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Abstract: In the manufacturing process, digital twin technology can provide real-time mapping,
prediction, and optimization of the physical manufacturing process in the information world. In
order to realize the complete expression and accurate identification of and changes in the real-time
state of the manufacturing process, a digital twin framework of incremental learning driven by
stream data is proposed. Additionally, a novel method of stream data-driven equipment operation
state modeling and incremental anomaly detection is proposed based on the digital twin. Firstly, a
hierarchical finite state machine (HFSM) for the manufacturing process was proposed to completely
express the manufacturing process state. Secondly, the incremental learning detection method driven
by stream data was used to detect the anomaly of the job process data, so as to change the job status
in real time. Furthermore, the F1 value and time consumption of the proposed algorithm were
compared and analyzed using a general dataset. Finally, the method was applied to the practical case
development of a welding manufacturer’s digital twin system. The flexibility of the proposed model
is calculated by the quantitative method. The results show that the proposed state modeling and
anomaly detection method can help the system realize job state mapping and state change quickly,
effectively, and flexibly.

Keywords: digital twin; state modeling; hierarchical finite state machine; isolation forest;
incremental learning

1. Introduction

At present, the demands of manufacturing are characterized by large quantities, indi-
viduation, and high complexity, and higher requirements are introduced for the production
quality of products [1]. The state of the manufacturing process directly affects the quality of
manufactured products. More intelligent manufacturing process management technologies
are needed to meet the current demand [2]. These technologies require deep integration
of the information world and the physical world to provide fast, real-time, and intelligent
decisions for manufacturing processes.

As a new interdisciplinary technology, digital twin (DT) technology has been widely
studied because it can provide real-time mapping, prediction, and optimization of the
physical manufacturing process in the information world.

In 2017, Tao Fei [3] elaborated on a new paradigm of a DT-enabled workshop and
proposed that the conceptual model of DT is composed of five dimensions, including
the physical workshop, virtual workshop, data, service, and connection. The proposal
of this five-dimensional model has played a great role in the rapid development of DT
in the manufacturing process. As can be seen from Figure 1, DT has attracted wide
attention from scholars and developed rapidly after 2017. Moreover, in recent years,
scholars have focused on the concept and definition of DT research, gradually more in-
depth, to help practical manufacturing research, such as the manufacturing process of
maintenance management [4], health monitoring [5], and intelligent control [6].
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However, there are two challenges in the management and control of the digital-
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ufacturing process management and control. Due to the individuation and diversity of 
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turing process are also diverse and complex. Universal, flexible, and extensible models 
are needed to characterize manufacturing processes. (2) The second is mining and the ap-
plication of manufacturing process flow data. Manufacturing process data present stream-
ing, real-time, and continuous characteristics. It is necessary to mine the flow data in real 
time and use the flow data to describe the real-time state of the manufacturing process. 

Therefore, our major contribution is to propose a general recognition method for dig-
ital twin device operation state and incremental recognition based on a real-time stream-
ing data drive. The hierarchical finite state machine is used to express the general opera-
tion state of manufacturing equipment in detail and has certain extensibility. In the state 
machine’s state-change mechanism, an incremental recognition method based on real-
time stream data is proposed for anomaly detection. 

The remainder of this paper is structured as follows. Section 2 reviews DT-related 
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recognition based on DT. The equipment operation state expression based on the hierar-
chical finite state machine and the incremental anomaly detection method based on real-
time stream data in state transformation are introduced in detail in Section 4 and Section 
5, respectively. In Section 6, the automatic welding process of a large structural part is 
taken as an example to introduce the above research method and verify the effectiveness, 
rationality, and flexibility of the method. Section 7 outlines the summary and prospects of 
this paper. 
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In 2003, Grieves proposed a prototype of the digital twin named the “Mirror Space 
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However, there are two challenges in the management and control of the digital-
twin-enabled manufacturing process. (1) The first is the universal characterization of
manufacturing process management and control. Due to the individuation and diver-
sity of manufacturing products, the states of various manufacturing equipment in the
manufacturing process are also diverse and complex. Universal, flexible, and extensible
models are needed to characterize manufacturing processes. (2) The second is mining and
the application of manufacturing process flow data. Manufacturing process data present
streaming, real-time, and continuous characteristics. It is necessary to mine the flow data in
real time and use the flow data to describe the real-time state of the manufacturing process.

Therefore, our major contribution is to propose a general recognition method for digital
twin device operation state and incremental recognition based on a real-time streaming data
drive. The hierarchical finite state machine is used to express the general operation state
of manufacturing equipment in detail and has certain extensibility. In the state machine’s
state-change mechanism, an incremental recognition method based on real-time stream
data is proposed for anomaly detection.

The remainder of this paper is structured as follows. Section 2 reviews DT-related
modeling theory and anomaly detection methods. Section 3 introduces a framework of real-
time stream data-driven manufacturing process state modeling and incremental recognition
based on DT. The equipment operation state expression based on the hierarchical finite
state machine and the incremental anomaly detection method based on real-time stream
data in state transformation are introduced in detail in Sections 4 and 5, respectively. In
Section 6, the automatic welding process of a large structural part is taken as an example to
introduce the above research method and verify the effectiveness, rationality, and flexibility
of the method. Section 7 outlines the summary and prospects of this paper.

