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Abstract: Fault diagnosis methods are usually sensitive to outliers and it is difficult to obtain and
balance global and local discriminant information, which leads to poor separation between classes of
low-dimensional discriminant features. For this problem, we propose an Euler representation-based
structural balance discriminant projection (ESBDP) algorithm for rotating machine fault diagnosis.
First, the method maps the high-dimensional fault features into the Euler representation space
through the cosine metric to expand the differences between heterogeneous fault samples while
reducing the impact on outliers. Then, four objective functions with different structure and class
information are constructed in this space. On the basis of fully mining the geometric structure
information of fault data, the local intra-class aggregation and global inter-class separability of the
low-dimensional discriminative features are further improved. Finally, we provide an adaptive
balance strategy for constructing a unified optimization model of ESBDP, which achieves the elastic
balance between global and local features in the projection subspace. The diagnosis performance of
the ESBDP algorithm is explored by two machinery fault cases of bearing and gearbox. Encouraging
experimental results show that the algorithm can capture effective fault discriminative features and
can improve the accuracy of fault diagnosis.

Keywords: fault diagnosis; Euler representation; adaptive balance strategy; dimensional reduction

1. Introduction

In modern industrial production, rotating machinery and equipment has been widely
used. With the continuous improvement of automation and intelligence, the internal
structure of rotating machinery has become more complex. Moreover, such equipment
works in harsh environment for a long time, and its core components such as gears and
bearings are prone to damage, and failure to diagnose the fault in time may lead to the
failure of normal operation of the equipment and even cause major accidents. Thus, the
effective fault diagnosis and condition monitoring of key components of rotating machinery
is of great significance [1,2]. Usually, the vibration signals collected from machinery
equipment contain plenty of important information reflecting its operational status [3,4],
and the machinery data and information collected are increasing in order to improve
information integrity, which unavoidably leads to problems such as data redundancy and
high dimensionality, making the performance of fault diagnosis systems adversely affected.
Therefore, extracting valuable discriminative information from high-dimensional fault data
and improving the diagnostic accuracy is a pressing challenge [5].

Currently, data mining and machine learning have been proven to be effective methods
for data analysis and processing [6–10]. In the field of fault diagnosis based on data mining
and machine learning, the process of processing and identifying high-dimensional fault
feature datasets usually includes the following three aspects: acquisition and processing of
fault data, extraction of fault features, and identification and classification of fault features.
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Among them, extracting effective fault features is the crucial of diagnosis. As an effective
method, dimensional reduction [11,12] aims to extract low-dimensional discriminative
features that reflect intrinsic information from high-dimensional data to achieve better fault
diagnosis performance. According to the retained data structure, dimensional reduction
algorithms are classified into two main types, i.e., algorithms based on local structure
and algorithms based on global structure. The most widely used global algorithms in-
clude principal components analysis (PCA) [13] and kernel principal components analysis
(KPCA) [14], etc., which are concerned with obtaining global structural information of
machinery fault data for diagnosis. Among them, PCA obtains the projection direction via
maximizing the covariance among samples. However, PCA is a linear diagnosis algorithm,
which is difficult to employ for handling complex nonlinear fault data. For this reason,
KPCA introduces kernel tricks [15] based on PCA, which can further obtain the nonlinear
structural information of fault data. However, the global algorithm ignores the informa-
tion of the sub-manifold structure, which has been shown to better reflect the underlying
structure of the data.

Manifold learning algorithms can effectively explore the intrinsic structure of fault
data and have been widely used in fault diagnosis. Commonly used manifold algorithms
include local linear embedding (LLE) [16], Marginal fisher analysis (MFA) [17], neigh-
borhood preserving embedding (NPE) [18], locality preserving projection (LPP) [19], etc.
Among them, LPP constructs a nearest neighbor matrix to reflect the local neighborhood
relationship of the data and expects to preserve this relationship after projection. Unlike
LPP, LLE treats the data located on a smaller local structure as linear and uses local nearest
neighbor points to linearly represent any point in the neighborhood. However, both LPP
and LLE do not utilize the class information of the samples. MFA belongs to a type of su-
pervised algorithm which expects homogeneous samples in the neighborhood to be closer
in the subspace and heterogeneous samples to be further away. In view of the effectiveness
of manifold algorithms, scholars have introduced many new manifold algorithms for fault
diagnosis in recent years [20–22]. However, conventional dimensional reduction algorithms
are unable to combine local and global information of data during fault diagnosis.

The literature [23,24] shows that both local and global information of fault data can
provide an active role in fault diagnosis. For fault data, global information describes its
overall characteristics, while local information reflects its internal structure. Therefore,
in order to obtain more comprehensive fault discrimination information, Luo et al. [25]
proposed a nonlocal and local structure preserving projection (NLSPP). It not only uncovers
the non-local structure of the data by calculating the variance between samples, but also
maintains the neighbor relationship between samples, and the extracted features are more
powerful compared to PCA and LPP. However, NLSPP does not utilize supervised infor-
mation, which lacks advantages in the classification of fault data. Tang et al. [26] offered
a Fisher discriminative global local preserving projection (FDGLPP) based on GLPP by
combining the ideas of FDA to reach a superior recognition performance. Yang et al. [27]
integrated the GLPP and multiple marginal fisher analysis [28] methods to propose a
global-local marginal discriminative preserving projection (GLMDPP) method, which can
extract both intrinsic and discriminative features of the data. To overcome the drawback
of the MFA algorithm being challenged in obtaining both local and global features from
bearing fault data, Zhao et al. [29] proposed a global local margin Fisher analysis (GLMFA)
algorithm by introducing two regularization terms. In addition, since the orthogonality
criterion can reduce the impact of data noise on the classification performance, Su et al. [30]
proposed an orthogonal locality and globality preserving projection (OLGPP). Under the
orthogonality constraint, the algorithm not only balances the manifold structure and the
Euclidean structure, but also reduces the influence generated by noise in the data. Since the
orthogonal discriminant projection [31] cannot balance the neighborhood relationship of
rotor fault data, Shi et al. [32] proposed a local global balanced orthogonal discriminant pro-
jection (LGBODP) that improves the separability of heterogeneous samples by considering
the neighborhood and non-neighborhood structure of the samples in an integrated manner.
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However, among these existing methods, the Euclidean distance-based similarity
matrix is widely used to reflect the relationship between fault samples to obtain relevant
features, but the Euclidean distance is very sensitive to outliers in the fault data [33], which
can affect the effective extraction of discriminative information and lead to decreased fault
classification performance. In addition, in order to take into account both global and local
features, these algorithms need to set an additional balancing parameter when constructing
the model. For the value of this parameter, the range is usually first set manually and then
determined using a grid search method [34]. This approach makes it difficult to effectively
balance the relative importance between global and local structures, which largely reduces
the discriminative power of the obtained fault features.

