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Abstract: Hysteresis in a piezoelectric actuator must be compensated for, and this compensation con-
stitutes the main challenge in the high-precision motion control of piezo-actuated stages. This paper
presents an output-feedback sliding-mode control (SMC) scheme to suppress unknown nonlinearity;
in this scheme, hysteresis behavior is considered an external disturbance, and complex hysteresis
models are thus not required. The scheme functions in the absence of transfer function of system state
information, and a robust loop-transfer recovery observer is employed as a noise-free differentiator
to estimate the required signal derivatives when the relevant system is in a noisy environment.

Keywords: piezo control; hysteresis compensation; sliding-mode control; output-feedback control;
LTR observer; noise-free differentiator

1. Introduction

Piezoelectric actuators (PEAs) are widely used for precision positioning, such as in
nanomanipulators [1], microrobots [2], microscopes [3], microsystems [4], and positioning
systems [5–7]. PEAs are used as actuators in most precision positioning stages due to their
light weight, small size, high bandwidth, and high accuracy. However, PEAs have the
disadvantage of nonlinear hysteresis, where the relationship between the input voltage
and output displacement has a memory-based nonlinearity; this disadvantage must be
overcome to enable the high-precision motion control of piezo-actuated stages [8].

Two classes of solutions are available for the compensation of nonlinear hysteresis: model-
based control and feedback control schemes. In the first class of solutions, the hysteresis is
mathematically modeled and the inverse model is applied as compensation; consequently,
a linear input–output relation is recovered, and existing linear control techniques can be
applied. In particular, the Prandtl-Ishlinskii (P-I) model [9], Preisach model [10], Krasnosel’skii-
Pokrovkii (K-P) model [11], Duhem model [12], and Bouc-Wen model [13] have been widely
adopted in the literature. However, model-based compensation is impeded by a trade-off
between model accuracy and control performance; higher order models provide accuracy
at the cost of lower sampling speed and control performance at high frequencies. Moreover,
some models are differential-equation-based, and their inverse may thus have no analytical
form [8].

In the second class of solutions, hysteresis is treated as an unknown disturbance,
and robust feedback control methodologies, such as PID control [14], disturbance rejec-
tion control [15], gain scheduling control [16], adaptive control [17], and sliding-mode
control [18–20], are used to suppress disturbance. However, this approach has two draw-
backs: (1) feedback controllers for dynamic systems with unknown nonlinearity are difficult
to develop, and (2) the existence of closed-loop stability, especially when the hysteresis is
unknown, is difficult to determine [8].

Thus, this study developed an output-feedback sliding-mode control scheme [21] to
suppress hysteresis; this scheme requires no complex computations for modeling hysteresis.
Sliding-mode control was adopted because it is robust with regard to model uncertainty and
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unknown disturbances [22] and is thus suited to methods where hysteresis is considered
an external disturbance. System identification is also unnecessary in the control algorithm
of this study. The control law is based on a model-free design where a priori information
on the system transfer function is unnecessary; only measurements of system output are
required as a signal. Moreover, when the output signal is corrupted by measurement noise,
a robust loop transfer recovery (LTR) observer [23] is used as a differentiator to estimate
the required signal differentiation and forms a control design robust to measurement noise;
whereas the existed sliding-mode control designs [24,25] have been demonstrated to be
sensitive to the stochastic noise. Finally, a stability proof is provided to guarantee the
closed-loop performance of the proposed control methodology, and the proposed design is
intuitively and structurally simple and can be easily accepted by control engineers with
only fundamental control backgrounds.

2. System Modeling

This section provides preliminary information on how a control system and the
phenomenon of nonlinear hysteresis are modeled.