2. Literature Review
2.1. Digital Twin Modeling Theory

In 2003, Grieves proposed a prototype of the digital twin named the “Mirror Space
Model” [7]. In 2011, Grievous [8] cited the term “Digital twin” in a paper describing product
lifecycle management (PLM). In a later paper, he indicated that the conceptual model of DT
consists of three dimensions [9], including the entity of the physical space, the virtual entity
of the virtual space, and the connection between the physical space and the virtual space.

The National Aeronautics and Space Administration (NASA) collaborated with the
U.S. Air Force Laboratory to devise an example of a digital twin vehicle and illustrate
the concept of a digital twin vehicle [10]. A digital twin was described as “an integrated
multi-physics, multiscale, probabilistic simulation of an as-built vehicle or system that
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uses the best available physical models, sensor updates, fleet history, etc., to mirror the
life of its corresponding flying twin.” Then DT was introduced in “Modeling, simulation,
information technology & processing roadmap” released by NASA [11].

From NASA’s definition and the virtual entity of the three-dimensional model pro-
posed by Grieves, it can be seen that DT modeling technology is the core to accurately
describing a physical entity and ensuring accurate mapping between the virtual world
and the real world [12]. In the process of manufacturing, the premise of real-time monitor-
ing, prediction, and optimization of the manufacturing process is to accurately depict the
physical state.

In the process of modeling the physical state, the virtual model of DT is classified into
four dimensions: Geometry, physics, behavior, and rules [13]. Among them, the geometric
model describes the geometric shape and assembly relationship of the physical entity.
The physical model reflects the physical attributes, characteristics, and constraints of the
physical entity. The behavior model represents the dynamic behavior of the corresponding
internal and external mechanisms of the physical entity. The rule model combines historical
data and can use tacit knowledge to make the digital twin more intelligent.

In order to complete the physical representation of the manufacturing process in the
information world, the establishment of a high-fidelity digital twin model is very important.
Duan [14] proposed a test bed for turbine rotor blades based on a DT. Ma [15] proposed a
DT-based workshop management system and Zhuang [16] proposed a DT-based assembly
workshop. During the development of a digital twin system (DTS), the mapping between
the information world and the physical world is completed. However, the DT model in the
above study is relatively static because the model-building process mentioned is only the
initial construction of the geometric model.

Schleich [17] proposed a comprehensive reference model based on the skin model
shape concept and applied it to the management of geometric variation. This model has
certain scalability, interoperability, scalability, and fidelity. Liu [18] proposed a digital
twin modeling method based on the bionic principle, which can adaptively construct
the dynamic, complex geometric and physical properties of the digital twin model of
the machining process. However, while the above digital twin model is adaptive and
updatable, it has some defects in speed and accuracy, and the model updating lags behind.

At the same time, scholars have used semantic or knowledge-based methods to build
digital twin models. For example, Wang [19] proposed an assembly accuracy analysis
method based on the digital twin model of universal parts. The model integrates multi-
source heterogeneous geometric models and maps assembly information from assembly
semantics to geometric elements. This method realizes the automatic positioning of parts
assembly and improves the efficiency of assembly simulation. Gregorio [20] proposed a
hybrid virtual product geometry representation method to update the state of the product
assembly process. First, they adjusted the geometry of the unassembled component based
on knowledge of the geometry of the built component. Bao [21] proposed a method for
digital twin modeling of assembly parts. In this method, the ontology is used to define and
identify the machining features in advance and obtain the assembly constraint relations,
so as to complete the deviation transfer analysis. Liu [22] proposed using the Unified
Modeling Language (UML) to build a twin semantic model, which can be used to describe
the physical model and behavior model of the physical entity of a large, complex, equipment
component test system. Wu [23] proposed a multidisciplinary collaborative design method
for complex engineering products based on a digital twin model. A multidisciplinary
collaborative design information model of mechanical, electrical, control, and structural
complex products based on ontology was established. However, in the above studies, the
state mechanism of the manufacturing process was not described in terms of the physical
position and geometric shape.

In order to describe the state mechanism of CNC machine tools in detail, Luo [24]
established the multi-domain unified modeling method of DT and used the model to
diagnose and predict the machine tools’ faults. Wang [25] proposed a digital twin reference
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model to rotate machinery fault diagnosis and constructed a prototype rotor system to
verify the effectiveness of the digital twin model in unbalanced quantification and the fault
diagnosis location. Lin [26] used the finite element model as the digital twin model of the
full-sized material-compliant wing and used the convolutional neural network to monitor
its health. In the above reference, multi-field unified modeling [27], a numerical simulation
model [28], etc., were used to construct a digital twin model for specific equipment. How-
ever, it was limited to specific devices and specific domains, and cannot be described by
state.

2.2. Data Stream Mining Technology

At present, digital twin technology has been applied to solve many problems of
intelligent manufacturing, and the artificial intelligence model particularly is used to find
defects and identify process anomalies [29].