To address the above problems, an Euler representation-based structural balance dis-
criminant projection (ESBDP) algorithm is proposed in this paper for rotating machinery
fault diagnosis. First, the algorithm represents the high-dimensional fault features by
mapping them into the Euler space via the cosine metric [35]. The Euler representation
approximates an ideal robust kernel that can suppress the effect of outliers in the fault data
to a certain extent. Meanwhile, heterogeneous fault samples have greater differences in
this space, which improves inter-class separability to a certain extent and facilitates fault
classification. Secondly, ESBDP constructs four objective functions with different structure
and class information in Euler space. While fully exploiting the global and local structural
information of fault data, it effectively improves the local intra-class aggregation and global
inter-class separation of low-dimensional discriminative features. Finally, we offer an adap-
tive balance strategy to construct a unified optimization model of ESBDP, which achieves
adaptive balance between global and local features in the projection subspace and further
enhances the discriminative power of fault features while improving the adaptiveness of
the algorithm. To verify the effectiveness of our method, we have conducted experimental
analysis on two rotating machinery fault cases of bearing and gearbox, and the encouraging
experimental results show that our method has superior fault diagnosis performance.

2. Review of Locality Preserving Projection

LPP is one of the classical manifold dimension reduction algorithms based on the
nearest neighbor criterion [36], and many existing methods are extension studies of LPP,
so we provide a brief review of LPP. Given a fault sample set X ∈ [x1, x2, · · · , xn] ∈ RM×n,
LPP aims to detect an optimal projection matrix P that maps the high-dimensional fault
data to the low-dimensional space and retains the local adjacency information or structure
of the original dataset. Define yi ∈ Rd(d << M) as a low-dimensional representation of xi.
Then, yi should satisfy

yi = PTxi(i = 1, 2, · · · , n). (1)

First, LPP describes the local adjacency structure of the data by constructing a nearest
neighbor graph Glpp = (X, Wlpp), where X denotes the set of nodes and Wlpp is the weight
matrix. Based on the k nearest neighbor criterion and the Euclidean distance, the local
nearest neighbor matrix is constructed as

Wij
lpp =

{
exp(−

∥∥xi − xj
∥∥2

2/2t2), i f xj ∈ Nk(xi)

0, otherwise
, (2)

where t is a kernel parameter, Nk(xi) denotes the set of k nearest samples of xi. For two
samples that are neighbors of each other in the original space, LPP expects them to still
maintain this neighbor relationship in the projection subspace. Therefore, LPP defines the
minimization objective function as

min
P

∑i,j

∥∥yi − yj
∥∥2

2
Wij

lpp. (3)
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According to Equation (1), Equation (3) can be further expressed as

min
P

∑i,j
∥∥PTxi − PTxj

∥∥2
2Wij

lpp

= PTXDXT P− PTXWXT P,
= PTXLXT P

(4)

where D is a diagonal matrix whose diagonal elements correspond to the sum of the row
vectors of Wij

lpp. Moreover, to avoid trivial solutions, the constraint is set to PTXDXT P = I.
Finally, the required mapping matrix P is obtained by solving the optimal objective model.

3. Proposed Method

Similar to LPP, existing fault diagnosis methods usually use Euclidean distance to
calculate the similarity weights among fault samples when performing feature extraction,
which makes the methods sensitive to outliers in the data and thus reduces the diagnosis
performance. In addition, both global and local information can play different important
roles in improving the performance of fault diagnosis; however, the relative importance
between them is difficult to be balanced effectively, which is not conducive to obtaining
more effective fault features. In order to capture and balance more discriminative global and
local fault information while avoiding the outlier sensitivity problem caused by Euclidean
distance, we propose the ESBDP algorithm. Its main process is as follows.

First, the fault sample set is converted into Euler representation data. The Euler repre-
sentation is not only robust to outliers, but also capable of relatively expanding the sample
differences between classes. Second, the ESBDP algorithm constructs a unified objective
model in the Euler space. The model combines four functions with different structural and
class information, which can take into account more global and local geometric similarity
information of fault data. Finally, the unified model is further optimized. In the optimized
model, weights corresponding to local and global information can be automatically learned
through the adaptive balancing strategy, which effectively improves the discriminative
power of extracted features. The detailed construction process of this algorithm is described
as follows.

3.1. Euler Representation

The Euler representation based on the cosine metric has an important role in the
ESBDP algorithm, by which the Euler representation can relatively expand the distance
between dissimilar samples, which is beneficial for fault classification. At the same time,
the Eulerian representation can approximate the ideal robust kernel, thus suppressing the
influence of outliers in fault data. First, we introduce the definition of the cosine metric
as follows:

Definition 1. Given two arbitrary vectorsvi and vj ∈ RQ , the cosine distance between them is

ψ(r) =
{

sin(πr), i f − 1 ≤ r ≤ 1
0, otherwise

, (5)

where η ∈ R+, vi(c) denote the cth components of vi.

