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Abstract: Traditional belt deflection detection devices for underground belt conveyors in coal mines
have problems, such as their single function, poor fault location and analysis accuracy, low automation
level, and low reliability. In order to solve the defects of traditional detection devices, the belt deviation
faults of the underground belt conveyor transport process require to be detected effectively and
reliably. This paper proposes a belt deviation detection method based on machine vision. This method
makes use of a global adaptive high dynamic range imaging method to complete the brightness
enhancement processing of the underground image. Then the straight-line features of the conveyor
belt edges are extracted using Canny edge detection and the Hough transform algorithm. In addition,
a dual-baseline localization judgment method is proposed to realize the identification of band bias
faults. Finally, a test bench for belt conveyor deviation was built. Testing experiments for different
deviations were conducted. The accuracy of the tape deviation detection reached 99.45%. The method
proposed in this study improves the reliability of belt deviation fault detection of underground belt
conveyors in coal mines and has wide application prospects in the field of coal mining.

Keywords: belt conveyor; belt deviation detection; machine vision; fault identification

1. Introduction

China’s available coal reserves are rich—the current storage capacity accounts for
13.3% of the world’s total, ranking third in the world, second only to the United States and
Russia [1,2]. The proportion of production is now 50.8% of the world’s total coal production.
At present, China is in the stage of rapid development. There is no evidence of reduced
demand for coal resources, so it is necessary to strengthen coal production safety [3,4]
and to improve the level of mining technology. It is important to progressively achieve
automated mining [5,6] to ensure the healthy development of the coal mining industry.

As an important part of coal mine production, the safety and stability of the operation
of underground coal mine belt conveyors directly affect the safety and efficiency of coal
production [7–9]. Belt conveyors can enable the long-distance, large capacity, continuous
and stable transport of raw coal to the outside. This is an important part of the coal mining
system. However, belt conveyors work under high load and high intensity for long periods
in a harsh environment. They are prone to belt deviation failure during transport, which
may cause serious accidents and affect the healthy development of the coal industry [10–12].

Most traditional conveyor belt deviation fault detection devices use triggered struc-
tural changes to enable detection. However, they are prone to fail when operating in the
harsh environment of the underground for a long time, which leads to a reduction in their
reliability. At present, equivalent detection systems have been developed both at home
and abroad for the detection of belt deflections of belt conveyors in underground coal
mines [13]. However, the problems are that the systems have a single function, poor fault
location and analysis accuracy, a low automation level, and low reliability. Moreover, the
systems developed so far are generally very costly and are not easy to maintain [14,15].
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Therefore, how to effectively and reliably detect and warn of belt deviation faults in the
transport process of mining belt conveyors is an urgent problem needing to be solved in
the safe production of coal energy.

Liu [16] established an adaptive segmentation model and a belt offset quantification
model for continuous online detection of the conveyor belt deviation status. Their results
showed that the degree of conveyor belt deviation can be quantitatively calculated and the
deviation status can be objectively evaluated. Xu Cheng et al. [17] proposed an improved
8-neighbourhood seed-filling algorithm for detecting the edge position of belt conveyors
in complex environments. It can quickly detect belt edge information in complex envi-
ronments and ensure that the conveyor belt is able to work continuously and efficiently.
Wang et al. [18] proposed an improved edge detection algorithm based on a Canny op-
erator and morphological processing, and a belt-positioning algorithm based on Hough
line detection. This algorithm solves the problem of difficult-to-extract straight lines from
the edge of the belt and adapts to the positioning of the belt under complex operating
conditions. Zhang [19] proposed a novel conveyor belt deviation monitoring method based
on deep learning. The method is realized by improving the output results of a general
target detection network, YOLOv5, such that the network is enhanced with the ability to
detect straight lines instead of bounding boxes.

Considering the current status of research, in order to overcome the above problems
associated with the belt deflection detection technology of underground belt conveyors in
coal mines, this paper proposes a machine-vision-based belt deflection detection method
for underground belt conveyors in coal mines. Firstly, a global adaptive high-dynamic-
range imaging method is used to enhance the brightness of acquired conveyor photos.
Then the straight-line features of the conveyor belt edges are extracted using Canny edge
detection and the Hough transform algorithm. Finally, a dual-baseline positioning judg-
ment method is proposed. The method is used to enable the identification of conveyor
belt deviation faults. In this study, a belt conveyor deflection test bed was built to detect
different deflections to verify the feasibility and accuracy of this method. Based on machine
vision, the research innovatively applies Canny edge detection and the Hough transform
algorithm to belt conveyor deviation detection. We aim to obtain a stable and efficient
belt conveyor deviation detection method to improve the reliability of underground belt
conveyor monitoring systems.