In the manufacturing process, the anomaly of manufacturing equipment will have a
great impact on production and workers. Therefore, many data mining techniques are used
for anomaly detection, such as statistics, distance, clustering, or density-based methods [30].

In order to complete the anomaly detection of the process state of manufacturing
equipment, the first step is to collect data. The collected data are in an orderly sequence
in the form of data or a data block that arrives continuously and rapidly according to the
sampling frequency. This sequence is the data stream [31]. Because data streams arrive
continuously, the processing times must be as short as possible to provide a real-time
response and avoid data queues. In addition to speed, variability is also an important
factor in the state transition and real-time decision making of DTs. Variability refers to
the non-stationary nature of data, which may change over time, resulting in “conceptual
drift”. For example, the non-fault loss of manufacturing equipment in the process of use
will make certain changes in the collected data. This requires the model to be updated to
offset inaccurate predictions over time.

Kamat [32] proposed a framework composed of an automatic encoder and short-
and long-term memory networks for anomaly detection and remaining useful life (RUL)
prediction. Calvo [33] proposed an anomaly detection method for an industrial system
based on a digital twin ecosystem. Li [34] proposed a DT framework for the analysis of
products to be designed based on operational data. Based on this framework, the data are
processed and applied to the fault diagnosis of a tunnel excavator. These methods have
certain advantages and robustness. However, before the test process, it is necessary to
screen the main characteristics and components of multi-source heterogeneous data.

Ensemble learning is a popular method to adapt to the dynamic nature of stream data.
The classifier integrates the processing of stream data and helps to adapt to the changes in
data characteristics. With respect to data stream mining, ensemble learning can improve
predictive ability and flexibly deal with drift problems. Online bagging and boosting [35]
is an improvement in the popular ensemble learning method. Bartosz [36] proposed a
method to enhance popular online sets by adding waiver options, and to improve the
robustness of drift and noise recognition by introducing dynamic and adaptive thresholds
to adapt to changes in data streams. Svetlana [37] proposed a TDD-Awareness anomaly
detection algorithm that considered the correlation between the sensor data stream and the
attributes of each sensor and divided the anomaly detection process into point anomaly
and context anomaly, but it had the limitation of time-series prediction.

Tree-based models are suitable for online and incremental learning and have low
complexity, low CPU, and low time consumption [38], so they have received extensive
attention. The current most popular one is Isolation Forest Algorithms (IForest). Isolating
forests is an isolation-based approach that isolates observations by splitting datasets [39]. It
consists of two stages, one is the training stage, which builds a forest of random numbers,
and the other is the scoring stage, in which the forest provides an abnormal score for each
observation in the dataset.
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In the early stages, the isolated forest was primarily used for anomaly detection of
static data. The Isolation Forest Adapting Stream Data (IForestASD) [40] proposed by
Ding was the first to adopt the isolated forest for stream data. In this method, a fixed-
length sliding window is used to obtain the stream data, and IForest is used to judge the
anomalies of the data in the sliding window. The data for building the tree geometry
is sampled, and the changes within the window can be detected based on a predefined
threshold for the anomaly rate of all the data within the sliding window. Based on whether
the anomaly rate exceeds the predefined threshold, one can determine whether concept
drift occurs. Furthermore, in the case of conceptual drift, this results in the retraining of
the entire collection based on information on the contents of the current sliding window.
IForestASD can be implemented in Scikit-multiflow [41], an open-source ML framework
for data streams, and improved in [42]. It is extended by using various drift detection
methods, so as to better handle concept drift. Michael Heigl [43] proposed a new pcb-forest
framework that can integrate any integrity-based online outlier detection (OD) method to
process stream data.

However, the above-mentioned studies all relate to unified flow data without inter-
ruption detection and cannot describe changes in the state of manufacturing equipment
in real time. In order to describe the state of the manufacturing process, an incremental
anomaly detection method based on real-time stream data is proposed.

3. Framework of Incremental Learning Digital Twin System Driven by Streaming Data

Based on the five-dimensional model established by Tao [3], the framework of an
incremental learning digital twin system (IL-DTS) driven by stream data is established, as
shown in Figure 2. The framework includes the physical device (Pd), data (D), the twin
model (Tm), incremental learning detection (Ild), and service (S).

IL-DTs = {Pd, D, Tm, Ild, S} (1)

Pd is the sum of the physical hardware of the manufacturing process. Pd includes man-
ufacturing process automation equipment, such as robots, machine tools, and automatic
logistics equipment. Pd also includes equipment that supports data acquisition, such as
high-precision sensors and a programmable logic controller (PLC). Meanwhile, Pd includes
tools used for production fixtures.

D, which can describe the manufacturing process, can be collected through the data-
acquisition device contained in the physical device. D includes real-time streaming data,
databases, and plugins that contain data processing capabilities. Real-time stream data are
data that are continuously input during the manufacturing process. The database includes
the device database and other databases, such as the database that records working excep-
tions and fault types. The data processing plugins include the functions of transmission,
cleaning, screening, and dimension reduction of multi-source heterogeneous data, and
provide the required data for the database and other DT modules.

