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Abstract: Thin−walled parts are widely used in many important fields because of performance
and structural lightweight requirements. They are critical parts because they usually carry the core
functions of high−end equipment. However, their high−performance machining has been facing
severe challenges, among which the dynamics problem is one of the most important obstacles. The
machining system is easily subjected to chatter due to the weak rigidity of the thin−walled struc-
ture and slender cutting tool, which significantly deteriorates the surface quality and reduces the
machining efficiency. Extensive studies aiming at eliminating machining chatter have been carried
out in the recent decades. This paper systematically reviews previous studies on the identification
of system dynamic characteristics, modeling and prediction of chatter stability, and chatter elimi-
nation/suppression methods and devices. Finally, existing problems are summarized, and future
research is concluded.
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1. Introduction

In aviation, aerospace, and the energy industry, thin−walled parts such as aircraft
structural parts, impellers, and turbine blades, are gaining more and more important ap-
plications. These complex parts usually carry the core functions of high−end equipment
and are used in extreme environments with harsh technical requirements [1]. With the im-
provement of performance and structural lightweight requirements, some difficult−to−cut
superalloys such as titanium alloys and nickel−based alloys are increasingly adopted as the
workpiece materials; meanwhile, the thin−walled parts are designed into more complex
structures with large ratios of wall length to wall thickens (about 50:1–250:1) and height
to thickness (about 10:1–50:1) [2]. The double superposition of difficult−to−cut material
and thin−walled structure makes the high−performance machining of thin−walled parts
challenging due to the combined effect of complicated thermal−mechanical couplings,
low structural rigidity, weak damping, time−varying dynamic characteristics, and so on.
Machining chatter is the main obstacle hindering the improvement of machining accuracy
and efficiency; it produces violent self−excited vibration, creates obvious chatter marks on
the finished surface, and in some cases, it even causes the parts to be scrapped or damage
to the machine tool.

The research on machining chatter can be traced back to Taylor’s work from 1907 [3].
Through scholars’ long−term study and sustained effort, several basic chatter vibration
types are concluded [4], which include frictional chatter, mode coupling chatter, thermome-
chanical chatter, and regenerative chatter. Among them, regenerative chatter is the most
common and dominant type in the machining of thin−walled parts, which arises from
an inappropriate phase of overlapping cuts [5]. As a milling case shown in Figure 1, the
previous cutting flute left a wavy workpiece surface due to the self−excited vibration of the
milling system, the next cutting flute will attack this surface and generate a new wavy work-
piece surface. This phenomenon can greatly amplify vibrations, bringing exponentially
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growing chip thickness, thereby leading to significantly larger forces and vibrations until
the cutter is out of contact with the workpiece. Generally, the dynamics of the machining
process considering the regenerative effect can be mathematically modeled by delayed
differential equations (DDEs) with time delay(s) and time−dependent coefficients [6].
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Figure 1. The schematic diagram of the dynamic milling system with regeneration effect [7].

Many scholars have devoted their effort over the past few decades to solving chatter
issues, and in−depth research is constantly being reported. Figure 2 depicts the change in the
number of publications every two years, from 1999 to 2022. Here, ‘thin−rigidity/low−rigidity/
flexible’, ‘Workpiece/part/component/structure’, ‘machining/milling/turning/drilling’,
and ‘chatter/stability’ are the keywords and are searched for in the Web of Science. Before
2008, the number of published papers per year was less than 15. However, it began to
increase from 2009. Especially after 2017, this amount increased significantly to more than
90. This reflects that researchers are more and more interested in the research of chatter
during the machining of thin−walled parts, especially in the last decade. Figure 3 plots the
research topics, the plot being created by VOSviewer software.
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There are some review articles addressing the chatter issues in different machining
processes, which include fundamental modeling of chatter vibrations [8,9], and chatter
avoidance/detection/suppression techniques [4,6,10,11]. However, for thin−wall machin-
ing, very few review articles have been reported, and relevant critical summaries are still
lacking. For this reason, this paper presented a comprehensive review of thin−walled
machining dynamics and summarized the research progress in this field. The rest of
the paper is organized as follows: Section 2 summarized the identification method of
time/position−varying dynamic characteristics for the thin−walled machining system.
Section 3 summarizes the developments of chatter stability modeling and analysis meth-
ods. Section 4 summarizes the main chatter elimination/suppression methods including
machining parameter optimization, variable−geometry chatter suppression cutting tools,
spindle speed variation, damping/stiffness enhancement devices, and active chatter control
technologies. Section 5 discusses existing problems in the study of thin−walled machining
dynamics and offers future research work. Section 6 concludes the paper.

2. Dynamic Characteristics of Thin−Walled Machining System

The dynamic characteristics of the cutting system are the basis for dynamic modeling,
chatter prediction, and process control. As for thin−wall machining, the dynamics of
the machining system are affected by many factors, such as the workpiece material to be
removed, spindle speed, the configuration of the machine tool, and so on. The dynamic
characteristics can be investigated from two toughing ends, i.e., the workpiece and the
cutter, which directly affect the machining dynamics. Therefore, accurate identification of
dynamic characteristics of the thin−walled workpiece and cutting tool is essential.