Equation (5) can be regarded as Fourier cosine series [37] in form. It is pointed out by
Fourier theory that any continuous function can be described by a series of finite number of
sinusoids, and therefore such sinusoids can be approximated as a desired kernel [38]. It is
worth noting that this cosine distance function can be viewed as Andrews’ M-estimate [39]
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when vi, vj ∈ [0, 1], and its influence function, too, is equivalent to Andrews’ influence
function. The influence function is shown in Equation (6):

d(vi, vj) =
Q

∑
c=1

{
1− cos

(
ηπ
(
vi(c)− vj(c)

))}
. (6)

For M-estimation, the effect of the outliers on the target function is bounded if the
influence function is bounded, and on this basis, the estimates of M-estimation are more
robust if the target function is also bounded [40], and it can be observed that Andrews’
M-estimation is bounded and robust. Since the cosine metric function is formally identical
to this estimate, the cosine distance function is also robust to outliers, which can be inferred
from the robustness of the M-estimate.

By algebraic transformation, Equation (6) can be derived as follows:

d
(
vi, vj

)
=

Q
∑

c=1

{
1− cos

(
γπ
(
vi(c)− vj(c)

))}
=
∥∥∥ 1√

2
(eiγπvi − eiγπvj)

∥∥∥2
,

=
∥∥δi − δj

∥∥2

(7)

where

δi =
1√
2

 eiγπvi(1)

...
eiγπvi(Q)

 =
1√
2

eiγπvi , (8)

where δi is the Euler representation of the vectors vi. From Equation (7), the cosine distance
between vi and vj is equivalent to the Euclidean distance between δi and δj. For the sake of
description, we refer to the sample distance in Euler space as the Euler distance.

Compared to the Euclidean metric, the Euler metric enlarges the distance of the inter-
class samples, which is useful for improving the separability of fault data. We conducted
a set of distance comparison experiments to verify the conclusion. Ten samples were
randomly selected from each type of data on the bearing dataset from Case Western Reserve
University [41] and the gear dataset from the University of Connecticut [42]. We used Euler
distance and Euclidean distance to calculate the distance between homogeneous samples
and the distance between heterogeneous samples, respectively, and the results are shown
in Table 1, where the bearing data are used for the drive end data at 1797 r/min speed. As
can be seen from Table 1, the Euler distance simultaneously expands the distance between
the samples and, importantly, expands the distance between heterogeneous samples by a
greater multiple compared to samples of the same class.

Table 1. Comparison of different distance metrics.

Metric Method
Bearing Dataset Gear Dataset

Same Different Same Different

Euclidean
distance 0.14 2.06 1.11 2.28

Euler distance 1.99 29.63 11.92 31.68

Based on the above analysis, the Euler representation not only can approximate the
ideal robust kernel with insensitivity to outliers, but also the machinery fault data can
relatively expand the differences between heterogeneous samples in the Euler space, which
is helpful to increase the separability of fault samples. Therefore, we first normalize the high-
dimensional fault data X = [x1, x2, · · · , xn] ∈ RM×n to [0, 1] and then map it to the Euler
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space via Equation (8) to obtain the Euler representation data X̂ = [x̂1, x̂2, · · · , x̂n] ∈ RM×n,
where

x̂i =
1√
2

 eiγπxi(1)

...
eiγπxi(m)

 =
1√
2

eiγπxi . (9)

3.2. Construction of Local Objective Function

The local information reflects the neighborhood structure relationship between sam-
ples, and extracting effective neighborhood discriminant features is important to improve
the accuracy of fault classification. For better classification, ESBDP expects samples belong-
ing to the same class in the neighborhood to be more aggregated and samples in different
classes to be separated from each other. Therefore, we combine the label information to
construct local intra-class graph G+

local and local inter-class graph G−local . An example of
graph construction is given in Figure 1.
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classes of samples.

G+
local = (X, W+

local) describes the structural relationships among the intra-class sam-
ples in the neighborhood, where X denotes the set of samples and W+

local is the similarity
matrix. W+

local is defined as

W+
local =

{
1 + exp(−‖x̂i−x̂j‖2

2
2t2 ), i f x̂j ∈ Nk(x̂i) and c(x̂i) = c(x̂j)

0, otherwise
, (10)

where x̂i denotes the Euler representation of xi, t is a kernel parameter and c(x̂i) is the class
of x̂i.

According to Equation (10), the closer two sample points in the Euler space are, the
greater the similarity between them. To maintain the structural relationship between the
near-neighbor samples within the class after projection and obtain more compact intra-class
local features, the local intra-class objective is defined as

G+
lcoal = min

P

n
∑

i,j=1
W+

local

∥∥PT x̂i − PT x̂j
∥∥2

= min
P

PTX̂D+
lcoal X̂

T P− PTX̂W+
local X̂

T P,

= min
P

PTX̂L+
local X̂

T P

(11)

where D+
lcoal is a diagonal matrix with diagonal elements equal to the column sum of W+

local
and L+

local = D+
lcoal −W+

local is the Laplace matrix.
The local inter-class graph G−local = (X, W−local) is used to reflect the interclass structure

of the data in the neighborhood, and its similarity matrix W−local is constructed as

W−local =

{
1− exp(−‖x̂i−x̂j‖2

2
2t2 ), i f x̂j ∈ Nk(x̂i) and c(x̂i) 6= c(x̂j)

0, otherwise
. (12)
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To improve the separability of local inter-class samples, the maximization objective
function is defined as

G−local = max
P

n
∑

i,j=1
W−local

∥∥PT x̂i − PT x̂j
∥∥2

= max
P

PTX̂Dlocal X̂T P− PTX̂Wlocal X̂T P,

= max
P

PTX̂L−local X̂
T P

(13)

where D−lcoal is a diagonal matrix, (D−lcoal)ii = ∑j (W
−
local)ij and L−lcoal = D−lcoal −W−local is

the Laplace matrix. According to Equation (12), the smaller the distance between two
near-neighbor sample points belonging to different classes in Euler space, the smaller
similarity is assigned to them. By maximizing the objective function, the local inter-class
features with more separation can be obtained.