Ild is an integrated detector driven by real-time stream data, with the ability to self-
update, self-adapt, and self-iterate. It consists of several independent detectors. Each
detector should have the ability to process and calculate real-time stream data. In addition,
when the characteristics and attributes of stream data change, the detector has the ability to
change accordingly. Multiple detectors are integrated to characterize the real state more
accurately.

Tm is the mapping model of physical devices in the virtual space, including the logical
model, physical model, and geometric model. Geometric and physical models have been
described above. The logical model primarily describes the dynamic behavior of physical
devices under a specific mechanism and uses Ild to mine the data, and then adaptively
updates and drives the dynamic behavior. Finally, the mapping of physical devices will be
achieved more intelligently.
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S is a set of functions produced by a DTS for manufacturing processes. It is directly
oriented to the needs of production and manufacturing. It encapsulates Ild and Tm to realize
state synchronization, virtual–real mapping, job identification, and anomaly detection of
physical equipment and the manufacturing process.

In summary, the establishment of IL-DTS can be described as follows.
One must process the plugins of D, collect the data of Pd, process the data, and store

the data in the database. Ild conducts the initial training of the detector through the database
of D, and updates and iterates through real-time stream data. The real-time stream data
directly drives the action of the Tm, and Ild drives the state change of the logical model of
Tm to complete the state synchronization of Pd. The emergency braking of Pd can also be
carried out through anomaly detection and control of the logical model of Tm.

The logical model construction method based on the hierarchical finite state machine
(HFSM) method will be introduced in the next section.

4. Logical Model Construction Based on Hierarchical Finite State Machine

The logical model primarily describes the dynamic behavior and state transition of
the corresponding elements in the manufacturing process and can cover the required tacit
knowledge. Therefore, we construct the logical model through hierarchical finite state
machines (HFSMs).
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Generally speaking, the manufacturing process (S) can be divided into four states,
namely, the waiting state (Sw), blocking state (Sb), fault state (Sf ), and job state (Sj). Thus, S
can be expressed as S = {Sw, Sb, Sf, Sj}.

However, the four states cannot express the manufacturing process entirely and in
detail. The blocking state is also a type of waiting state. Therefore, the waiting state can be
divided into two states, namely, idle waiting (Swi) and blocking waiting (Swb). Similarly,
the fault states can be divided into idle faults (Sfi) and blocking faults (Sfb). A blocking
fault indicates that the product is in a device and an idle fault indicates that the product is
not in a device. In addition to wait states and fault states, the device also contains job states.
Job states can be divided into multiple sub-states according to the working procedure. For
example, the machine tool needs to process different surfaces in turn. Then the job state of
the machine tool can be divided into multiple sub-states according to different surfaces.

Therefore, the operation status of a single device can be described as inner and outer
layers, as shown in Figure 3. The state of the outer layer is S = {Sw, Sf, Sj}. Each element of
S has its inner layer. Sw = {Swi, Swb}, Sf = {Sfi, Sfb}, and Sj = {Sj1, Sj2, . . . , Sjn}.
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In Figure 3, Emn represents the job state transition function. E represents the job state
transition event, m represents the pre-state, and n represents the post-state. Table 1 describes
the meanings of job state transition.

Table 1. Job state transition event table.

Hierarchy Job State Transition Function Specific Meaning

Outer layer

Ejw
Job completion or termination by factors

other than failure

Ewj
The equipment runs properly and meets

operating conditions

Efw
The fault has been removed and no product

is in place
Ewf An exception occurred
Ejf An exception occurred during the job process

Efj
Exceptions have been removed and the job

conditions have been met

Inner layer

Ewbi
The material is released and the device can

receive the material normally

Ewib
The material enters the device and the device

has reached its maximum capacity

Ejpq

The equipment has completed the operation
labeled p and met the conditions for starting

the operation labeled q.

Efbi
The material is removed and the fault is

not removed
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Based on the Mealy-type finite state machine [44], the equipment operation state
model can be represented by six tuples, that is, M = {S, I, O, f, g, S0} where S is the set of
states; I is the finite input set, which represents the state transition event set; O is a finite set
of outputs; f is the state transition function, that is, f :S×I→S (for example, f (Sw×Ewj) = Sj
indicates that the job status changes from Sw to Sj when the Ewj event is triggered); g is the
output function, that is, g:S×I→O (for example, g(Sjm,Ejw) = “Operation m completed”);
and S0 indicates the initial state of the device.

In the initial state, the individual job state of each device can be represented by an
HFSM. The device waits for the material to arrive. When Ewib is triggered, the device status
changes from Swi to Swb. When Ewj is triggered, the device starts working. In the joint
operation of multiple devices, the operation of two devices can be simplified, as shown in
Figure 4.
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device utilization rate, device completion, device failure rate, and can effectively trace the 
historical information of the product in the manufacturing process. The key to state ma-
chine state transformation is to determine whether the working state is abnormal. A 
method of incremental real-time anomaly detection based on stream data will be intro-
duced in the next section. 