2. Theory
2.1. Image Low-Light Processing

Due to the poor lighting conditions in the underground tunnels of coal mines, the
images captured by the camera sometimes have the problem of dark brightness. This
problem affects the processing and analysis of the images and reduces the accuracy of
fault monitoring. Auxiliary lighting can improve this situation but can only partially solve
the problem of poor image brightness. So, it is necessary to use a technical means of low
illumination brightening processing of underground images.

In this study, a global adaptive high dynamic range imaging (HDR) [20,21] method is
used to brighten coal mine underground belt conveyor images and coal mine roadway im-
ages and recover the details of their darker parts, which is represented in Equation (1) [22]:

g(x, y) =
log[ f (x, y)/ f + 1]
log( fmax/ f + 1)

(1)

where fmax is the maximum value of the pixel intensity, f (x,y) is the intensity of each pixel,
and f is the logarithmic mean of the pixel intensity. f can be obtained from Equation (2):

f = exp
{

1
H · W ∑ log[σ + f (x, y)]

}
(2)
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where σ denotes the correction value set to prevent the appearance of black dots with
pixel intensity 0 in the image, H is the number of pixels in the picture length, and W is the
number of pixels in the picture width.

Figure 1 shows images of an underground belt conveyor before and after processing
using the global adaptive high dynamic range imaging method.
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Figure 1. Conveyor image before and after low-light processing. (a) Before treatment; (b) After treatment.

Comparing the effect before and after processing in Figure 1, it can be seen that
the brightness of the image affected by the global adaptive high dynamic range imaging
method improves. In order to more clearly see the effect of brightening, a grey-scale
histogram was extracted from the original image and the brightened image; the results are
shown in Figure 2.
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Figure 2. Grey-scale histogram of conveyor image before and after low illumination processing.
(a) Before treatment; (b) After treatment.

It can be clearly seen from Figure 2 that the pixel intensity of the image is generally
enhanced after the brightening process, the brightness problem of the image is effectively
improved, and the clarity of the roadway image is also significantly improved.

2.2. Belt Edge Feature Extraction

(1) Canny edge detection

The conveyor belt edge is the most important basis for judging belt deviation faults. It
is also the most effective method to judge belt deviation faults by analyzing the position of
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the conveyor belt edges. In this study, we chose the Canny edge detection algorithm [23]
to extract the features of the conveyor belt bilateral edges. The Canny edge detection
algorithm can be divided into the following four steps [24]:

1© Gaussian filtering of images
Edge detection algorithms generally work on the basis of the derivative of the intensity

of the image pixels. The derivative is more sensitive to the noise of the image. So, it is
necessary to use the appropriate filtering means for filtering the image processing, using
the traditional Canny edge detection with Gaussian filtering to smooth the image.

2© Calculate the gradient value and direction
In calculating the gradient value of an image, the horizontal operator Soblex and the

vertical operator Sobley are generally calculated using convolution with the input image to
obtain the horizontal and vertical components of the gradient dx and dy [25], as shown in
the following equation:

Soblex =

1 0 −1
2 0 −2
1 0 −1

 (3)

Sobley =

1 2 −1
0 0 0
1 −2 −1

 (4)

dx = f (x, y) · Soblex(x, y) (5)

dy = f (x, y) · Sobley(x, y) (6)

The principle of image edge gradient calculation is shown in Figure 3.
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Based on the horizontal and vertical components of the gradient dx and dy, the gradient
magnitude M (x, y) at the (x, y) coordinates can be further obtained as shown in Equation (7):

M(x, y) =
√

d2
x(x, y) + d2

y(x, y) (7)
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The gradient direction θM at the (x, y) coordinates is:

θM = arctan
dy

dx
(8)

3© Non-extreme value suppression
The result obtained after gradient calculation does not identify the pixel as the target

feature point; only when the maximum value is obtained at the pixel can it be identified
as the target feature point. So, the operation of non-maximum value suppression needs
to be carried out by comparing the center pixel of the neighborhood with the pixel of the
gradient direction. If the pixel is larger than the pixel of the gradient direction, then it
is retained. The rest of the pixel gradients are assigned to 0, and vice versa. The pixel
gradient is assigned to 0, and the pixel with the largest value of the gradient is retained.
Non-extremely large value suppression can retain the pixel with the largest gradient in the
neighborhood to effect edge refinement.

