is
evident that a parallel magnetic circuit path is developed in the inner and outer stators,
while a series circuit is also established.
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Based on the formation of series, parallel, and independent stator teeth, the PM
coupling and magnetic flux density (as shown in Figure 5) greatly varies, resulting in the
overall electromagnetic performance being affected. Thus, to find the optimal design with
the least PM coupling and better electromagnetic performance, a detailed performance
analysis is presented in the proceeding section.
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3. Results and Discussion
3.1. Electromagnetic Performance Analysis

In this section, the FEA technique is used to evaluate the magnetic coupling impact of
the series and parallel teeth on the highlighted machines in Figure 4. Since the proposed
CR-DRPMFSMs combine the inner machine (inner stator and rotor) and outer machine
(outer stator and rotor), and due to the dual-port feature, the impact on individual machine
inner and outer ports was investigated. This detailed investigation included both no-load
and on-load profiles.

An analysis of the inner-port flux linkage, as shown in Figure 6a, shows that MI,
followed by MIV, MII, and MIII, offers maximum flux. The maximum flux offered by
MI is due to its lower magnetic coupling compared to the other designs. Additionally,
due to the highest magnetic coupling between the inner and outer machines in MIII, the
corresponding flux linkage is adversely affected in the form of a drop in the amplitude.
Furthermore, from the harmonic spectra shown in Figure 6b, it is clearly shown that MIV
offers the highest fundamental component; however, due to the dominance of higher-order
harmonics, the peak-to-peak values are adversely impacted. Moreover, in terms of higher-
order harmonics, the least harmonics are offered by MI, whereas the rest exhibit dominant
odd-order harmonics and minor even-order harmonics as well. In the same way, both MI
and MIV outer ports offer approximately maximum flux, followed by MII and MIII, as
shown in Figure 6c. The reduction in the peak-to-peak flux linkage magnitude of MI arises
due to the higher-order harmonic content, as exhibited in Figure 6d. The 5th harmonic
order, which is dominant, results in a reduction in the magnitude of the fundamental
component. This is due to variation in the magnetic flux density of the series, parallel, and
independent stator teeth.

The back-EMF waveform and magnitude of harmonic spectra greatly differ due to the
inconsistency of coupling through the series, parallel, and independent stator teeth for all
topologies, as shown in Figure 7. It is interesting to notice that although the behavior of
the back-EMF waveforms for the inner and outer machines are roughly sinusoidal, their
harmonic spectra exhibit both even and odd higher-order harmonic orders due to the
dominance of coupling.

For the inner machine in Figure 7a,b, MI and MIV demonstrate good-quality sinusoidal
back-EMF waveforms with a higher magnitude compared to MII and MIII. This is because
MII and MIII show lower fundamental components, while MIII also suffers from the
impact of higher-order harmonics. Additionally, in the case of the outer ports, as shown
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in Figure 7c,d, it can be seen that MIII yields a distorted back-EMF profile compared to
the other topologies which are approximately sinusoidal, with the highest magnitude
from MII, followed by MI and MIII. However, due to the coupling effect of the series,
parallel, and independent stator teeth between the inner and outer ports, there exist
even-order harmonics.
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Under on-load conditions, the selected CR-DRPMFSMs were examined at different
operating conditions to strictly explore the impact of series and parallel stator teeth on
electromagnetic performance. In this regard, detailed analysis of the key performance
indicators, including copper losses, average torque, total machine losses, ripple rate, power
factor, output power, and efficiency, were accomplished.

To assess overload capabilities, the initially designed CR-DRPMFSM was run at
various current densities. The average torque profiles under varying current density shown
in Figure 8 demonstrate that magnetic coupling and variation through the series and
parallel stator teeth cause not only the average torque but also the overload capability of
the inner and outer ports to substantially vary. In the case of the inner port, as shown
in Figure 8a, it is evident that MI offers the highest average torque, followed by MIV,
whereas MII and MIII show a similar response with low overload capability. Similarly, the
torque and overload behavior of the outer port (as shown in Figure 8b) reveal interesting
results. It can be clearly seen that MIV shows slightly higher torque than MI and the same
overload capability, whereas the overload profile of MII is excellent. It was found that MI
is the most appropriate design that exhibits the highest average torque by comparing the
average torque of the inner and outer ports in the selected case studies. Additionally, to
avoid saturation and achieve maximum torque, 15 A/mm2 was found to be the optimum
current density.
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Series and parallel alignments of the stator teeth have a dominant impact on magnetic
coupling, which impacts the back-EMF in the form of odd and even higher-order harmonics.
In terms of the rate of torque ripples, the 5th- and 7th-order harmonics have a significant
impact on the torque profile. Figure 9 depicts the effect of torque ripples on the average
torque for both the inner and outer ports. The analysis demonstrates that for both the
inner and outer ports, the ripple rate and average torque increase proportionately, but at
a different increasing rate. Figure 9a demonstrates that in the case of the inner port, the
lowest ripple rate is offered by MI and the highest is offered by MIV, whereas MII and MIII
show a comparatively lower ripple rate but also exhibit lower torque. Similarly, Figure 9b
shows for the outer port machines that torque ripple in MI decreases with an increase in
average torque, while MII suffers from very high ripple rates.