3.3. Construction of Global Objective Function

The global information can reflect the overall characteristics of the fault data, which is
equally important for improving the fault diagnosis accuracy. To comprehensively explore
the global information, we constructed a global intra-class graph G+

global = (X, W+
global) and

a global inter-class graph G−glocal = (X, W−glocal). An example of global graph construction
is given in Figure 2.
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G+
global reflects the geometric relationship between any two samples in the same class,

and its similarity matrix W+
global is defined as

W+
global =

{ ∥∥x̂i − x̂j
∥∥2

2(1 + exp(−‖x̂i−x̂j‖2
2

2t2 )), if i 6= j and c(x̂i) = c(x̂i)

0, otherwise
. (14)

To make the fault data of the same class more aggregated after projection, the global
intra-class objective is constructed as

G+
global

= min
P

n
∑

i,j=1
Wij

global

∥∥PT x̂i − PT x̂j
∥∥2

= min
P

PTX̂Dglobal X̂T P− PTX̂Wglobal X̂T P,

= min
P

PTX̂L+
global X̂

T P

(15)

where D+
global is a diagonal matrix, (D+

global)ii
= ∑j (W

+
global)ij

and L+
global = D+

global −W+
global

is the Laplace matrix.
G−glocal reflects the geometric relationship between any two samples of different cate-

gories, and its similarity matrix W−global is defined as

W−global =

{ ∥∥x̂i − x̂j
∥∥2

2(1− exp(−‖x̂i−x̂j‖2
2

2t2 )), if i 6= j and c(x̂i) 6= c(x̂i)

0, otherwise
, (16)
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The maximization global inter-class objective is defined as follows:

G−
global

= max
P

n
∑

i,j=1
W−global

∥∥PT x̂i − PT x̂j
∥∥2

= max
P

PTX̂Dglobal X̂T P− PTX̂Wglobal X̂T P,

= max
P

PTX̂L−
global

X̂T P

(17)

where D−global is a diagonal matrix, (D−global)ii
= ∑j (W

−
global)ij

and L−global = D−global −W−global

is the Laplace matrix. In Equation (16), two samples belonging to different classes in
Eulerian space are approximately close to each other; then, a lower similarity is imposed
between them, and under the incentive of maximization objective, the two samples in low-
dimensional space move away from each other, thus obtaining global inter-class features
with well separability.

3.4. The Uniform Object Function of ESBDP

Based on the above analysis, ESBDP expects to capture both local and global discrimi-
native information of fault data in Euler space and make the data have better inter-class
separability and intra-class aggregation after projection. Therefore, the objective function
of ESBDP is formulated as four optimization problems:

min
P

PTX̂L+
local X̂

T P

max
P

PTX̂L−local X̂
T P

min
P

PTX̂L+
global X̂

T P

max
P

PTX̂L−global X̂
T P

. (18)

To better unify the four objective functions into a single objective model, we transform
the intra-class minimization problem into the equivalent maximization problem.

min
P

PTX̂L+
local X̂

T P = PTX̂(D+
local −W+

local)X̂T P

⇒ max
P

PTX̂W+
local X̂

T P
(19)

min
P

PTX̂L+
global X̂

T P = PTX̂(D+
global −W+

global)X̂T P

⇒ max
P

PTX̂W+
global X̂

T P
(20)

Combining the above four optimization problems, the objective model of ESBDP is
defined as

max
P

PTX̂
(
(1− δ)(L−local + W+

local) + δ(L−global + W+
global)

)
X̂T P

s.t. PTX̂(Dlocal − Dglobal)X̂T P = 1.
(21)

where Dlocal = D+
local + D−local , Dlocal = D+

global + D−global and δ ∈ [0, 1] is a balance parameter
to regulate the elasticity between global and local information.

In Equation (21), the balance parameter determines the relative importance of the
global and local targets, which plays an essential role in obtaining effective fault features.
However, there are some problems that need to be solved here, such as the determination
of the appropriate parameter values. Usually, the parameter needs to be set artificially in
the range first, and the final parameter value is obtained by methods such as grid search. It
is a challenge to manually select a suitable parameter in different fault applications, and the
discriminative power of the extracted relevant features may reduce if the parameter is not
selected properly. Therefore, we offer an adaptive balancing strategy to further optimize
the uniform objective function of ESBDP.
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3.5. Optimization of the Uniform Objective Function

In this section, we offer an adaptive balance strategy to construct an optimized model
for ESBDP. Compared with setting the parameters manually, we expect the ESBDP algo-
rithm to adaptively select the best balancing parameters to achieve an effective balance of
global and local features, thus further enhancing the discriminative power of the extracted
fault features. Therefore, Equation (21) is optimized as follows:

argmax
P,αl ,αg

αl
2PTX̂Hlocal X̂T P + αg

2PTX̂Hglobal X̂T P

s.t. PTX̂(Dlocal − Dglobal)X̂T P = 1. ,
αl + αg = 1.

(22)

where Hlocal = L−local + W+
local , Hglobal = L−global + W+

global , αl corresponds to the weight
parameter of the local target and αg is the weight parameter of the global target. While
learning the local and global structural features of the fault data, the model of Equation (22)
obtains intra-class minimization and inter-class maximization, and in addition, the model
achieves adaptive balance between global and local objectives.

In the optimization model of ESBDP, the projection direction and the balance parame-
ters are the objectives to be solved. Since it is difficult to solve both objectives at the same
time, we use a way of iterative update, i.e., fix one solution objective, update the other
one, and stop the iterative process when the solution converges. The following are the
solution steps.

(1) Fixing the balance parameters αl and αg, we update the projection matrix P.
Fixing the balance parameters as constants, Equation (22) can be expressed as

argmax
P

αl
2PTXHlocalXT P + αg

2PTXHglobalXT P

s.t. PTX(Dlocal − Dglobal)XT P = 1.
(23)

The Lagrange multiplier method was used to solve for Equation (23).

L(P) = α2
l PTXHlcoalXT P + PTXα2

gHglobalXT P
−λ(PTX(Dlocal − Dglobal)XT P− 1)

(24)

where λ is the Lagrangian multiplier. The value of the partial derivative of Equation (24)
with respect to P is zero.

∂L(P)
∂P

= α2
l XHlocalXT P + α2

gXHglobalXT P− λ
(

X(Dlocal − Dglobal)XT P− 1
)
= 0. (25)

Then, Equation (25) can be transformed into

α2
l XHlcoalXT P + α2

gXHglobalXT P = λX(Dlocal − Dglobal)XT P. (26)

Solving Equation (26), we can calculate that the eigenvector λ = [λ1, λ2, · · · , λd]
corresponds to the first d largest eigenvalues, which is the desired projection direction.