When the gradient angle is not located orthogonally or diagonally, then there is
practically no pixel point in the gradient direction. The location can be regarded as a sub-
pixel point, and the gradient value of the sub-pixel point is obtained by interpolating the
values of the pixels on both sides. An approximation algorithm is proposed in the Canny
edge detection algorithm. The algorithm can approximate the gradient direction within
a certain angular range to a fixed direction, as shown in Figure 4. For example, when the
gradient direction is located in the direction −22.5◦~22.5◦, the approximation replaces the
pixel points with 0◦ direction and so on.
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4© Double-threshold filtering and edge connectivity
The edge of the image obtained by non-extremely large value suppression is more

accurate. However, because of the noise and image color changes some edge pixels are not
removed. So, we need find the means to remove this part of the excess pixel points. To
obtain a more accurate edge, the double-threshold filtering method is an effective method
that has been proposed to solve this kind of problem. The principle of the method is
as follows:

a. To set the high and low thresholds, the Canny edge detection algorithm recommends
keeping the ratio of the high and low thresholds between 2 and 3;

b. If the gradient magnitude of a pixel is greater than the high threshold, the pixel is
retained as an edge pixel;
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c. If the gradient magnitude of a pixel is less than the low threshold, the pixel will
be removed;

d. If the gradient magnitude of a pixel is between a low threshold and a high threshold,
the pixel is determined to be an edge pixel or not based on the connectivity, and, if the pixel
is connected to an identified edge pixel, the pixel is retained as an edge pixel, otherwise it
is removed.

(2) Hough transform linear detection

The Hough transform is an algorithm that detects and displays straight lines in a graph
on the basis of completing the edge detection [26]. The image field of view used in this
paper is small and the conveyor belt edges can be approximated as straight lines, and
straight-line extraction can be carried out effectively using the Hough transform.

The working principle of the Hough transform is to transform the point on the edge
line from a right-angled coordinate system to a polar coordinate system. The straight line in
the edge line is converted to a point in the polar coordinate system. As shown in Figure 5,
the points P1 and P2 in the Cartesian coordinate system are two trigonometric curves in the
polar coordinate system after Hough transformation. The two curves intersect at a point Q,
which can represent the straight line in the Cartesian coordinate system where the points
P1 and P2 are located. All the points on the straight line are intersected at the point Q after
transforming them to the polar coordinate system, and the points on the straight line satisfy
the functional relationship expressed by Equation (9):

ρi = xi cos θi + yi sin θi (9)
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The number of intersecting curves reflects the length of a straight line in a right-angled
coordinate system. The Hough transform achieves the objective of straight-line detection
using such a transformation.

The Hough transform does not detect and display all straight lines when performing
straight-line detection, because a threshold is set artificially when performing the Hough
transform. Only when the length of a straight line is greater than or equal to the threshold
will the line be judged as a valid straight line and displayed. As shown in Figure 6, the
Hough transform follows the flow shown in the diagram when a straight line is detected.

When Hough transform straight line detection is performed on the results of Canny
edge detection, the threshold can be adjusted according to the length of the straight line
that actually needs to be detected. The detection effect is such that the interfering lines can
be removed as much as possible, and only straight lines where the edge of the conveyor
belt is located can be retained.
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(3) Conveyor belt edge feature extraction test

Belt conveyor belt deviation fault detection mainly uses the Canny edge detection and
Hough transform straight line detection algorithms mentioned above. In order to reduce
the influence of redundant straight lines on the detection results, ROI region segmentation
is also a particularly important part of the region segmentation, which is mainly retained
in the region where the conveyor belt is located.

Part of the process and the results of the belt edge straight line detection for a belt
conveyor are shown below.

As can be seen from Figure 7, continuous straight lines can be detected at the edge
of the conveyor belt in the extraction result, which is an effective extraction result. A rea-
sonable analysis method is chosen to analyze this feature in order to determine the belt
bias fault.