5. Incremental Real-Time Anomaly Detection Based on Stream Data 
5.1. Algorithm Introduction 

Due to the large quantity, rapid, and continuous arrival of manufacturing process 
data, a digital twinning system needs to adopt a real-time updating anomaly detector to 
ensure the rapid change of state. Combined with the characteristics of the low complexity 
and high efficiency of the isolation forest algorithm (IForest) [39], this paper introduces 
the incremental learning isolation forest real-time anomaly detection method in the state 
machine, as shown in Figure 5. 

Figure 4. A hierarchical finite state machine for joint operation of multiple devices.

Under normal circumstances, the output of the product after the work state of device 1
is completed with the label “Product completed at device 1”. The label is sent with the
product to the required device 2, where the normal operation status is transferred.

However, state machine transitions are slightly different when an anomaly occurs
in one of the devices, or when work is transferred to another device for an urgent task
adjustment. In Figure 4, Ejf is triggered when an exception for Sj2 is detected. The state
changes to Sfb and outputs “Sj2 job interruption of product on device 1”. When the product
is removed from device 1, device 1 triggers Efbi, and the device state changes from Sfb to
Sfi. The product is transformed to idle waiting device 2 along with the output label. When
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the Ewj event is satisfied, device 2 continues the Sj2 job and the subsequent job process
according to the device label. Device replacement may be carried out in accordance with
the foregoing in the event of an abnormal or emergency adjustment in the subsequent
operation. When the work at this station is completed, that is, Sjn is completed, the output
is “Product completed at device 2”. Ejw transfers to Swb. When the product is output in
device 2, the state transfers to Swi. The product is transferred to the next station with the
label.

It can be seen that the state machine can provide an information reference for the
device utilization rate, device completion, device failure rate, and can effectively trace
the historical information of the product in the manufacturing process. The key to state
machine state transformation is to determine whether the working state is abnormal. A
method of incremental real-time anomaly detection based on stream data will be introduced
in the next section.

5. Incremental Real-Time Anomaly Detection Based on Stream Data
5.1. Algorithm Introduction

Due to the large quantity, rapid, and continuous arrival of manufacturing process
data, a digital twinning system needs to adopt a real-time updating anomaly detector to
ensure the rapid change of state. Combined with the characteristics of the low complexity
and high efficiency of the isolation forest algorithm (IForest) [39], this paper introduces
the incremental learning isolation forest real-time anomaly detection method in the state
machine, as shown in Figure 5.
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Commonly, a working process consists of multiple processes. Therefore, the dataset is
also divided into several process datasets according to the process. In a specific process
dataset, a detector, including n trees, is built based on IForest. When the operation state
enters the specific process, the specific process dataset is selected, and the original IForest
detector, sliding window, and buffer are activated.

The newly generated data fill the sliding window in sequence. When the maximum
capacity of the sliding window is satisfied, the new data header and tail data are removed.
When the job is running, the Bernoulli distribution is used to randomly sample the incoming
stream data into the buffer. The original IForest detector was used to detect the anomalies
of the incoming stream data. When the data are determined to be an anomaly, the drive
state machine changes. The device switches to standby mode and the device state changes
to Sfb. At this time, manual or other intelligent algorithms are used to check the fault. After
normal troubleshooting, if it is a real anomaly, the data are regarded as a true anomaly to
update the detector. If it is a false anomaly, the data are regarded as a false anomaly (Xaf ).
Meanwhile, these data are forced to be kept in the buffer.

When the anomaly rate of the sliding window (Rsw) is greater than the anomaly
threshold (Rset), it proves that drift may have occurred, so the detector update strategy is
triggered. When the buffer is full, the detector is forced to update. However, the above
update strategy is different.

When the abnormal rate of the sliding window is greater than the set threshold, the
union set comprised of buffer data and sliding window data is used as the training dataset
(X) of the update detector. When the buffer is full, the buffer data are used as the training
dataset of the update detector, and then the buffer is released. The dataset of the updated
detector is used to construct k trees as the new anomaly detector.

The value of k can be obtained using the following equation:

k = Rsw× n (2)

At present, there are n + k new anomaly detectors and original anomaly detectors.
The latest true anomaly data (Xat) are extracted and then tested with all current detectors.
The shortest paths of the data in all the detectors arr calculated and sorted. k detectors
with a longer path are eliminated, and n detectors with a shorter path are retained as new
detectors.

The pseudocode of the incremental learning isolation forest anomaly detection algo-
rithm in HFSM (ILIForest-HFSM) is as follows (Algorithm 1).

5.2. Experimental Evaluation

In this paper, Smtp, Shuttle, and Forest Cover are the three standard datasets selected
to carry out experimental research on ILIforest-HFSM. Basic characteristics of the dataset
are shown in Table 2.

Table 2. Basic characteristics of the data.