(2) Fixing P, we update αl and αg.
Fixing the projection matrix, Equation (18) can be expressed as

argmax
αl ,αg

αl
2PTXHlocalXT P + αg

2PTXHglobalXT P

s.t. αl + αg = 1.
(27)

Using the Lagrange multiplier method to solve Equation (27).

L(αl , αg) = α2
l tr(PTXHlocalXT P) + α2

gtr(PTXHglobalXT P)− λ(αl + αg − 1). (28)
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We let the value of the partial derivative of Equation (28) with respect to the balance
parameter be zero. 

∂L(αl ,αg)
∂αl

= 2αltr(PTXHlocalXT P)− λ = 0
∂L(αl ,αg)

∂αg
= 2αgtr(PTXHglobalXT P)− λ = 0

∂L(αl ,αg)
∂λ = αl + αg − 1 = 0

. (29)

By mathematical transformation, the balance parameters can be expressed as

αl =
tr(PTXHglobalXT P)

tr(PTXHlocalXT P) + tr(PTXHglobalXT P)
, (30)

αg =
tr(PTXHlocalXT P)

tr(PTXHlocalXT P) + tr(PTXHglobalXT P)
. (31)

Finally, the fault data are projected into the subspace by Y = PTX to obtain the
low-dimensional representation features. Algorithm 1 describes the steps of the ESBDP
algorithm.

Algorithm 1 Euler Representation Based Structural Balance Discriminant Projection

Input: Training fault sample set X ∈ [x1, x2, · · · , xn] ∈ Rm×n

Output: projection matrix P
(1) Conversion of the original feature data X into Euler representation data X̂ by Equation (9).
(2) Construction the weight matrix W+

local , W+
local , W+

global and W−global .
(3) Fixing the balance parameters αl and αg, update P.
(4) Fixing the projection matrices P, update αl and αg.
(5) Repeat (3) and (4) until convergence.

4. Fault Diagnosis Process Based on ESBDP Algorithm

In this section, the fault diagnosis process based on the ESBDP algorithm is described,
and the diagnosis flowchart is provided in Figure 3, where n denotes the number of classes
of fault data. The following is a specific description of the diagnosis steps:

Step 1. The vibration data of machinery equipment during operation are collected, and
the original data are transformed into time–frequency domain features to construct a high-
dimensional fault feature set. The high-dimensional feature set can reduce the influence of
the noise and the nonlinear features in the original data [43]. The relevant characteristic
parameters are provided in Table 2, where v(i) denotes the time series of the signal and
s(k) is the frequency spectrum of v(i). In Table 3, p1~p17 are the time domain features,
which are mean value, square root amplitude, peak value, absolute mean, maximum value,
root mean square value, variance, minimum value, standard deviation, impulse factor,
kurtosis, skewness, waveform factor, peak factor, peak-to-peak value, margin factor and
gap factor. p18~p21 are the frequency domain features of the signal, which are the mean
frequency, center of gravity frequency, root mean square frequency, and standard deviation
of frequency. p22~p29 are the time–frequency domain features of the signal. More specific
definitions of the feature parameters can be referred to [9,10,28,44]. Then, the feature set is
divided into a training set Xtrain and a testing set Xtest in a certain proportion by means of
a random selection.
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Table 2. Time–frequency characteristic parameters.

No. Parameters No. Parameters No. Parameters

1 p1 = ∑n
i=1 v(i)/n 9 p9 =

√
∑n

i=1 (v(i)− p4)
2/(n− 1) 17 p17 = p3/p2

6

2 p2 = (∑n
i=1

√
|v(i)|/n)

2 10 p10 = p3/p4 18 p18 = ∑k
k=1 fks(k)/∑k

k=1 s(k)
3 p3 = max|v(i)| 11 p11 = ∑n

i=1 (v(i)− p1)
4/(n− 1)p9

4 19 p19 = ∑k
k=1 s(k)/k

4 p4 = ∑n
i=1|v(i)|/n 12 p12 = ∑n

i=1 (v(i)− p1)
2/(n− 1)p9

3 20 p20 =
√

∑k
k=1 f 2

k s(k)/∑k
k=1 s(k)

5 p5 = max(v(i)) 13 p13 = p2/p4 21 p21 =
√

∑k
k=1 ( fk − T18)

2s(k)/∑k
k=1 s(k)

6 p6 =
√

∑n
i=1 (v(i))

2/n 14 p14 = p3/p6 22~29
Three-layer wavelet packet decomposition
band energy characteristic.7 p7 = ∑n

i=1 (v(i)− p4)
2/n 15 p15 = p5 − p8

8 p8 = min(v(i)) 16 p16 = p3/p2
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Table 3. Fault recognition rate of bearing dataset processed by different method.

Fault Type
Recognition Accuracy (%)

LLE LPP KPCA OLGPP LSPD ESBDP

Normal 100 100 100 100 99.83 100
Inner race 93.33 83.67 96.17 98.17 100 100

Ball 88.83 83.83 82.33 96.67 100 100
Outer race 91.0 99.67 100 96.67 100 100

Average recognition rate 93.29 91.79 94.63 98.63 99.96 100
Standard deviation 0.95 6.55 0.72 0.94 0.13 0.00
Processing time (s) 0.80 0.32 0.33 0.71 0.50 0.34

Step 2. The training set Xtrain is mapped to the Euler space, and the ESBDP optimiza-
tion model based on four objectives is constructed in this space. Solving this model, we can
obtain the projection matrix P. Then, the low-dimensional representation features Ytrain and
Ytest are obtained by projecting Xtrain and Xtest into the subspace using P.

Step 3. The low-dimensional training sample Ytrain is input to the SVM classifier for
learning, and finally, the fault type of the test sample is predicted based on the completed
training classifier.