Machines 2023, 11, x FOR PEER REVIEW 7 of 15 
 

 

Start testing

Setting the totalisation 

value A=0 and the 

threshold k

Whether all points have been traversed?

Search for points in the 

image (xi, yi)

Is ρi=xicosθi+yisinθi  satisfied?  

A=A+1

A=A

A  The threshold k ?

Show the line

End detection

YES

NO

YES

YES

NO

NO

 

Figure 6. Hough transform linear detection flowchart. 

When Hough transform straight line detection is performed on the results of Canny 

edge detection, the threshold can be adjusted according to the length of the straight line 

that actually needs to be detected. The detection effect is such that the interfering lines can 

be removed as much as possible, and only straight lines where the edge of the conveyor 

belt is located can be retained. 

(3) Conveyor belt edge feature extraction test  

Belt conveyor belt deviation fault detection mainly uses the Canny edge detection 

and Hough transform straight line detection algorithms mentioned above. In order to re-

duce the influence of redundant straight lines on the detection results, ROI region seg-

mentation is also a particularly important part of the region segmentation, which is mainly 

retained in the region where the conveyor belt is located.  

Part of the process and the results of the belt edge straight line detection for a belt 

conveyor are shown below. 

As can be seen from Figure 7, continuous straight lines can be detected at the edge of 

the conveyor belt in the extraction result, which is an effective extraction result. A reason-

able analysis method is chosen to analyze this feature in order to determine the belt bias 

fault. 

 

Figure 7. Conveyor belt edge feature extraction process. Figure 7. Conveyor belt edge feature extraction process.



Machines 2023, 11, 1039 8 of 15

2.3. Feature Identification and Fault Determination

The edge of the conveyor belt straight line with the movement of the conveyor belt
is offset and moves, while the belt conveyor frame does not move; that is, the conveyor
center baseline position is fixed. This part of the proposed double-baseline belt offset
determination method involves analysis of both sides of the conveyor belt relative to the
center of the conveyor offset ratio to determine the belt offset fault. When the offset ratio is
more than 5%, there is inferred to be occurrence of a belt offset fault. The specific analysis
scheme is shown in Figure 8.
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Figure 8. Schematic diagram for judgment of band bias fault. (a) Normal working condition;
(b) Faulty condition with deviation.

Figure 8a shows the position of the belt edge under normal working conditions. In
the figure, Y is the conveyor center baseline, X is the belt deviation fault detection baseline,
point Pa is the intersection of the left edge of the conveyor belt and the detection baseline,
Pb is the intersection of the right edge of the conveyor belt and the detection baseline,
and la and lb are the widths of the conveyor belt, which are located on both sides of the
center baseline Y. At this time, it should be satisfied that la = lb; that is, the point Pa and the
point Pb are symmetric about the center baseline. Figure 8b shows the belt edge when belt
deflection occurs. Moving from the dotted line to the solid line, the points Qa and Qb are
the positions of Pa and Pb after moving, and La and Lb are the corresponding belt widths
on both sides. The total width of the belt remains unchanged, so only the sizes of La and Lb
need to be analyzed in order to obtain the deflection proportion of the conveyor belt.

Based on the above analysis, the band bias fault judgment can be carried out using
Equations (10) and (11):

Lengh = La + Lb (10)

ratio =

{
(Lb − Lengh/2)/Lengh, La < Lb
(La − Lengh/2)/Lengh, La > Lb

(11)

In the formula, Lengh is the width of the conveyor belt located at the baseline unit
pixel, and ratio is the ratio of the conveyor belt offset and the width of the conveyor belt.
When the ratio is greater than 5%, it is inferred that a belt conveyor belt deviation fault
has occurred.
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The results after the detection of the straight line shown in Figure 8 are then analyzed
and processed as described above, with the baseline plotted and intersected as shown in
Figure 9.
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Figure 9. Distance detection on both sides of the conveyor belt.