2.1. Modeling of Piezo-Actuated Stage

As first formulated by [26], the behavior of a piezoelectric actuator can be described by
two subsystems: one is mechanical and the other is electrical. The electrical subsystem is
used to describe the system’s reaction to an input voltage u, and the mechanical subsystem
is used to describe the relationship between the driving force Fp and elongation yp. In these
two subsystems, qc is the charge flowing through an equivalent capacitance C; qp is the
charge flowing through a transducer Tem; H(q) is the source of hysteresis with a charge flow
q = qc + qp; Kp and Γp are stiffness and damping constants, respectively; and Mp is the mass
of the actuator (Figure 1 [27]). The equivalent block structure of a piezo-actuated stage per
the definition of these two subsystems is shown in Figure 2 [27]; G denotes the linear motion
of the stage. The linear transfer function satisfies the relation G = C(sI − A)B, where s is
the Laplace operator, and the matrices A, B, and C constitute the state-space realization

ẋ = Ax + BFp (1)

y = Cx,

where x ∈ Rn is an unknown state variable.

Figure 1. Subsystems of a piezoelectric actuator [27].
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In this study’s proposed scheme, undesired hysteresis is treated as an unknown external
disturbance, and the block diagram in Figure 2 can be transformed such that it has the structure
illustrated in Figure 3, where d(t) = (Tem − 1)u− TemH(q), q = (TemK−1

p + CT−1
em )Fp.

Figure 2. Block diagram of a piezoelectric actuator.

Figure 3. Equivalent block structure of the piezo-actuated stage.

2.2. Upper Bound of Disturbance

Because nonlinear hysteresis is treated as an unknown disturbance, a complex model
of hysteresis is not required. The only piece of information required for hysteresis control
is the upper bound of the disturbance. The classical Prandtl-Ishlinskii (P-I) model [9] is
employed to model this upper bound. This model is only used to analyze the structure of
the unknown disturbance. The P-I model is constructed on the basis of a one-side operator
Fo[v](t) with a threshold h for a piecewise monotonic input function v(t) [9]. As illustrated
in Figure 4, the operator is defined as:

w(0) = Fo[v](0) = fo(v(0), 0) (2)

w(t) = Fo[v](t) = fo(v(t), w(ti))

for t ∈ [ti, ti+1], 0 ≤ i ≤ N − 1, and

fo(v, w) = max(v− h, min(v, w)). (3)

The time index i is such that the function v(t) is monotonic in the interval t ∈ [ti, ti+1],
where ti = 0 for all i. According to the operator (2), the relationship between the input v
and output yPI of the P-I model is defined as follows [9]:

yPI(t) = P[v](t) = p0v(t) +
∫ H

0
p(h)Fo[v](t)dh, (4)
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where p0 is a constant, p(h) is a density function, and H is the maximum value of the
threshold h. For the system structure in Figure 2, the hysteresis model is hidden in the
relation between the control input u and driving force Fp. For this input–output pair, the
P-I model becomes:

Fp(t) = P[u](t) = p0u(t) +
∫ H

0
p(h)Fo[u](t)dh. (5)

If the aforementioned model is applied to the system structure in Figure 3, the distur-
bance is

d(t) = (p0 − 1)u(t) +
∫ H

0
p(h)Fo[u](t)dh, (6)

and the relation

Fp = u + d (7)

holds as a result. According to Figure 4, the upper bound of w(t) is

|w(t)| ≤ k1|v(t)|+ k0 (8)

for some positive constants k1 and k0; therefore, the upper bound of the disturbance (6) is
derived as

|d(t)| ≤ c1|u(t)|+ c0 (9)

for some positive constants c1 and c0. Note that the disturbance here is input depen-
dent , and the system structure is then represented in a disturbance rejection problem
after modeling.

Figure 4. Input-output relationships of the OSP operator [28].

3. Control Design and Stability Analysis

In this study, the hysteresis compensation problem is transformed into a disturbance
rejection problem for an input-dependent disturbance, and the objective is to suppress
the unknown external disturbance while preserving tracking performance. The control
structure for suppressing this unknown external disturbance is based on sliding-mode
control because it is robust to unknown disturbances and system uncertainties; this control
structure can be designed even if (1) the system transfer function and state information are
unknown and (2) the unknown disturbance is input dependent. The design of the control
structure rests on some basic system-related Assumptions.
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Assumption 1. The system transfer function G(s) in Figure 3 is minimum phase.