5. Experimental Results and Analysis
5.1. Experiments on the Bearing Dataset

In this experiment, the bearing data were used from the Case Western Reserve University
(CWRU) rolling bearing dataset. As shown in Figure 4, the data acquisition platform is divided
into three main parts, from left to right, the motor, the torque sensor, and the dynamometer. The
drive-end bearing vibration data at 12 kHz sampling frequency and 1772 rpm were used in our
diagnosis experiment, containing four different types of data, namely normal data, inner race
defect data, outer race defect data and ball defect data. Figure 5 shows the one-dimensional
signals of the four states. With a sampling length of 1024, 100 samples were obtained for
each type of signal data. Then, the high-dimensional feature set is obtained by extracting the
time–domain, frequency–domain and time–frequency features of the original fault samples
according to the process described in Section 4. The training set is composed of 40 samples
randomly selected from each class, and the rest are used as test samples. To avoid the chance
of experimental results, the random experiment was repeated ten times by us. Finally, the fault
recognition accuracy was taken as the average of the ten-time results.
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To obtain the appropriate parameters for the ESBDP algorithm, we conducted several
experiments using the grid search method, and through comparison, we finally set the
neighborhood parameter value k = 9, the adjustment parameter γ = 1, and the kernel
parameter t = 0.01. In addition, for comparison with our algorithm, five related algorithms,
KPCA, LPP, LLE, OLGPP, and LSPD were used for the same experiments, and the param-
eters of each algorithm were selected using the grid search method. Among them, the
kernel parameter of the global nonlinear algorithm KPCA is tkpca = 2. The neighborhood
parameters of the LPP, LLE, OLGPP, and LSPD [45] algorithms are set to klpp = 12, klle = 7,
kolgpp = 17, and klspd = 10, respectively. The kernel parameters of LPP, KPCA and OLGPP
are set to tlpp = 1 and tolgpp = 0.1, respectively.

To visualize the classification performance of ESBDP, we show the distribution of the
sample features in the three-dimensional space after projection in Figure 6 and compare it
with the LLE, LPP, KPCA, OLGPP and LSPD algorithms, where the horizontal axis denotes
the first dimension of Ytest, the vertical axis denotes the second dimension of Ytest, and
the other axis denotes the third dimension of Ytest. It can be seen that the visualization
distribution results of LLE, LPP and KPCA are relatively poor, showing that the same
kind of features are scattered and there is a serious overlap between different types of
data without a clear demarcation. The reason for this situation is that all three algorithms
only singularly consider the neighborhood information or global structure of the fault
data and extract incomplete information; in addition, the supervision information is not
used by these algorithms. Compared with the above three algorithms, the visualization
results of OLGPP and LSPD are relatively good, but there are some cases of scattered data
within the class and the heterogeneous samples are relatively close to each other. The
visualization of the three-dimensional feature distribution based on the ESBDP method is
optimal, with high aggregation between the same class of samples, high separation between
the heterogeneous samples, and obvious demarcation between classes, which provides a
favorable basis for the subsequent fault classification.
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To further explain the low-dimensional feature separability of ESBDP, we adopted
the ratio of inter-class distance and intra-class distance as the separability index. The
inter-class distance Sb is used to reflect the separability between classes, while the intraclass
distance Sw reflects the aggregation of samples within classes, and they can be calculated by
Equations (32) and (33), where c denotes the number of classes of samples, yi = ∑n

i=1 yi/n
denotes the class center, and yji denotes the ith sample of the jth class. For low-dimensional
features, the larger the separability parameter metric, the better its relative separability.
Figure 7 provides the divisibility metrics based on the six algorithms, and it can be seen that
the divisibility parameters of EGBDP are higher than those of the other algorithms. Com-
bining Figures 6 and 7, we can conclude that ESBDP has better dimensionality reduction
performance and can provide a favorable basis for subsequent fault classification.

Sb =
1

c(c− 1)

c

∑
i,j

∥∥∥yi − yj

∥∥∥, (32)
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Sw =
1
c

c

∑
j=1

1
n

n

∑
i

∥∥∥yji − yj

∥∥∥ (33)

Machines 2023, 11, x FOR PEER REVIEW 15 of 25 
 

 

by Equations (32) and (33), where c  denotes the number of classes of samples, 

1
n

i iiy y n==  denotes the class center, and jiy  denotes the 𝑖th sample of the 𝑗th class. For 
low-dimensional features, the larger the separability parameter metric, the better its rela-
tive separability. Figure 7 provides the divisibility metrics based on the six algorithms, 
and it can be seen that the divisibility parameters of EGBDP are higher than those of the 
other algorithms. Combining Figure 6 and Figure 7, we can conclude that ESBDP has bet-
ter dimensionality reduction performance and can provide a favorable basis for subse-
quent fault classification. 

= −
− 

,

1 ,
( 1)

c

b i j
i j

S y y
c c

 (32)

1

1 1c n

w ji j
j i

S y y
c n=

= −  . (33)

 
Figure 7. Low-dimensional feature separability index based on different algorithms. 

Table 3 provides the average fault recognition accuracy and its standard deviation 
and processing time for ten random experiments based on the six methods of LLE, LPP, 
KPCA, OLGPP, LSPD and ESBDP. The standard deviation is used to reflect the fluctuation 
of the recognition rate such as the smaller standard deviation indicating the smoother 
performance of the algorithm. From Table 3, it can be observed that the recognition results 
of the three algorithms, LLE, LPP and KPCA, which only consider the global or local struc-
ture, are lower for nonlinear unstable machinery fault data. Among them, LPP has a recog-
nition rate of 91.79% by discovering the local discriminative features on the sample man-
ifold, and the large standard deviation indicates its poor stability. LLE is a nonlinear al-
gorithm in the manifold algorithm that can respond to the sample globally with local lin-
earity, and its low-dimensional samples can keep the original topology, and the fault di-
agnosis accuracy of this algorithm is 93.29%. With the kernel function, KPCA can capture 
the nonlinear global structure information of the fault data, and the recognition rate is 
94.63%. Since OLGPP captures both global and local information of the data, its diagnosis 
accuracy is higher than the above three methods, but OLGPP does not utilize the super-
vised information of the fault data, so it is difficult to achieve the correct classification of 
all the data. While using supervised information, LSPD measures and preserves the sim-
ilarity between fault samples by constructing a similarity function, which improves the 
accuracy to some extent, but the algorithm focuses more on the local structure of the sam-
ples and the global information is not effectively used. 