In Figure 9, the blue line is the conveyor center baseline, the green line is the conveyor
belt deviation fault detection baseline, and the red line is the belt boundary line. The
image resolution is 835 × 225. According to the detection results, the intersection point of
both sides of the conveyor belt and the baseline is located at the pixel points (112,180) and
(780,180). The width of the conveyor belt at the baseline is calculated to be Lengh = 620 pixel,
and the bandwidth of both sides is La = 300 pixel. The bandwidth of the two sides is
Lb = 368 pixel, which can be obtained by the ratio of the belt deviation ratio = 5.4%. A ratio
of belt deviation greater than 5% is inferred to indicate the occurrence of a belt deviation
fault, and at the same time, the validity of the method to determine the belt deviation fault
is verified.

3. Experimental Design
3.1. Experimental Program Design

This study is an experimental study of belt bias fault detection for underground belt
conveyors in coal mines. The experiment uses a 720p ordinary industrial camera, which
has a low cost and high compatibility. The development tool chosen for this study is Visual
Studio 2017 with the OpenCV 4.2.0 open-source computer vision library and the Intel
RealSense SDK 2.0 development toolkit.

Coal mine underground lighting conditions are poor. In order to ensure the quality of
the acquired images, auxiliary lighting of the shooting environment is required. Different
lighting methods affect the quality of the acquired images. Inappropriate angle and intensity
of the light source may result in the presence of shadows or reflections in the image, which
introduces a lot of noise to the image, reducing the contrast between the captured object
and the background, and reducing the quality of the image, while increasing the difficulty
of image analysis.

Based on the detection conditions, the scheme shown in Figure 10 is designed, where
an industrial camera is mounted directly above the coal flow through a gantry bracket.
The photography occurs towards the conveyor belt to ensure the monitoring range. The
auxiliary light source uses explosion-proof lighting, with direct lighting to provide auxiliary
lighting to the front of the belt conveyor in the coal mine. The environment is poor in the
area close to the comprehensive mining face, so it is possible to choose the transshipment
place or the place near the coal bunker where faults are likely to occur as the installation
location. Multiple detection points can be set up in relation to the detection demand. The
above cameras and the light sources are used for the simulation and analysis in this study.
The actual application needs to meet the coal mine safety standards.
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Figure 10. Bandwidth detection camera and lighting scheme.

3.2. Experimental Bench Construction

In order to verify the effectiveness of the method proposed in this study for belt
deflection detection of underground belt conveyors in coal mines, testing simulation
experiments were carried out. Consistent with the conditions required for experimental
testing, a small conveyor was designed as the experimental platform, as shown in Figure 11.
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Considering the economy of the experiment, the camera selected was an ordinary
720p industrial camera, which was mounted directly above the belt using a gantry. The
maximum resolution of the camera was 1280 × 720, and the frame rate of the captured
image was 30 fps.

This part of the experiment occurs on the ground. The shooting environment is open
and the lighting conditions are good, so the default image quality of the downhole image
can be approximated to that of the experimental image after the processing in the previous
steps. The poor conditions of the downhole are not yet set. This part of the experiment is
directly based on the captured images to enable the subsequent steps of image information
extraction and analysis, as well as testing of the fault detection effect.
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The images required for the belt bias fault experiment were taken with the camera
facing the conveyor belt area. As shown in Figure 12, the images of the conveyor belt were
taken in two states: when no belt bias fault occurred in the experimental setup and when
a belt bias fault occurred.
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In order to verify the effectiveness of the research method and get closer to the actual
working condition of the conveyor, this part of the experiment was carried out based on
the conveyor belt loaded with coal. The coal used for the test was 1/3 coking coal. The
detection effect of the edge features of the conveyor belt in this state is shown in Figure 13.
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Figure 13. Effect of conveyor belt edge detection in the loaded state.

4. Results and Discussion

In order to effectively test the effectiveness of this study on belt offset fault detection,
experiments were conducted in two states: with the offset ratio within 5% and between
5% and 10%, respectively. For the images under the different offsets, the offset size of the
conveyor belt was first measured manually. Then the offset ratio is detected by the system.
The difference between the detected offset ratio and the actual offset ratio is compared. The
test results are shown in Table 1. First, the relative deviation error is obtained by dividing
the sum of the detection error by the sum of the actual bias ratio. Then subtract the relative
offset error from 1 to get the detection accuracy.
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Table 1. Conveyor belt position detection results when the offset ratio is within 5 percent.