2.1. Dynamics Identification of In−Process Workpiece
2.1.1. Experimental Modal Analysis

Experimental modal analysis (EMA) is usually based on hammer impact testing and
sometimes based on modal shaker testing. For hammer impact testing, the hammer is used
to apply impact on a thin−walled part which is instrumented with acceleration sensors
or laser vibrometers to collect the excitation responses. The frequency response functions
(FRFs) and modal parameters can be extracted and fitted by the data acquisition and
processing system. Ismail and Ziaei [12] employed EMA in a chatter stability study for the
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five−axis machining of the flexible turbine blade. In their study, the measurement position
of the acceleration sensor is unchanged, and moving hammer impact tests are conducted
on the blade at different cutter positions when the machine is not running. Bravo et al. [13]
considered the dynamic variations due to material removal by measuring the in−process
FRFs at some intermediate stages of the machining of the walls, as shown in Figure 4. It is
inferred from the above literature that using EMA to identify the dynamic characteristics of
integral thin−walled parts is time−consuming in the practical machining scene, especially
when material removal effects have to be considered. The machine tool needs to be
started and stopped frequently, the thin−wall parts must be divided into several regions
or machining stages, and the cutter should be kept away from the in−process workpiece
during each hammer impact test. However, the advantages of EMA are also obvious. It
can easily obtain damping characteristics of machining systems, and its analysis results
including natural frequency, damping ratio, and mode shape can be regarded as the true
values for complex workpiece structures. Recently, based on EMA, Nikolaev et al. [14]
identified workpiece modal parameters during the finish milling of a jet−engine blade
by time−domain stochastic subspace identification and studied the influence of material
removal on the in−process workpiece damping.
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2.1.2. Analytical/Semi−Analytical Methods

In order to quickly extract the in−process dynamic parameters of thin−walled parts,
some analytical and semi−analytical methods have been proposed, which usually are based
on the beam model, plate, or shell theory. Meshreki et al. [15] considered the continuous
change in thickness of thin−walled pocket−shaped aerospace parts during the milling pro-
cess. They used a two−directional multi−span plate to describe the workpiece analytically
and derived trial functions in both the x− and y−directions based on the Rayleigh–Ritz
method and the multi−span beam model. Schmitz and Honeycutt [16] presented two
analytical solutions for predicting the time−varying dynamics of thin−rib and fixed−free
beams. One of the analytical solutions applied the Rayleigh–Ritz method to determine
the effective mass and use Castigliano’s theorem to find the stiffness; the other one em-
ployed receptance coupling substructure analysis (RCSA) to predict the FRFs in which the
receptance is formulated by the Timoshenko beam model. Based on the thin plate theory
and mode superposition principle, Song et al. [17] and Fei et al. [18] study the analytical
prediction of the time−varying dynamic characteristics during the thin−wall milling pro-
cess. For the peripheral milling process of thin−walled workpieces with constrained layer
damper, Shi et al. [19,20] considered the thin−wall base and constrained layer as Kirchhoff
plates (Figure 5). They used Courant’s penalty method to handle the boundary conditions,
employed the Rayleigh–Ritz method to proximately express the unknown displacement
components, and applied the Lagrange equation to describe the system energy change
caused by material removal. Then, the motion−governing equation is solved to obtain the
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time−varying modal parameters. Based on the Rayleigh–Ritz method and thin shallow
shell theory, Liu et al. [21] developed an analytical model to predict the dynamic changes
in shell structures. On the other hand, Ahmadi et al. [22] introduced the finite strip method
into the modeling of the structural dynamics of thin−walled pocket structures during
machining. This semi−analytical method only discretizes the structure in the transverse
direction and is therefore computationally efficient.
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Although the analytical or semi−analytical methods mentioned above have obvious
advantages in the identification efficiency of the in−process dynamic parameters, they are
generally only suitable for thin−walled structural parts with relatively regular shapes and
have great limitations for curved thin−walled structural parts with complex shapes.

2.1.3. Finite Element Modal Analysis (FEMA)

With the rapid development of computer science, numerical simulation technology
has made great progress, and finite element modal analysis (FEMA) is increasingly used in
extracting the modal parameters of in−process thin−walled parts. The methods based on
FEMA have the advantage of modeling the thin−walled parts with complex geometries and
boundary conditions which are often encountered in actual machining [23]. Elbestawi and
Sagherian [24] and Altintas et al. [25] were the early authors who identified the workpiece
dynamic characteristics using the finite element method during the milling of thin−wall
parts. Based on the assumption of small material removal amount, Seguy et al. [26] used a
2D FE model to obtain the dynamic properties of the thin−wall plate, in which the work-
piece was meshed by six−node quadratic triangular elements. Mane et al. [27] established a
FE model to simulate the speed−dependent dynamic behavior of in high−speed machining
system, in which the thin−walled workpiece was also assumed to have a constant geometry
and its dynamic behavior changing with respect to the cutter position is considered. By the
same assumption, in Refs. [28–31], the so−called “structural effect” or effective stiffness
related to the modal shapes of multiple modes are calculated at arbitrary cutter position
of the thin−walled workpiece FE model. It is noted that when material removal becomes
significant, the thin−walled workpiece can no longer be regarded as a constant geometry
in FE modeling [32,33]. This is because the modal basis will change during the machining,
which mainly affects the natural frequencies and produces shifted frequencies.