Assumption 2. The system transfer function has a relative degree r.

Assumption 3. The desired reference signal yr is assumed to be sufficiently smooth: there exists a
known constant k ≥ 0 such that y(r)r ≤ k for all i = 0, · · · r .

According to the definition of relative degree [29], Assumption 2 guarantees that
CAiB = 0 for i < r− 1 and CAr−1B 6= 0.

The input–output relation of the control system (1) satisfies the state transformation [29]

x = T
[

η
z

]
, T ∈ Rn×n, (10)

in which the first set of system states z ∈ Rr is called an external state comprising the
consecutive output derivatives

z =


y
ẏ
...

y(r−1)

 =


Cx

CAx
...

CAr−1x

 (11)

and the second set of states η describes the internal state or zero dynamic, where the
stability is dominated by the position of the open-loop zeros of the relevant system. The
ideal sliding variable is given as

σ = e(r−1) + λr−2e(r−2) + · · ·+ λ1 ė + λ0e, (12)

where e = y− yr is the system tracking error, yr is the desired reference signal, and λi are
design coefficients and are chosen such that σ = 0 is a stable ordinary differential equation
of e for the existence of the sliding mode. According to the definition of an external state (11)
and Assumption 3, a lumped disturbance containing all λi coefficients and the derivatives
of e is defined as:

∆p = CArx− y(r)r + CAr−1Bd + λr−2e(r−1) + · · ·+ λ1 ë + λ0 ė (13)

and the upper bound of the disturbance is verified:

‖∆p‖ ≤ c4‖x‖+ c3|u|+ c2

for some positive constants c4, c2 and c3 < 1. Note that the sliding variable (12) comprises
the derivatives of the tracking error e, which cannot be directly known in real-world
applications. Thus, a differentiator is required for the estimation of the derivatives.

Drawing on [21,23], this study adopted the LTR observer [23] as a differentiator to
estimate the required error derivatives. The LTR observer is used as a robust observer
to estimate the full system state when the control system is affected by an external state
and by input-dependent disturbances [21]. The observer functions well as a differentiator
because its Luenburger-type structure can be intuitively applied to a linear system. The
error dynamic of the control system in Figure 3 is defined as

Ė = ArE + Br(CArx + CAr−1BFp − y(r)r )

= ArE + Br(CArx + CAr−1B(u + d)− y(r)r ) (14)

where
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E =


e
ė
...

e(r−1)

 =


y
ẏ
...

y(r−1)

−


yr
ẏr
...

y(r−1)
r

, Ar =


0 1 · · · 0
...

. . . . . .
...

0 · · · 0 1
0 0 · · · 0

, Br =


0
...
0
1

. (15)

The following LTR observer is used to estimate the error vector E in (15):

˙̂E = Ar Ê + BrCAr−1Bu + Lr(e− Cr Ê), (16)

where Ê = [ê ˙̂e · · · ê(r−1)]T is an estimate of the error vector E, Lr = QCT
r /µ, Cr =

[1 0 · · · 0] ∈ Rr, and Q ∈ Rr×r is the solution matrix of the observer Riccati equation

Q(Ar + δI)T + (Ar + δI)Q− QCT
r CrQ
µ

+ ξBrBT
r = 0, (17)

where µ > 0, δ > 0, and ξ > 0 are scalar design parameters. The fact that LTR observer
estimation is convergent is expressed in the following theorem.

Theorem 1. The estimation error of the LTR observer (16) asymptotically approaches a small value
Ẽ = E− Ê. Specifically,

lim
t→∞
‖Ẽ‖ ≤ ε1‖x‖+ ε2|u|+ ε3, (18)

where limξ→∞εi = 0 for i = 1, 2, 3.

Proof. See [21,23]

With the aid of the LTR observer, the following estimate for the ideal sliding variable
(12) is obtained.