Experiment Number 1 2 3 4 5 6 7 8

Actual bandwidth/mm 700 700 700 700 700 700 700 700
Actual deviation distance/mm 0 5 10 15 20 25 30 35

Actual bias ratio 0 0.71% 1.43% 2.14% 2.86% 3.57% 4.29% 5.00%
The number of bandwidth pixels 468 468 470 469 470 468 471 470
The number of deviation pixels 2 5 8 11 14 17 21 24

Detecting bandwidth
bias ratio 0.43% 1.07% 1.70% 2.35% 2.98% 3.63% 4.46% 5.11%

Detection error 0.43% 0.36% 0.27% 0.21% 0.12% 0.06% 0.17% 0.11%

Based on the results of Table 1, a graphical comparison of the actual bandwidth and
detected bandwidth ratios was performed, as shown in Figure 14.
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Figure 14. Comparison of actual and detected ratios within 5% of the offset ratio.

As can be seen from Table 1 and Figure 14, the actual measured belt deflection ra-
tio gradually increased. The belt deflection ratio detected by the system also showed
an increasing trend. The detection results were slightly larger than the actual value, with
a maximum absolute error of 0.43%. The errors were all less than 1%, and they decreased
with increase in the belt deflection ratio. Based on the above results, experimental detection
was carried out for conveyor belts with offset ratios between 5% and 10%. The comparison
is shown in Table 2.

Table 2. Conveyor belt position detection results when the offset ratio is 5% to 10%.

Experiment Number 1 2 3 4 5 6 7 8

Actual bandwidth/mm 700 700 700 700 700 700 700 700
Actual deviation distance/mm 40 45 50 55 60 65 70 75

Actual bias ratio 5.71% 6.43% 7.14% 7.86% 8.57% 9.29% 10.00% 10.71%
The number of bandwidth pixels 471 470 469 470 468 470 471 470
The number of deviation pixels 27 31 33 37 40 42 43 45

Detecting bandwidth
bias ratio 5.73% 6.38% 7.04% 7.87% 8.55% 9.36% 9.98% 10.64%

Detection error 0.02% 0.05% 0.10% 0.01% 0.02% 0.07% 0.02% 0.07%
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Based on the results of Table 2, a graphical comparison of the actual bandwidth and
detected bandwidth ratios was performed, as shown in Figure 15.
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As can be seen from Table 2 and Figure 15, the detected belt deviation results were
still in line with the above law. The error was not increased with increase in the ratio
and fluctuated above and below the actual value with increase in the ratio of the belt
deviation. When the belt deviation ratio is within 5%, the detection accuracy can reach
91.35%, and when the deviation t ratio is between 5% and 10%, the detection accuracy can
reach 99.45%. In Wang’s paper on belt conveyor deviation detection based on machine
vision, the detection accuracy reached 99.6% [18]. One possible reason is that his images
had a higher resolution of 1920 × 1080. In this experiment, the conveyor belt and the frame
of the small conveyor used for the test were considered not to be in the same plane. So,
when the offset state was artificially created, the conveyor belt bent, and the detection value
of the total width of the conveyor belt decreased. At the same time, because of the light in
the experimental environment, the image deviated from the actual edges when straight
line fitting was carried out, which, therefore, caused the detection results to be inaccurate.
At the time when the artificially created extent of belt deviation was lower, the detection of
the ratio of the fluctuation value of the offset to the actual value was larger, so the detection
error was larger when the offset was lower.

5. Conclusions

Aiming to address the problems that exist in the traditional belt deflection detection
technology of underground coal mine belt conveyors, this paper proposes a machine-vision-
based belt deviation detection method for underground coal mine belt conveyors. Firstly,
a global adaptive high-dynamic-range imaging method is used to perform brightness
enhancement processing on the collected photos of the conveyor. Then the straight-line
features of the conveyor belt edges are extracted by Canny edge detection and using
the Hough transform algorithm. Finally, a dual-baseline positioning judgment method
is proposed, which is used to achieve the identification of conveyor belt runout faults.
Detection experiments were carried out for different offsets, and the accuracy of belt
deflection detection reached 99.45%. A stable and efficient belt conveyor belt offset detection
method is obtained in this study. It improves the reliability of underground belt conveyor
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monitoring systems and effectively avoids the problem of fault leakage due to the failure of
traditional detection devices. However, the detection error in this study is relatively large
at low offsets. In a follow-up study, it is intended to address the problem and to propose
an effective method of correcting the deviation to ensure the stable and safe operation of
belt conveyors.
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