In view of the workpiece geometry variation caused by material removal, early re-
search based on FEMA usually changes the size in the wall thickness direction to realize
material removal simulation, but it is more suitable for thin−walled parts with simple
geometries. Re−building and re−meshing the in−process FE model is also a feasible
way to identify the in−process workpiece dynamics; however, it is very time−consuming,
especially for large−scale thin−walled structures. To improve the identification efficiency,
structural dynamic modification techniques for calculating the in−process dynamic pa-
rameters of thin−walled parts are given more and more attention. Budark et al. [34,35]
proposed a matrix inversion method to estimate the in−process workpiece FRFs, which is
based on an initial FE mesh to obtain the initial FRF of the thin−walled workpiece which
is modified by using the removed material elements along the tool path in reverse order
(see Figure 6). Based on Sherman–Morrison–Woodbury formula, Song et al. proposed a
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structural dynamic modification method with equal mass [36] or variable mass [37]. They
divided the cutting process into multi−cutting steps and regarded material removal of
each cutting step as mass and stiffness modification to estimate the corrected FRFs. FEM is
recommended in their method to obtain the dynamic characteristics of the unmachined
and machined thin−walled structures as the input data. By subtracting the removed ma-
terial from the thin−walled workpiece to be machined, Yang et al. [38] presented a novel
structural dynamic modification strategy in the time domain.
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Recently, model order reduction techniques for higher computational efficiency have
been developed. Tuysuz and Altintas [39] updated the FRFs of the thin−walled work-
piece during machining by using a computationally efficient reduced order dynamic
substructuring method, in which the influence of removed material on the workpiece
dynamics is canceled by adding a fictitious substructure with the opposite dynamics, and
the workpiece FRFs are evaluated in frequency domain. Combined with the perturba-
tion method, this strategy was then extended to the time domain [40], which brought a
further improvement in computational efficiency. For the large−scale thin−wall parts
machining, Yang et al. [41] proposed efficient local modification strategy, referred to the as
decomposition−condensation method, in which the DOF−reduced FE model with respect
to the material removal was updated by component mode synthesis and dual modal space
structural modification technique. Other recent influential work includes perturbation
method [42], wavelet−based method [43], time−varying dynamics updating method [44],
generalized equivalent method [45], freedom and mode reduction method [46], interval
finite element method [47], and FEM and Taylor series method [48].

The above methods can improve the efficiency of FEMA, but they lack the consider-
ation of possible complex boundary conditions. In the actual machining of thin−walled
parts with different shapes, the clamping and positioning forms are various, which may
involve a complex fixture–workpiece contact relationship. In addition, the use of coolant or
lubricant during machining may also change the dynamic characteristics of the workpiece.
FEMA needs to be deeply integrated with operational modal analysis.

2.2. Dynamics Identification of the Slender Cutting Tool

In order to meet the machining requirements of complex thin−walled components,
the structure of the cutting tools sometimes needs to be specially designed, such as slender
cutters for machining integral impellers. It results in a weaker stiffness of the cutting tool
so that the cutter cannot be regarded as a rigid body in dynamic modeling. Hence, it is
necessary to identify the dynamic characteristics of the slender cutters, and many important
identification methods are discussed in this section.

2.2.1. Modal Impact Testing

Modal impact testing is the classical approach to acquire the frequency response
function of the cutting tool [49]. As for the turning or milling process, the structural dy-
namics can be characterized by the tool point dynamics. In this case, the acceleration
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sensor is attached to one side of the tool tip point, and the hammer excites the opposite
side of the tool tip point, and then the same procedures are conducted in the orthogonal
direction of the cutting tool. The typical approach does not involve cross−axis modal
testing. Gradisek et al. [50] studied the stability of a two−DOF milling system and found
that even a weak cross−axis mode coupling effect is sufficient to affect the cutting stability
limit. From extensive modal testing and cutting experiments, Zhang et al. [51] concluded
that both regenerative and cross−axis effects exist in the cutting process. By adding the
cross−axis modal testing step to the classical methods, the modal parameters containing
cross−axis modes can be identified. The above research assumes that the dynamic behavior
of the milling system occurs at the tool tip point, while the dynamic characteristics along
the cutter axial direction are not considered. Li and Shin [52] proposed a comprehensive
simulation model for the end milling process considering the varying dynamic charac-
teristics along the cutter axial direction. Eksioglu et al. [53] presented a dynamic model
that considers distributed contact dynamics between the cutter and workpiece. The cor-
responding modal testing supplements cross−point impact steps along the cutter axis so
that the cross−point frequency response functions are obtained. Recently, Jiang et al. [54]
proposed a novel modal testing method to identify the modal parameters for constructing
a multi−point−contact milling dynamic model (See Figure 7). In their research, triaxial
acceleration sensors were used to simultaneously measure the cross−axis and cross−point
vibration responses. This method further improved the accuracy of the milling dynamic
model with slender cutters. Modal impact testing is the most widely used way in the study
of cutting machining dynamics. It has the advantage of accurate identification, but it needs
to identify each cutter and handle the combination separately.