σ̂ = ê(r−1) + λr−2 ê(r−2) + · · ·+ λ1 ˙̂e + λ0e. (19)

The proposed output-feedback sliding-mode control is

u = −ρ1σ̂− ρ2sgn(σ̂), (20)

where ρ1 > 0 is a scalar design parameter and ρ2 is a positive constant that satisfies

ρ2 >
c4‖x‖+ c2

α(1− c3)
(21)

in which α = CAr−1B and the constants ci’s are as defined in (9) and (13). The good stability
and tracking performance of the proposed control (20) is expressed in the
following theorem.

Theorem 2. The proposed control (20) stabilizes the error dynamic (15), and the system tracking
error e converges exponentially to 0 as the design parameter ξ in the observer Riccati Equation (17)
approaches infinity.

Proof. In this proof, estimation error of sliding variable σ̃ = σ− σ̂ is defined. Choose a
Lyapunov candidate V = 1

2 σ2, and checking its derivative gives

V̇ = σ
[
CAr−1Bu + ∆p

]
= σ[−αρ1σ̂− αρ2sgn(σ̂) + ∆p], α = CAr−1B. (22)

There might be two possible cases for the square brackets in the last equality.
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Case 1: |σ| ≤ |σ̃|. In this case, according to (12) and (19), σ̃ = [1, λr−2, · · · , λ1, λ0]Ẽ,
and

|σ| ≤ λ̄(ε1‖x‖+ ε2|u|+ ε3), (23)

where λ̄ = max(λr−2 · · · λ0).
Case 2: σ > σ̃. In this case, sgn(σ̂) = sgn(σ), Equation (22) becomes

V̇ ≤ −αρ1σ2 + σαρ1σ̃− |σ|(ρ2 − |∆p|)
< −αρ1σ2 + σαρ1σ̃

≤ −αρ1|σ|[|σ| − αρ1σ̃]

≤ −αρ1|σ|
[
|σ| − αρ1λ̄(ε1‖x‖+ ε2|u|+ ε3)

]
.

From the last inequality,

|σ| ≤ αρ1λ̄(ε1‖x‖+ ε2|u|+ ε3) (24)

after some finite time. Combining (23) and (24),

|σ| ≤ ᾱ(ε1‖x‖+ ε2|u|+ ε3),

where ᾱ = max(λ̄, αρ1λ̄). According to the aforementioned equation, the sliding variable
practically converges to zero, with the size of residual set approaching zero as the parameter
ξ approaches infinity. The reaching condition of sliding-mode control is therefore fulfilled,
and the tracking performance is guaranteed by the design of sliding surface (12).

4. Experimental Results

The proposed control algorithm was tested on the x-axis of a piezo-actuated stage
PI P-602.2CL (Figure 5). A DAQ card (NI PCI-6346) was employed as an analog–digital
interface. The analog I/O channels were arranged using a NI BNC-2110 shielded connector,
the input signal was amplified by a PI E-503 amplifier before being fed to the piezoelectric
actuators, and the system output displacement was measured using a signal conditioner (PI
E-509.C3A). The environment of experimental system is shown in Figure 6. The reference
signal was

yr(t) = 312.5 + 312.5 sin(2π f t + 1.5π) (25)

in nano meters. In the design of sliding surface (12), an intuitive approach to verify the
derivatives of error signal e is the numerical difference method

e(i)k ≈
e(i−1)

k − e(i−1)
k−1

T
, (26)

where e(i) denotes the i’th order derivative of error signal e, the subscript k is the discrete-
time index, and T is the sampling period of control system. However, the conventional
numerical difference approach (26) failed to provide the approximation when the error
signal is corrupted by the measurement noise. As shown is Figure 7, even if the noisy signal
in sub figure (a) is filtered by a third-order low-pass filter

F(s) =
[

q
s + q

]3
, q = 20π,

before the numerical difference approach (26) is applied, the behavior of measurement noise
still dominate the approximations and overwhelm the quantity of error signal. By contrast,
the LTR observer (16) is employed as a robust differentiator to estimate the derivatives of
error signal, with the design parameters δ = µ = 1 and ξ = 107 in the Riccati Equation (17).
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As shown in Figure 8, the LTR observer (16) estimates the derivatives more accurately even
if the error signal is corrupted by measurement noise, which confirmed the robustness of
LTR observer to measurement noise, and demonstrated the effectiveness of the proposed
control scheme.