ESBDP achieves the highest recognition accuracy because the algorithm maps the 
fault data into the Euler space through the cosine metric and integrates the structural re-
lationships of local intra-class, local inter-class, global intra-class and global inter-class 
samples in this space. On the basis of expanding the differences between heterogeneous 
fault samples, the inter-class separation and intra-class aggregation between samples are 

Figure 7. Low-dimensional feature separability index based on different algorithms.

Table 3 provides the average fault recognition accuracy and its standard deviation
and processing time for ten random experiments based on the six methods of LLE, LPP,
KPCA, OLGPP, LSPD and ESBDP. The standard deviation is used to reflect the fluctuation
of the recognition rate such as the smaller standard deviation indicating the smoother
performance of the algorithm. From Table 3, it can be observed that the recognition results
of the three algorithms, LLE, LPP and KPCA, which only consider the global or local
structure, are lower for nonlinear unstable machinery fault data. Among them, LPP has a
recognition rate of 91.79% by discovering the local discriminative features on the sample
manifold, and the large standard deviation indicates its poor stability. LLE is a nonlinear
algorithm in the manifold algorithm that can respond to the sample globally with local
linearity, and its low-dimensional samples can keep the original topology, and the fault
diagnosis accuracy of this algorithm is 93.29%. With the kernel function, KPCA can capture
the nonlinear global structure information of the fault data, and the recognition rate is
94.63%. Since OLGPP captures both global and local information of the data, its diagnosis
accuracy is higher than the above three methods, but OLGPP does not utilize the supervised
information of the fault data, so it is difficult to achieve the correct classification of all the
data. While using supervised information, LSPD measures and preserves the similarity
between fault samples by constructing a similarity function, which improves the accuracy
to some extent, but the algorithm focuses more on the local structure of the samples and
the global information is not effectively used.

ESBDP achieves the highest recognition accuracy because the algorithm maps the
fault data into the Euler space through the cosine metric and integrates the structural
relationships of local intra-class, local inter-class, global intra-class and global inter-class
samples in this space. On the basis of expanding the differences between heterogeneous
fault samples, the inter-class separation and intra-class aggregation between samples are
effectively improved. In addition, ESBDP achieves an adaptive balance between global
and local features, which further enhances the discriminative power of the extracted fault
features. Remarkably, our method has the smallest standard deviation and the processing
time is only 0.34 s, which means that the ESBDP algorithm has a low computational burden
and is more stable.

The specific classification results are provided in Figure 8. It can be observed that
the classification errors exist in all algorithms except our algorithm. Among them, in the
prediction results of the LPP and KPCA algorithms, the classification errors are mainly
concentrated on the second and third fault types of data. Classification errors are detected
in LLE and OLGPP for all other three types of faults except normal data. The classification
results of the LSPD algorithm are better, but there is also a normal sample that is misclas-
sified. Our method can accurately identify samples of each fault type, which shows the
superiority of ESBDP in clustering and classification of all types of fault data.
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Figure 8. The classification results of the bearing data: (a) LLE; (b) LPP; (c) KPCA; (d) OLGPP;
(e) LSPD; (f) ESBDP.

To further verify the ability of the ESBDP algorithm to capture fault information, we
used different numbers of samples to train each algorithm and then observed the change in
fault diagnosis results. Figure 9 shows the corresponding experimental results. Overall,
as the number of training samples increases, the recognition rate of all six algorithms
increases, because the training samples contain the discriminative information required for
fault classification, and the more training samples, the more discriminative features can be
learned. Among them, LLE, LPP and KPCA algorithms have lower recognition rates. In
addition, the accuracy of LPP, LLE and KPCA can hardly be improved even if the training
samples are increased due to the performance of the algorithms. ESBDP outperforms the
other five algorithms in terms of recognition rate and stability. It is worth noting that
ESBDP can achieve a 100% fault recognition rate at 20 training samples per class, which
means that our algorithm has a strong ability to capture fault discriminative information
and can better perform fault diagnosis tasks.
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Figure 9. Recognition accuracy under sample variation.

To further investigate the performance of the ESBDP algorithm, we experimented with
bearing fault data for four operating conditions at 1797 r/min, 1772 r/min, 1750 r/min,
and 1730 r/min, respectively. Following the process in Chapter 3, the identification results
of the six algorithms are shown in Figure 10. It can be concluded that for the bearing data
under different working conditions, the recognition rates of the first three algorithms are
generally low and unstable, and the accuracy rates of OLGPP and LSPD are relatively good,
but they cannot classify the four data correctly at the same time. The ESBDP algorithm is
the most stable and achieves the highest accuracy rate for the diagnosis of all four data.
Experiments show that compared with other methods, ESBDP has stronger adaptability
and can also mine effective fault discrimination features for data under different working
conditions to achieve accurate classification.
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5.2. Experiments on the Gear Dataset

The experimental data were obtained from a gear fault dataset published by the
University of Connecticut, and the data collection platform is shown in Figure 11. It is
a two-stage gearbox containing a motor for controlling the gear speed, a tachometer for
measuring the speed, an electromagnetic brake for providing torque, and two-stage input
shaft equipped with gears. The gear operation data are obtained from the pinion of the first
stage via an accelerometer with a sampling frequency of 20 KHZ and contain nine types of
gear states for spalling, root crack, missing tooth, five different severity levels of chipping
tip, and health state. To facilitate the description, we denote these nine types of data by {F1,
F2, F3, F4, F5, F6, F7, F8, F9}. The vibration signals of the nine gear states are provided in
Figure 12. A total of 104 samples were collected for each type of data, totaling 936 samples
with a dimension of 3600. Following the procedure in Section 4, the statistical features in
the time–frequency domain were computed for each sample to obtain the high-dimensional
feature set. In this experiment, we randomly chose 50 samples from each of the nine data
types as training samples and the rest of the samples as prediction samples. In addition, the
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parameters of each algorithm in the gear experiment are the same as those of the bearing
diagnosis experiment.
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Figure 12. Raw vibration signals of nine gear data.