2.2.2. Theoretical Simulation Methods

Theoretical simulation methods can provide valuable insights into the dynamic be-
havior of slender cutting tools. The basic theory is that a complex structure can be divided
into simpler substructures that can be analyzed independently, and then combined to
form an overall solution. Schmitz et al. [62–64] pioneered a receptance coupling sub-
structure analysis (RCSA) method to investigate the frequency response function of the
machining system. This method is useful in situations where it is difficult or impractical
to analyze the entire structure as a single entity, which can effectively reduce the number
of modal tests under new conditions. Some improved RCSA methods were proposed
in [65,66] (Figure 8). To investigate the pose−dependent dynamics of the birotary milling
machine, a multi−rigid−body dynamic model considering the flexible joint is constructed
by Du et al. [67]. Based on RCSA, a new technique to solve the constantly changing as-
sembly response is proposed by Zhang et al. [68]. Experimental results show that the
constructed swivel model and rotational model can accurately predict tool point dynam-
ics of any posture. The structural dynamics of tool–spindle–machine assembly exhibits
in−process variations due to speed/load dependencies. Especially at high spindle speeds,
the effect of centrifugal forces and thermal expansion on bearing stiffness is significant.
Additionally, finite element modal analysis can be used to obtain the FRF of the tool tip
point under the rotational condition of the tool–spindle system. Combined with the Tim-
oshenko beam model with the RCSA method, Ertürk et al. [69] predicted the FRF at the
tool tip point for any overhang length, and analyzed the effect of the change in bearing
parameters on the variation of FRF at the tool tip point [70]. Incorporating the effects of
centrifugal force and slewing moment, Cao et al. [71] proposed a finite element model
of spindle dynamics for predicting the FRF of the tool tip point under different spindle
speeds. This study analyzed the effect of different speeds on the bearing dynamic character-
istics, and the results showed that the spindle bearing stiffness decreased with increasing
spindle speed in the rotational state. Using a double−distributed joint interface model,
Yang et al. [72] established a finite element model of the tool–spindle system to predict the
FRF at the tool tip point with different tools installed in the spindle. To further improve the
spindle dynamics model, Xi et al. [73] constructed a dynamic model of a spindle bearing
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system equipped with angular contact bearing and floating displacement bearing. The
time−domain response under different cutting forces was investigated by this model, and
the corresponding results were verified experimentally. In summary, for the tool–spindle
system partial structures, the FEM method can be used to analyze the structural operating
FRF. However, the computational effort of theoretical simulation methods is quite large
when predicting the dynamic properties of the tool–spindle–machine assembly. Moreover,
the prediction accuracy of such method may be reduced due to model simplification.
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2.2.3. Data−Driven Prediction Methods

The dynamic characteristics of the tool tip point are position−dependent due to the
kinematic reconfiguration, so it is necessary to investigate the dynamics in the whole
machining workspace. In recent studies, data−driven prediction methods are used to
obtain the position−dependent structural dynamics at any position in the workspace.
This type of methods aims to build the underlying mathematical models that can predict
the tool tip dynamics based on measured data. According to the interpolation strategy,
Brecher et al. [74] presented an efficient method to model the axis position−dependent
dynamics of a multi−axis milling machine. Deng et al. [75,76] innovatively introduced
the Kriging interpolation model to characterize the modal parameters of tooltip points at
different positions, and used the modal parameters to synthesize the position−dependent
FRFs. By using a transfer learning algorithm, Chen et al. [77,78] predicted the single−mode
and multi−mode dynamics of tooltip points under different tools and various machining
postures. Differently from the traditional method, their methods improved the experimen-
tal efficiency and prediction accuracy significantly. Nguyen et al. [79,80] used the impacting
modal analysis and Gaussian regression−based model to predict modal parameters of
industrial robots at different postures so as to optimize the machining process. Compre-
hensively considering the effect of multi−mode and cross terms of FRF on dynamics,
Wang et al. [81] proposed a random forest−based method to predict the pose−dependent
modal properties of serial robots. The performance of the data−driven approaches de-
pends heavily on the quality of the training dataset. To further increase the model accu-
racy, the training dataset needs to be optimized. The above methods can improve the
experimental efficiency while ensuring prediction accuracy, but it is unable to mechanisti-
cally investigate the laws governing the changes in the dynamics of position−dependent
structure configurations.
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3. Chatter Stability Modeling and Analysis

The thin−walled machining process is a complex dynamic interaction process. Due to
the weak−rigidity structure characteristics, the machining process is prone to be unstable
under the incentive of dynamic cutting forces. The machining dynamic model organically
relates the vibration responses and dynamic cutting forces for the processing system
through the transfer functions, which provides a necessary theoretical basis for machining
stability analysis, chatter avoidance, and suppression in the next stage. Therefore, its
accurate modeling has become particularly important, and thus, scholars have carried out
extensive research in this field.