Figure 5. Experimental setup.

Figure 6. Environment of experimental system.
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Figure 7. Temporal evolution of low-pass filter with: (a) an error signal e, (b) the first-order derivative
ė, (c) the second-order derivative ë, (d) the third-order derivative

...
e at 1 Hz.
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Figure 8. Temporal evolution of LTR observer with (a) an error signal e, (b) the estimation of the
first-order derivative ˙̂e, (c) the estimation of the second-order derivative ¨̂e, (d) the estimation of the
third-order derivative

...
ê at 1 Hz.

With the aid of the LTR observer, the control design (20) is therefore realizable, and
the coefficients for the sliding variable (19) were r = 4, λ2 = 12, λ1 = 48, and λ0 = 64. The
coefficients λ0, λ1 and λ2 define the convergent speed when the state trajectory hits the
sliding surface σ = 0, and r theoretically denotes the relative degree of the system as in
Assumption 2. In this research, the relative degree r was found as the minimum value that
the control design (20) experimentally stabilizes the system.

To eliminate undesirable high-frequency chattering in the sliding mode control design
(20), the control law (20) was replaced by a continuous boundary layer function [30]

u = −ρ1σ̂− ρ2
σ̂

σ̂ + ε
(27)

with ρ1 = 0, ρ2 = 0.7 and ε = 10. The experimental results are presented in Figure 9
with the input frequency f = 1, 10, 50, 100 (Hz) in (25), and the tracking errors are listed
in Table 1, in which erme is the root-mean-square error and epercent = erms/625. It is seen
the proposed control structure completed the tracking mission even if the error signal
is corrupted by the measurement noise, and the tracking errors increase with the input
frequency since the hysteresis loop grows with the input frequency [31].
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Figure 9. Output trajectories of proposed control scheme when (a) f = 1 (Hz), (b) f = 10 (Hz),
(c) f = 50 (Hz), (d) f = 100 (Hz).
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Table 1. Controller performance results.

f (Hz) erms (nm) epercent (%)

1 14.7 2.36

10 25.7 4.11

50 56.8 9.09

100 92.8 14.84

To verity the capability of the proposed control design, a reference signal with multiple
frequencies

ym(t) = 312.5 + 312.5[sin(2πt + 1.5π) + sin(20πt + 1.5π) + sin(100πt + 1.5π) + sin(200πt + 1.5π)]

was applied to the experimental environment, and a standard PI control with KP = 2.7 and
KI = 0.42 was tested as a comparison. The control gains KP and KI were chosen that the PI
controller minimizes the tracking error. In Figure 10, it is seen the proposed control design
demonstrates a superior performance, and Table 2 shows that the proposed control design
performs only 65.79% of root-mean-square error of the PI controller in steady state.

Figure 10. Output trajectories of (a) proposed control scheme and (b) PI control with multiple input
frequencies.

Table 2. Controller performance results with multiple frequencies.

Controller erms (nm) epercent (%)

LTR+SMC 97.8 16.5

PI 149.3 24.7

5. Conclusions

This study proposes an output-feedback sliding-mode control for piezo-actuated
stages when state measurements and a system transfer function are unavailable. In this
study’s scheme, nonlinear hysteresis is considered an unknown input-dependent dis-
turbance, and a robust LTR observer is used to estimate the differentiation required for
disturbance rejection control. The stability of the proposed observer-based control design
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is rigorously analyzed. In experiments, the results show the LTR observer successively
estimate the derivatives of a noisy error signal, whereas the conventional numerical ap-
proach fails to approximate, and the proposed control design is capable to track a reference
trajectory with multiple frequencies.
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