Figures 13 and 14 show the three-dimensional distribution and separability indexes of
the low-dimensional features after projection based on the six algorithms, respectively. Due
to the increase in categories, the distribution of features is more complex. Among them, the
separable indexes of LLE, LPP and KPCA are relatively low and the visualization effect is
relatively poor. There is a serious overlap between multi-category features without clear
demarcation, which makes it difficult to identify effectively. The main reason is that these
three methods only consider the neighborhood structure or global information of the fault
data. OLGPP is also more confounded between classes because it does not utilize the label
information between samples. The comparison shows that for multi-class gear fault data,
the ESBDP method has the highest separability index and its three-dimensional feature
distribution visualization is also optimal, where homogeneous features are aggregated with
each other and heterogeneous features have relatively obvious boundaries, which shows
that our algorithm can effectively improve the aggregation between samples of the same
class and the separability between heterogeneous samples.
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Figure 14. Low-dimensional feature separability index based on different algorithms.

The gear diagnosis accuracy is provided in Table 4, and its corresponding classification
details are provided in Figure 15. For gear data with multiple classes, the recognition
accuracy of LLE, LPP and KPCA algorithms, which fail to combine both local and global
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discriminative features of fault data, decreases more. The accuracy of the OLGPP algorithm
also decreases because the supervised information is not utilized by the algorithm, which
makes it not advantageous in the diagnosis of multi-category fault data. In addition, there
are more parameters in the OLGPP algorithm, which makes it hard to effectively diagnose
different fault data without changing the parameters. It is worth noting that our algorithm
achieves accurate classification for all types of gear data. On the basis of expanding the
differences between heterogeneous samples, ESBDP combines label information to fully
consider the geometric structure relationship of fault data to achieve the acquisition and
balance of local and global features, which enables effective fault discriminative features
to be extracted. The results of gear diagnosis further demonstrate the effectiveness of
our algorithm.

Table 4. Fault recognition accuracy of gear dataset processed by different method.

Fault Type
Recognition Accuracy (%)

LLE LPP KPCA OLGPP LSPD ESBDP

Health state 92.59 100 100 100 100 100
Missing tooth 57.41 66.67 74.07 77.78 100 100

Root crack 74.07 98.15 94.44 96.30 100 100
Spalling 88.89 100 100 100 100 100

Chipping tip 1 64.81 88.89 81.48 81.48 96.30 100
Chipping tip 2 92.59 96.30 100 100 100 100
Chipping tip 3 79.63 87.04 83.33 92.59 100 100
Chipping tip 4 87.04 87.04 88.89 98.15 100 100
Chipping tip 5 62.96 77.78 96.30 100 98.15 100

Average recognition accuracy 77.78 89.09 90.95 93.83 99.38 100
Processing time (s) 0.57 0.39 0.24 0.51 0.33 0.40
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Figure 15. Three-dimensional distribution of test gear samples, where the different colors indicate
different classes of samples. (a) LLE; (b) LPP; (c) KPCA; (d) OLGPP; (e) LSPD; (f) ESBDP.
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To further verify the ability of ESBDP to capture fault features, the number of samples
used for training and the number of samples used for prediction were set to 2/102, 5/99,
10/94, 20/84, 30/74, 40/64, 50/54, 60/44, and 70/34 in the gear diagnosis experiments,
respectively, to observe the variation of the accuracy rate of each algorithm. The results
are provided in Figure 16. For different numbers of training samples, the fault diagnosis
accuracy of ESBDP is consistently higher than that of the other five algorithms. Notably,
the recognition accuracy of ESBDP reaches 99.53% at 10 training samples per class, which
indicates that the algorithm has a great ability to capture the discriminative features hidden
in the fault data.
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6. Conclusions

To address the problem of fault diagnosis methods sensitive to outliers and the dif-
ficulty to obtain and balance global and local discriminative information simultaneously,
this paper proposes the ESBDP algorithm for rotating machinery fault diagnosis.

(1) The algorithm maps the high-dimensional fault features to the Euler representation
space through the cosine metric, and the Euler representation approximates an ideal robust
kernel that can suppress the influence of outliers in fault data. Meanwhile, the compara-
tive analysis of Euler distance and Euclidean distance concludes that the heterogeneous
fault samples have greater differences in the Euler space, which improves the inter-class
separability to a certain extent.

(2) Through the adaptive balance strategy, the algorithm fully considers the geometric
structure relationship of the fault data and constructs an optimization model based on
four objective functions with different structure and class information in the Euler space,
which can balance the local and global structures of the fault data and further im-prove
the local intra-class aggregation and global inter-class separability of the low-dimensional
discriminant features.

(3) In two rotating machinery fault experiments of bearings and gearboxes, the ef-
fectiveness and stability of the algorithm are analyzed from the perspectives of three-
dimensional feature distribution of test samples, confusion matrix and fault recognition
rate under multiple working conditions. The experimental results show that the algorithm
proposed in this paper can effectively improve the accuracy of fault classification and has
superior fault diagnosis performance.

Although ESBDP has many advantages, there are still some potential problems. For
example, some parameter tuning is needed in the ESBDP algorithm, as well as a way to
select parameter values adaptively. The selection of time and frequency domain feature
parameters also affects the results of fault diagnosis and ways to obtain the optimal combi-
nation of time and frequency statistical features. All these issues will be further investigated
in the future.
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PCA principal components analysis
KPCA kernel principal components analysis
LLE local linear embedding
MFA marginal fisher analysis
NPE neighborhood preserving embedding
LPP locality preserving projection
NLSPP nonlocal and local structure preserving projection
FDGLPP Fisher discriminative global local preserving projection
GLMDPP global–local marginal discriminative preserving projection
GLMFA global–local margin Fisher analysis
OLGPP orthogonal locality and globality preserving projection
LGBODP local–global balanced orthogonal discriminant projection
ESBDP Euler representation-based structural balance discriminant projection
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