3.1. Dynamic Models under Different Stiffness Conditions

Dynamic models under different stiffness conditions are important for understanding
how the machining systems behave and respond to the cutting excitations. Nowadays,
large−sized thin−wall monolithic components are gaining more and more applications,
which are often machined from blanks by cutting 90–95% of the material. In the material
removal process, the stiffness of the workpiece gradually weakens. By taking into account the
stiffness variation, dynamic models can provide a more accurate representation of real−world
interaction between the tool and workpiece. The material removal process can be roughly
divided into three stages, as shown in Figure 9. In the first stage (Figure 9a), the stiffness of the
workpiece is significantly larger than that of the cutter, the vibration responses (displacement,
velocity, acceleration) of the cutter are dominant, and the dynamic model can only be built
on the cutter’s vibration responses, dynamic parameters, and cutting forces. In the second
stage (Figure 9b), the stiffness of the workpiece is reduced to the same degree as that of the
cutter. Both the flexibilities of the workpiece and cutter should be considered in the dynamic
modeling process. The vibration responses of the tool and those of the workpiece can be
related to each other through the interactive cutting forces. In the third stage (Figure 9c),
the stiffness of the workpiece is significantly smaller than that of the cutter. The vibration
responses of the workpiece are dominant, and the dynamic model can only be built on the
workpiece’s vibration responses, dynamic parameters, and cutting forces.
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During the milling of deep pockets and grooves, the turning of large cases and rings,
and the boring of hollow shafts, the cutting tools may have to be cantilevered over long dis-
tances, which will show a high degree of flexibility. For flexible cutting tools, numerous dy-
namics modeling studies have been reported. For example, Mahnama and Movahhedy [82]
used a flexible model to allow the cutter to vibrate under variable loading conditions, and
the effect of chip–cutter interaction on the onset of chatter is investigated. Wan et al. [83]
reported that the model accuracy can be increased if the effects of multiple modes are
taken into account instead of only considering the most flexible mode. Tang et al. [84] took
multiple modes and the cross−frequency response functions of the cutting tool into account
in dynamic modeling. Zhang and Liu [85] established the dynamic model ball−end milling
cutter with multiple modes. Ahmadi et al. [86] adopted an approach that uses the concept
of tool on resilient support to predict the machine tool dynamics in various sets of tool
and holder–spindle combinations. Recently, Badiola et al. [87] proposed an improved
predictive model of the machining system based on the dynamics of the machine tool,
which considered the dynamics of the support by using receptance coupling substructure
analysis method. Zhang et al. presented a generalized 4DOF milling dynamics model
considering feed direction angle, and the feed direction−dependent feature of milling
stability and surface location error is pointed out in their study. For the machining system
with a relatively flexible cutting tool, the current focus of improving the control accuracy
of the dynamic model is to accurately capture the dynamic characteristics of the cutter
structure reflected in the cutter–workpiece engagement region.

With the progress of machining, when the vibration response of thin−walled parts
starts to highlight, their flexibility is separately or simultaneously considered in the dynamic
modeling process. Zhang et al. [29] took the multi−mode and shape structure effects of
the workpiece into account in the dynamic modeling of thin−wall milling and examined
the link between milling stability limits and the structural modes. Jin et al. [30] proposed
a more comprehensive model simultaneously considering the helix angle effect of the
cutter and the dynamic characteristics of the thin−walled part, in which the effect of
helix angle on stability is investigated in depth. Kolluru et al. [88] analyzed the coupled
dynamic response of the tool and workpiece and highlighted the importance of the torsional
and first bending modes in the impact dynamics of thin−wall milling. Wang at al. [89]
updated the multi−modes theory and proposed a comprehensive method called the modal
coupled method to consider the position−dependent and aggregation modes for the
milling dynamic model of thin−walled parts with time−varying dynamic characteristics.
Zhu et al. [90,91] built dynamic models for thin−wall milling operation based on the
relative transfer functions between the multi−DOF cutter and thin−walled part subsystems.
Jia et al. [92] investigated the dynamics of high−speed micro−milling of micro−scale
thin−walled parts, in which the relative transfer function between the micro−milling
tool and the thin−walled part is used. Fei et al. [93] presented a dynamic model for
machining the thin bottom of flexible pocket structures. This model is simplified as a
3−DOF system, in which the flexible component is assumed to have one DOF in the
cutter’s axial direction, whereas the cutter is thought to have two orthogonal DOFs in its
radial direction. Siddhpura et al. [94] proposed a dynamic model for the turning process
and studied its chatter stability by assuming a flexible tool–workpiece system, in which
two end conditions of the flexible workpiece are taken into account. Gerasimenko et al. [95]
developed a mathematical model of the dynamics of turning a thin−walled cylindrical shell,
which uses a finite number of degrees of freedom and takes into account the variability
of dynamic compliance. Badiola et al. [87] proposed a dynamic model of turning slender
parts without tailstock, in which mode coupling is analyzed in the state−space domain.
Lu et al. [96] established two models of the spindle–workpiece–tailstock system using
analytical and numerical methods and quantified the influence of the tailstock support
conditions on the dynamics of the machined flexible parts in straight turning. Recently,
Sun and Yan [97,98] proposed a modeling method for turning slender workpieces with
flexible boundary constraints. In their study, the compliance of the tool and part is modeled,
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and the chuck–workpiece–tailstock dynamical system is given an in−depth study. Some
recent research work also focuses on the study of dynamic behavior variations in the
thin−wall machining, whereby 3D stability lobe diagram adding the feed coordinates were
drawn [30,32,99–101]. The above models can well describe the machining dynamics of
general thin−walled parts; however, under the excitation action of strong machining load,
the vibration displacement of ultra−thin parts may reach tens or hundreds of microns, and
the dynamic system shows significant nonlinearity. At present, there is a lack of research
on this subject.