Name Instances Normal
Instances

Anomaly
Instances Attributes Anomaly

Rate

Smtp 95,156 95,126 30 3 0.03%
Forest Cover 286,048 283,301 2747 10 0.96%

Shuttle 49,097 45,586 3511 9 7.15%

In this paper, the F value (representing F1 and, running time are used to evaluate the
algorithm. The selected sample is not balanced with the actual running process data. The
F1 value takes into account both the accuracy rate and the recall rate, so the F1 value is
used as an evaluation metric. The F1 value can be calculated as,

F1 =
2× precision× recall

precision + recall
(3)
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A DTS requires real-time performance, so the program’s running time is used as the
evaluation metric. In the algorithm proposed in this paper, the variable parameters are the
size of the sliding window (W) and the number of detectors (D).

Algorithm 1: ILIForest-HFSM (w, b, n, Rset)

Input: w—sliding window size, b—buffer capacity, n—detector number, Rset—sliding window
anomaly threshold
Output: new detector

1. W←W, B← B ∪ Xaf // Initialize the sliding window and buffer
2. original IForest← IForest (X, n) // Establish the original IForest detector (n trees) using

specific process data X
3. While data comes do
4. Obtain new Xt from the stream
5. W = Update (W, Xt) // Update the sliding window
6. Rsw = Calculate (W,Xlabel) //Calculate the anomaly rate of sliding window
7. Determines whether Xt is added to B based on Bernoulli distribution
8. If Xt is anomaly then
9. Sji changes to Sfb
10. Break
11. If size of B ≥ b then
12. X’← B
13. Generate k randomly
14. new IForest← IForest (X’, k)
15. new IForest← Update (Xat, new IForest, original IForest) //Among all the detectors, n

detectors with the larger shortest path of Xat serve as the new detector
16. end if
17. If Rsw ≥ Rset then
18. X’← B ∪W
19. Generate k randomly
20. new IForest← IForest (X’, k)
21. original IForest← Update (Xat, new IForest, original IForest)
22. end if
23. t = t + 1
24. End while
25. return original IForest

As can be seen from Table 3, when the W and D of the two algorithms are the same
concurrently, the difference between T and T’ is not large, and the difference primarily
comes from the different number of integrator updates and the different total time of
training. We will analyze the time later. In ForestCover and Smtp datasets, the improvement
effect of F is not obvious compared with that of F’. This is primarily because the sample
is extremely unbalanced and there are few anomalies. In addition, the anomaly type of
ForestCover is a multi-point continuous anomaly. This causes the sliding window to update
the detector at the continuous outlier. As a result, the update of the detector will inevitably
lead to the misjudgment of the following normal data. However, in Shuttle data, the
F1 value increases significantly, which can prove that the algorithm has certain effectiveness.

When W and D of an algorithm change, it can be seen that F and T increase as W
and D increase. It has been proven that when W and D increase, the effect of anomaly
detection will also increase. However, it would also lead to a dramatic increase in time
consumption. Therefore, we conducted experiments on the original training time and test
time of individual data.

As shown in Figure 6, the dark bars represent the initial detector training time with
the IForest-HFSM algorithm, while the light bars represent the initial detector training time
without HFSM. When the same training dataset is used, the results are essentially the same
when W and D are the same. When W is the same, as D increases, the time becomes longer
and longer. When D is the same, as W increases, time increases. However, the broken line
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in Figure 6 shows that the trend is different. The growth trend when D is the variable is
obviously higher than when W is the variable.

Table 3. Test result of IForest-HFSM Algorithm.

ForestCover Shuttle Smtp

W D F F’ T T’ F F’ T T’ F F’ T T’

50 30 0.12 0.02 67,057 75,470 0.81 0.29 1715 2270 0.13 0.00 3567 5400
50 50 0.12 0.02 79,236 86,357 0.83 0.29 2735 3498 0.13 0.00 5493 7520
50 100 0.12 0.02 101,232 107,919 0.82 0.28 5338 6430 0.13 0.00 10,319 12,328

100 30 0.14 0.02 84,932 91,133 0.83 0.61 3793 3855 0.16 0.00 14,219 14,203
100 50 0.14 0.02 101,126 109,116 0.83 0.60 6037 6249 0.16 0.00 21,432 20,941
100 100 0.15 0.02 148,724 153,292 0.86 0.60 12,136 12,327 0.17 0.00 38,937 36,438
200 30 0.17 0.02 95,306 104,963 0.85 0.71 16,952 16,892 0.18 0.00 20,884 19,679
200 50 0.17 0.02 130,900 140,474 0.89 0.71 25,899 25,724 0.18 0.00 27,841 24,184
200 100 0.17 0.02 212,904 222,475 0.90 0.72 45,056 45,338 0.18 0.00 50,582 43,864

Note. W represents the sliding window size and buffer size, and D represents the number of detectors. F
represents the F1 value of ILIForest-HFSM; F’ represents the F1 value of IForest without the state machine. T
represents the time consumption of ILIForest-HFSM (second). T’ represents the time consumption of IForest
without the state machine (second).
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Figure 6. Comparison of original detector training time in different experiments.

When different training datasets are used, the original training time of ForestCover
is significantly higher than that of other datasets. The original training time for Smtp is
slightly higher than for the Shuttle dataset. This means that the number of original datasets
affects the training time of the original detector.