To evaluate the efficient functioning of the proposed machines and selection of the
best design for prototype construction, efficiency was assessed against output power, as
indicated in Figure 10. In the case of the inner port, as shown in Figure 10a, it is seen that
the maximum output power and efficiency are achieved by MI, followed by MIV, in both
the inner and outer ports, whereas MII and MIII show the worst response in the inner port.
In the outer port, MII has a comparatively better response than MIII but not better than MI
and MIV. Based on the analysis, it is evident that among all topologies, MI is optimal for
comparatively better efficiency and output power.

To ensure high efficiency at the peak power factor, all topologies were examined, as
shown in Figure 11. For both the inner and outer ports, the analysis shows that for the inner
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port, MIII exhibits a higher power factor while MI displays higher efficiency. Similarly, in
the case of the outer port, MI, MII, and MIV show high efficiency and a good power factor.
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Moreover, Figure 12 shows how output power changes with copper losses. Looking
closely at Figure 12a, the inner port indicates that MI and MIV exhibit high output power
and low copper losses. However, due to saturation, copper losses in MII and MIII increase
at the detriment of the output power. Like Figure 12a, Figure 12b demonstrates that only
MIII experiences substantial copper losses at a low output power in the outer port, whereas
the other designs only experience moderate losses. Output power and efficiency were the
two effects of copper losses that were most pronounced.
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Figure 13 illustrates the analysis of the variation in total losses with efficiency. It is
clear that efficiency declines when machine losses rise for both the inner and outer ports.
It is also clear that MI offers excellent efficiency and fewer losses at the maximum output
power. The maximum efficiency achieved for the inner machine is close to 80%, while the
maximum efficiency for the outer machine is approaching 90%.
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Thus, keeping in view the key performance indicators, a detailed comparative analysis
was performed, as shown in Figure 14, whereas torque and power density based on magnet
utilization are summarized in Table 2. Based on the comparative examination of the key
performance indicators, it was found that MI is the optimal design configuration. Therefore,
it was primed for fabrication to test the feasibility of the FEA predicted results.
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Table 2. Rated torque and power density of inner and outer machines at current density = 15 A/mm2.

Torque Density (Nm/kg) Power Density (kW/kg)

Inner Machine Outer Machine Cumulative Inner Machine Outer Machine Cumulative

MI 9.3 22.11 31.41 1.47 3.47 4.94

MII 6.64 27.62 34.26 1.046 4.35 5.396

MIII 6.80 14.89 21.69 1.071 2.419 3.49

MIV 4.30 23.86 28.16 0.67 3.75 4.42
PM weight for MI and MIV = 0.36 kg, and PM weight for MII and MIII = 0.194 kg.

3.2. Experimental Verification

In order to validate the predicted FEA results, a test prototype was developed
(as shown in Figure 15) utilizing the design parameters [15] illustrated in Figure 16 and
listed in Table 3, with the lamination core material of 35H210 and paper insulation, whereas
the test setup is shown in Figure 17. For counter rotation, the proposed CR-DRPMFSM
was coupled to clockwise and counter-clockwise prime movers to independently rotate the
inner and outer rotors. One of the prime movers runs clockwise, whereas the other runs
counter-clockwise. To measure torque, a torque sensor and a speed sensor were coupled to
the shaft of the rotor, and to record the electrical waveforms, an oscilloscope was used. The
proposed design was tested under no-load for the back-EMF (as shown in Figure 18) and
average torque (as shown in Figure 19) in both the inner and outer ports. It can be clearly
seen that both the FEA and experimental test results fairly match. There is a slight deviation
between the measured and FEA results, which is due to manufacturing tolerances and the
nut-and-bolt holes.
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Table 3. Details of leading design parameters for fabrication of prototype.

Symbol Value (mm) Symbol Value (mm) Symbol Value (mm)

Rout 60 Rs−out 51.5 R f−out 41

Rf−in 35 Rs−in 21.5 Rs 13

Wsp−in 2.26 Wsp−out 3.75 W f b 6

His 13.5 Hos 10.5 Hs 30

Hpm 30 Wpm 4
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4. Conclusions

In this paper, the impact of series and parallel stator teeth on the electromagnetic
performance of counter-rotating dual-rotor permanent-magnet flux-switching machines
(CR-DRPMFSMs) was investigated. FEA was utilized to evaluate four machine configura-
tions (MI, MII, MIII, and MIV) with different slot/pole combinations. The FEA no-load
results demonstrate that MI topology has the highest flux linkage and lowest harmonic
content for both the inner and outer ports. The back-EMF is most sinusoidal for MI and
MIV in the inner port and MI in the outer port.

Under load, MI exhibits the highest average torque (15.5 Nm) and overload capability.
MIV has comparable performance. The lowest torque ripple occurs with MI in both ports.
MI also has the highest efficiency (80% inner and 90% outer).

Overall, MI with the 12S/14P-12S/14P configuration provides optimal electromag-
netic performance by mitigating the magnetic coupling effects. This is attributed to the
parallel stator teeth design. In contrast, MIII with the maximum coupling effects has the
poorest performance.

A CR-DRPMFSM prototype based on the MI topology was constructed and tested. The
experimental back-EMF and torque results validate the FEA predictions. In conclusion, this
study provides a quantitative and in-depth investigation of magnetic coupling effects in
CR-DRPMFSMs, demonstrating that the MI topology with parallel stator teeth maximizes
performance. The findings contribute to the improved design of this emerging dual-port
flux-modulation machine for direct-drive counter-rotating wind turbines.
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