In addition, in the process of machining, when the contact zone between the tool and
the workpiece is relatively long and narrow, with regard to the contact model between
them, it is better to use distributed parameter model rather than lumped parameter model.
The distributed parameter model can be approximated by the multi−point contact model,
which can also consider the change in normal contact pressure along the contact zone to
allow a detailed representation of the contact−point interface flexibility. Li and Shin [52]
presented a comprehensive model for end milling processes, in which varying dynamics
along the axial depth of cut, 3D forces, and cutter geometries are considered. In the study of
deep−end milling of the flexible parts, Akhtar et al. [102] pointed out that it is not enough
to identify the FRFs only at the free end of the flexible workpiece. To establish a more exact
dynamic model, it is necessary to identify the FRFs at several points along the axial depth,
whose numbers depend upon how deep the workpiece is. Eksioglu et al. [53] divided the
end mills at the tool–part contact zone and considered the structural dynamics of the slen-
der end mills and thin−walled parts at each differential element. Yang et al. [38] proposed
a dynamic model of tool and workpiece system, which considered the interaction between
the tool and the thin−walled workpiece at discrete nodes along the axial depth. Khosh-
darregi and Atlantas [103,104] formulated the generalized dynamics of thread−turning
operations with custom multipoint inserts. Based on the idea of distributed parameter
modeling, Jiang et al. [105] studied the dynamics of a variable−pitch/helix milling system
with long−end cutters whose dynamic parameters are identified by a novel cross−axis
and cross−point modal testing approach.

In order to suppress deformation and vibration, mirror cutting has been paid more
and more attention in recent years. In mirror cutting, the introduction of supports
improves the inherent dynamic stiffness of the machining system, which can suppress
the cutting vibration and mitigate the machining deformation. Xiao et al. developed
a novel dual−robot collaborative machining system in which the supporting robot
can effectively support the workpiece at the machining position. Bao et al. presented
a novel multipoint support technology through optimizing support location. Erdem
et al. [106] developed a robotic−assisted mirror milling system and concluded that the
form errors and surface roughness were improved. In addition, the supporting force
significantly affects the cutting vibration and cutting stability limit of the machining sys-
tem. Wang et al. [107] presented a simulation model of the dynamics in mirror cutting of
thin−wall workpieces, which consists of internal boring and external turning operations.
Bo et al. [108] developed a 3−DOF dynamic system model and analyzed the influence
mechanism of supporting force on the mirror milling dynamics. Jia et al. [109] designed
a pneumatic supporting fixture for thin−walled milling to investigate the cutting sta-
bility under different support forces. However, the material, shape, and distribution of
the supporting head seriously affect the contact state between the workpiece and the
supporting head, which makes it difficult to accurately model the contact conditions. In
this case, the generation mechanism of regeneration chatter is indistinct and needs to be
further investigated.
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3.2. Research on Dynamic Cutting Force Modeling

The dynamic cutting forces produced in the thin−wall machining process not only
affect the dimensional accuracy of the parts but also seriously affect the dynamic behavior
of the cutting system, which largely determines the surface quality of the parts and the
service life of the tool to a great degree. There are many different approaches for modeling
the cutting forces [110], which can be generally classified into empirical, analytical, and
mechanistic categories. The mechanical approach based on the unit cutting force coefficient
can efficiently determine any instantaneous cutting force according to the load area of
the differential cutting element and the unit cutting force coefficient. In general, it has a
satisfactory prediction accuracy of cutting forces if calibrated accurately, so it has been used
widely in the research of machining dynamics. Next, we review the research on dynamic
cutting force modeling mainly from the calibration of cutting force coefficients (CFCs) and
the extraction of cutter–workpiece engagement (CWE).

3.2.1. Calibration of CFCs

Common calibration methods for mechanical models mainly include the average force
method and instantaneous force method and optimization method. The comparison of
the three methods is shown in Table 1. The average force method averages the cutting
forces over a multiple of a revolution, which requires a set of cutting tests at different feed
rates, fixing spindle speeds, and axial or radial immersion. The average cutting forces are
assumed as a linear function of the feed rate, and therefore, the CFCs can be estimated
from the average cutting force data by linear regression. This method was first used in
turning and was usually used for the linear force model. Budak et al. [111] presented
an average force method based on slot milling experiments with a cylindrical end mill.
Gradisek et al. [59] extended this method to general helical end mills at arbitrary radial
immersions. The average force method has the advantage of strong robustness, and high
calibration accuracy and efficiency, but it cannot estimate cutter runout, which is a universal
phenomenon in multi−tooth cutting operations such as in milling operations. It should be
noted that the cutter runout results in higher peak forces and uneven wear, which has an
obvious reflection in the time domain waveform of cutting forces.

The instantaneous force method is based on the curve fitting between the measured
and simulated cutting forces in time domain using fewer cutting tests, which is often
used to simultaneously calibrate the CFCs and the cutter runout parameters. Shin and
Waters [112] stated that the cutter’s trochoidal motion in milling yields a continuous
variation of chip thickness which allows the identification of instantaneous cutting force
coefficients associated with the instantaneous cutting forces at various chip thicknesses.
Oscar et al. [113] presented an inverse method to calibrate the force coefficients by using
instantaneous cutting forces, in which a constrained least square fitting method is applied
to solve the equations system with the equivalence of the simulated and the experimental
forces at different cutting transients. By analyzing the composition of chip thicknesses,
Wan et al. [114–116] decomposed the milling force into the nominal components indepen-
dent of the runout effect and the perturbation components dependent on the runout effect,
and then sequentially calibrated the CFCs and runout parameters according to these two
parts. In Refs. [117–126], the methods based on the nonlinear optimization algorithm are
adopted to calibrate the instantaneous CFCs and the runout parameters, typically including
the Nelder–Mead simplex algorithm, Differential Evolution algorithm, genetic algorithm,
particle swarm algorithm, etc. Schmitz et al. [127] devised a comparative study for the
identification of CFCs using the linear regression method (average forces) and the nonlinear
optimization method (instantaneous forces), respectively. Schwenzer et al. [128] conducted
a comparative study on optimization algorithms for identifying the instantaneous force
model in milling. The nonlinear optimization algorithm provides a tool for investigat-
ing the influence of machining parameters on dynamic cutting forces. Using a nonlinear
optimization algorithm, Grossi et al. [129] carried out a deep investigation of CFCs at
different spindle speeds and highlighted the speed dependence of the CFCs. Considering
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the dynamically induced errors due to unwanted frequency content of the dynamometer
in calibration experiments, some scholars [130,131] studied the correction technique in
the cutting force measurement with a dynamometer. The calibration results obtained by
the optimization method can make the predicted force curve more consistent with the
experimentally measured force curve, but the calibration process can easily fall into the
local solution, and the calibration results cannot guarantee accurate cutting force prediction
in a wide range of cutting parameters.