The number of detector updates is different, resulting in different update times for
each detector. Therefore, the average update time of each dataset is used to evaluate the
algorithm. The total test time for a single dataset is shown in Figure 7.
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First, we analyzed the bottom half of the bar chart. In different datasets, when W and
D are the same, the time spent on the individual dataset is almost the same. This proves
that the test time of an individual dataset is only related to the size of W and D and has
nothing to do with the data volume. When W and D increase, the test time increases. When
W = 100 and D = 100, the test time of a single dataset exceeds 0.1 s. The test time of W = 200
and D = 30 is close to that of W = 100 and D = 50.

Secondly, we analyzed the top half of the bar chart. In different datasets, when W
and D are the same, the average update time of individual datasets varies greatly. This is
the result of the proportion of anomalies, data characteristics, and algorithms caused by
misjudgment. A too-large proportion of anomalies, continuous anomalies of test data, and
excessive misjudgment of the algorithm will force the detector to update, which increases
the time and resource consumption of the algorithm update. When W and D increase, the
average update time of individual datasets also increases. This is because updated data of
the detector comes from the sliding window. The number of detector updates is related to
the number of detectors and the update rate.

To further illustrate the time consumption of each dataset, we compare the trend when
W changes with that when D changes, as shown in Figure 8.

The lines in Figure 8 indicate that when D = 30, the total time is at the bottom, and
the minimum value is taken. When D is constant, the total time of an individual dataset
increases linearly as W increases, as shown by the blue dashed line in Figure 8. When W is
constant, the total time of individual datasets grows exponentially as D increases, as shown
by the red dotted line in Figure 8. Time resource consumption increases significantly with
the increase in D. With W = 200 and D = 100, the total test time of an individual dataset
reaches 0.9177 s. This is obviously not sufficient for real-time effects. Combined with
Table 3, when W is the same, the F1 value does not increase significantly with the increase
in D. Therefore, it is recommended to use W = 100 and D = 30. The results of the test in the
three datasets are the best.
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6. Case Study

Taking a robot welding workstation of a large equipment manufacturer as an example,
this paper introduces DTs based on the aforementioned method. The welding workstation
is composed of a welding robot, gantry frame, positioner, and chassis, as shown in Figure 9.
Its main task is to weld the boom body of large excavating machinery.
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Figure 9. The main component of the robot workstation.

The equal-scale geometric model of the robot workstation is constructed using Catia.
The calibration of the initial position, constraint relationship, and parent–child hierarchical
relationship of the device is completed in Catia. 3DsMax software imported the stp file
generated by Catia, carried out coloring, material addition, and environment construction



Machines 2023, 11, 151 15 of 19

of the model, and completed the property construction of the physical model. Finally, the
exported FBX file was imported into Unity3D to carry out the main development process.

Because the automatic welding process can be divided into multiple tasks according
to the weld seam, the tasks can be represented as J1, J2, . . . , J16. Therefore, according to the
above state machine, the hierarchical finite state machine of a single station of robot work
is implemented in Unity.

The real-time IOT platform of the enterprise is selected for data collection, and JSON
data are accessed through the API interface, as shown in Table 4.

Table 4. Data acquisition table of robot welding workstation.

Category Specific Data (Type)

Process data
Welding current (float)
Welding voltage (float)
Wire feed speed (float)

Automatic data
Robot joint J1-J6 Angle (float)
Truss position of robot (float)

Angle of positioner (float)

The sampling frequency of the data obtained through API is 0.5. Linear interpolation
is used to interpolate the data and complete the mapping of the twin model in the virtual
space. During the test, approximately 2% of the training data were abnormal compared
to normal. The initial parameters of the anomaly detector are set as follows. The sliding
window size was set to 100, the number of integrators was set to 30, the time for integrator
testing of each dataset was approximately 0.08 s, which met the updating frequency, and
the accuracy rate reached more than 95%.

The specific implementation of the digital twin system is shown in Figure 10.
In order to quantitatively evaluate the proposed DT model, we used the method for

measuring flexibility proposed by Psarommatis [45] to evaluate the flexibility of the DT
model. The flexibility of the model proposed in this paper (DTflex) can be derived from
Table 5.

Table 5. DTflex measurement with method proposed by Psarommatis [39].

QNo. Answer Explanation

Q1 Yes: +0.8
The method can be used unchanged under any circumstances. There are six input parameters:
Slide window size, buffer size, number of detector trees, number of nodes per tree, update
threshold, and input stream data.

Q2 Specific: −0.5 The method is based on experimental design, so it needs to perform specific experiments to
obtain the data necessary to train the DT model.

Q3 Yes: +0.6 When using different datasets, the method can increase the dataset or increase the
characteristic parameters.

Q3.1 Yes: −0.2 Although datasets or characteristic parameters are available, the data selected depend on the
number of integrator trees.

Q3.2 No: +0.1 Data original training depends on the number of detector trees and the number of forests. The
number of training sessions does not change as a result.

Q3.3 No: +0.2 Similarly, the model does not change.
Q3.4 No: +0.2 The output parameters are not affected by changes in the input parameters.
Q4 Yes: +0.4 Input datasets or characteristic parameters can be decreased.