Table 1. Three different CFCs calibration methods and their characteristics [109,115,127,132].

Calibration Methods Average Force Method Instantaneous Force Method Optimization Method

Merits

• Strong robustness
• Valid for a wide range of

cutting conditions
• High calibration efficiency

• Requires only a single cut for
milling operation

• Valid for a relatively wide range of
cutting conditions

• High calibration accuracy

• Requires only a single cut for milling
operation or varying depth of cut for
general cutting operation

• Easy acquisition using MATLAB
• Higher calibration accuracy

Limitations
• Cannot estimate cutter runout
• Requires a large number of

cutting tests

• Only suitable for the same tool
material combination

• More suitable for milling operation

• Only suitable for the same tool
material combination

• Requires the simulation of force
• Easy to fall into local solution

Identification image
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3.2.2. The Extraction of Cutter–Workpiece Engagement 

Cutter–workpiece engagement (CWE) refers to the contact region between the cutter 

and workpiece when machining at a given cutting instant, which is used to determine 

whether the arbitrary cutting element is in cutting or not, as shown in Figure 10. Usually, 

in the three−axis milling process, the workpiece shape is regular, and the tool path is sim-

ple, so the CWE can be extracted efficiently by analytical method. However, many 

thin−walled parts have complex geometry and generally require five−axis machining. 

This is often the case in milling, in which it is difficult to extract the CWE analytically 

because the cutter axis vector varies along the tool path, and the surfaces to be machined 

are mostly complex curved surfaces [133]. To address this, discrete modeling methods 

and solid modeling methods are two common types of methods. 

Machines 2023, 11, x FOR PEER REVIEW 15 of 46 
 

 

CFCs at different spindle speeds and highlighted the speed dependence of the CFCs. Con-
sidering the dynamically induced errors due to unwanted frequency content of the dyna-
mometer in calibration experiments, some scholars [130,131] studied the correction tech-
nique in the cutting force measurement with a dynamometer. The calibration results ob-
tained by the optimization method can make the predicted force curve more consistent 
with the experimentally measured force curve, but the calibration process can easily fall 
into the local solution, and the calibration results cannot guarantee accurate cutting force 
prediction in a wide range of cutting parameters. 

Table 1. Three different CFCs calibration methods and their characteristics [109,115,127,132]. 

Calibration 
Methods 

Average Force Method Instantaneous Force Method Optimization Method 

Merits 

 Strong robustness 
 Valid for a wide range of 

cutting conditions 
 High calibration efficiency 

 Requires only a single cut for 
milling operation 

 Valid for a relatively wide 
range of cutting conditions 

 High calibration accuracy 

 Requires only a single cut for 
milling operation or varying 
depth of cut for general cutting 
operation 

 Easy acquisition using 
MATLAB 

 Higher calibration accuracy 

Limitations 

 Cannot estimate cutter 
runout 

 Requires a large number of 
cutting tests 

 Only suitable for the same 
tool material combination 

 More suitable for milling op-
eration 

 Only suitable for the same tool 
material combination  

 Requires the simulation of force 
 Easy to fall into local solution 

Identifica-
tion image 

 
  

Principle linear regression fitting optimization 

Formula 

2 2 2 2
; 4

4
;

2
;

xe ye xc yc
te tc

te xe tc xc
re rc

ze zc
ae ac

ex st

F S F T F P F Q
K K

S T P Q

K S F K P F
K K

T Q

F F
K K

aN T


 

 
  

 

 
 

  


 
,

,
1

, ,1

( sin )
( )

i u

i l

N

zi

N

i l i ui

f d
h




 


 








 


 

 
3 ( )

1 2 ( , , )sW h

s s sK W W e s t r z
      

2 2 2 2
1 22

min ( ) min( ( ) ( ) ... ( ) )nk k
f k f k f k f k     

( )

simulated measured

x x

i y y

z zi i

F F

f k F F

F F
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Cutter–workpiece engagement (CWE) refers to the contact region between the cutter 
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whether the arbitrary cutting element is in cutting or not, as shown in Figure 10. Usually, 
in the three−axis milling process, the workpiece shape is regular, and the tool path is sim-
ple, so the CWE can be extracted efficiently by analytical method. However, many 
thin−walled parts have complex geometry and generally require five−axis machining. 
This is often the case in milling, in which it is difficult to extract the CWE analytically 
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are mostly complex curved surfaces [133]. To address this, discrete modeling methods 
and solid modeling methods are two common types of methods. 
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3.2.2. The Extraction of Cutter–Workpiece Engagement 
Cutter–workpiece engagement (CWE) refers to the contact region between the cutter 