Q4.1 No: +0.2 Decreasing the input does not affect the DT model. The only issue is that with fewer input
parameters, the accuracy of the model will be lower.

Q4.2 No: +0.2 Some parameters can be set to default values, with reduced accuracy.
Q5 Yes: −0.6 The method can update the detectors in the process of outputting anomaly detection.

Q6 Yes: +0.5 The output results of multiple detector trees can be processed in other forms to generate new
output parameters.

Q6.1 No: +0.2 No limitations on increasing the number of output parameters.
Q7 Yes: +0.8 When the external data change, the DT model can adapt to change.
Q8 Yes: +0.3 The DT model is a simple mathematical model that can be run on any computer.
Q9 Yes: −0.3 This method requires training at the beginning, but the training time is acceptable.
Total flexibility of the DT methodology DT f lex = 4.8 + ∑ Qj = 7.7, 0 < DT f lex ≤ 11.4
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Figure 10. Realization of digital twin system for robot welding workstation.

We converted DTflex to a percentage and were able to obtain DTflex = 67.54%. Figure 11
illustrates this result. It can be seen that the algorithm has good flexibility.

Over the course of the experiments and the case study, the mentioned hierarchical
finite state machine represented the state of each manufacturing device very quickly, and it
could be rapidly reconstructed and extended according to the manufacturing task.
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new output parameters. 

Q6.1 No: +0.2 No limitations on increasing the number of output parameters. 
Q7 Yes: +0.8 When the external data change, the DT model can adapt to change. 
Q8 Yes: +0.3 The DT model is a simple mathematical model that can be run on any computer. 
Q9 Yes: −0.3 This method requires training at the beginning, but the training time is acceptable. 
Total flexibility of the DT methodology 𝐷𝑇𝑓𝑙𝑒𝑥 =  4.8 + ∑𝑄 = 7.7, 0 <  𝐷𝑇𝑓𝑙𝑒𝑥 ≤ 11.4 

We converted DTflex to a percentage and were able to obtain DTflex = 67.54%. Figure 
11 illustrates this result. It can be seen that the algorithm has good flexibility. 
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Over the course of the experiments and the case study, the mentioned hierarchical 
finite state machine represented the state of each manufacturing device very quickly, and 
it could be rapidly reconstructed and extended according to the manufacturing task. 

In the mentioned algorithm, when W = 128 is used, the maximum number of nodes 
is 255. The maximum length of nodes is b bytes, and D is the number of trees. Therefore, 
the working model for real-time anomaly detection is less than 255Db bytes. This is trivial 
for the loading of 3D models of manufacturing processes. The time complexity in the orig-
inal training phase is O(nDlogW). The time complexity of the individual dataset test eval-
uation process is O(DlogW) and the time complexity of the model update process is 
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In the mentioned algorithm, when W = 128 is used, the maximum number of nodes
is 255. The maximum length of nodes is b bytes, and D is the number of trees. Therefore,
the working model for real-time anomaly detection is less than 255Db bytes. This is trivial
for the loading of 3D models of manufacturing processes. The time complexity in the
original training phase is O(nDlogW). The time complexity of the individual dataset test
evaluation process is O(DlogW) and the time complexity of the model update process
is O(WDlogW + D2). It can be seen that the proposed digital twin method has a fast
convergence speed and a small integration scale, and can monitor anomalies efficiently and
quickly in real time.

In addition, when W = 100 and D = 30, the average test time of an individual dataset
is lower than 0.1 s under the Shuttle dataset and the current case dataset. It is possible to
service the current digital twin system, and it can be effectively and flexibly deployed in
the digital twin system of the manufacturing process.

7. Conclusions

This paper proposed a method of digital-twin-based manufacturing process state mod-
eling and incremental anomaly detection. (1) A framework of incremental learning digital
twin system was proposed, and the incremental learning detector was added as a new
layer to the existing digital twinning framework. (2) A manufacturing process modeling
method based on a hierarchical finite state machine was introduced. By introducing a
single-device running state model and a multi-device running state model, the universality
of the manufacturing process running state model was realized. (3) An incremental isola-
tion forest detector driven by stream data was introduced. The algorithm can quickly and
effectively identify anomalies within the manufacturing process and make changes to the
manufacturing process. (4) The incremental learning digital twinning system driven by
stream data was introduced via the boom welding workstation.

The paper is primarily concerned with the anomaly detection of the state machine from
the working state of a process to the fault state and does not involve the classification of the
fault state. However, the description of fault states in the proposed state model is extensible.
In addition, the real-time performance of the current algorithm does not reach the optimal
state. To be exact, the current algorithm only achieves quasi-real-time performance. In
order to further improve the accuracy, greater time loss reduces the real-time performance.
According to the characteristics and changing trends of current stream data, it is very
necessary to reduce the time for anomaly detection or to predict the anomalies that will
occur. Therefore, future work will primarily focus on the improvement of the state machine
model, the enhancement of anomaly detection efficiency of the algorithm, and the early
warning of real-time stream data.
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