and workpiece when machining at a given cutting instant, which is used to determine 
whether the arbitrary cutting element is in cutting or not, as shown in Figure 10. Usually, 
in the three−axis milling process, the workpiece shape is regular, and the tool path is sim-
ple, so the CWE can be extracted efficiently by analytical method. However, many 
thin−walled parts have complex geometry and generally require five−axis machining. 
This is often the case in milling, in which it is difficult to extract the CWE analytically 
because the cutter axis vector varies along the tool path, and the surfaces to be machined 
are mostly complex curved surfaces [133]. To address this, discrete modeling methods 
and solid modeling methods are two common types of methods. 
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3.2.2. The Extraction of Cutter–Workpiece Engagement

Cutter–workpiece engagement (CWE) refers to the contact region between the cutter
and workpiece when machining at a given cutting instant, which is used to determine
whether the arbitrary cutting element is in cutting or not, as shown in Figure 10. Usually, in
the three−axis milling process, the workpiece shape is regular, and the tool path is simple,
so the CWE can be extracted efficiently by analytical method. However, many thin−walled
parts have complex geometry and generally require five−axis machining. This is often the
case in milling, in which it is difficult to extract the CWE analytically because the cutter
axis vector varies along the tool path, and the surfaces to be machined are mostly complex
curved surfaces [133]. To address this, discrete modeling methods and solid modeling
methods are two common types of methods.
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Figure 10. Cutter–workpiece engagement extraction methods: (a) discrete modeling method [134];
(b) solid modeling method [132]; (c) CWE extraction considering the force−induced deforma-
tion [135].

Discrete modeling methods discretize the geometries of the tool and workpiece into
small volume or line elements, and the contact region of the tool and workpiece is extracted
by finding their contact elements (Figure 10a). The most widely used discrete modeling
methods [134,136–138] are those based on Z−map (or Z−buffer) discrete geometric models.
In the last ten years, some new methods [139–141] have been proposed in the class of
discrete geometry methods. In general, it is necessary to strictly control the dimensions of
discrete elements in order to obtain accurate tool–workpiece contact regions. Although a
fine partition of discrete elements is beneficial to improve calculation accuracy, it is difficult
to store data and has low computational efficiency.

In the solid modeling methods, the CWE is generally extracted by Boolean operation
in the 3D CAD modeling software (Figure 10b). Larue and Altintas [142] proposed a solid
modeling method in the ACIS environment to extract the contact region between the cutter
and workpiece and stored the angular boundary of the portion cutting into the workpiece as
a function of the coordinates of the cutter center point. Ferry et al. [143] presented a parallel
slicing method to establish the CWE maps, which was used in the cutting force simulation
of the five−axis milling of the engine blade. Solid modeling methods are a kind of accurate
CWE extraction method with better adaptability to complex engagement conditions, but
they need to perform a lot of Boolean operations, which limits their efficiency. To overcome
this shortcoming, some improved methods are developed in recent studies, such as the
solid trimming method [144], the arc–surface intersection method [145], etc.

The above research effort extracts the CWE purely from a geometric aspect; however,
there is deformation and vibration in the machining process, especially in the thin−walled
parts, which makes the actual contact area between the cutter and workpiece deviate from
its nominal engagement. Sun and Jiang [135] presented an accurate model of a dynamic
milling system considering the effect of force−induced deformation on CWE (Figure 10c).
A similar work can be found in Ref. [146] with an improved deformation calculation model.
Totis et al. [147] revealed the influence of forced vibrations on the effective cutter–workpiece
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contact conditions and modeled it into a milling dynamic model. Niu et al. [148] modeled
the coupling relationships among CWE, time delay, and system state through analyzing
teeth trajectories which consist of tool rotation, feed movement, and cutting vibrations in
thin−wall milling. However, the above studies considering the physical factors only focus
on a simple three−axis machining scene with respect to thin plate workpieces, and further
studies are needed for the multi−axis machining process of curved thin−wall parts with
more complex shapes, which undoubtedly brings challenges to the accurate extraction
of CWE.

3.3. Tool Wear and Process Damping

Many key thin−walled parts in aerospace are made of difficult−to−machine materials
such as titanium alloy and other superalloys. Tool wear of different forms is very common
in the machining process, e.g., abrasive wear, bonding wear, diffusion wear, etc., which
may produce cavities, cracks, scratch marks, grooves, tearing, surface burning, adhered
materials, and other machining surface defects [149]. The tool wear will change the way of
contact between the tool and the workpiece, and it will increase the resistance of the cutter.
The test data [150] show that compared with the unworn tool, the peak cutting force of the
nickel−based superalloy is increased by more than five times when a level−5 worn tool
is used. Currently, the rapid development of advanced sensor and artificial intelligence
technology has laid the foundation for identifying the tool wear status. Methods such as
the optical image method [151,152] and X−ray method [153,154] can directly detect the
tool wear state, but they are rarely used in the practical machining scenario due to the
interference factors including strong light, oil mist, dust, and so on. Therefore, vibrations,
cutting forces, acoustic emission, current, and temperature have become the most used
sensor signals in online monitoring of tool wear [155–157].

In order to avoid faster tool wear, the spindle rotation speed is usually maintained
at the level of several hundred to more than one thousand revolutions per minute. In
this case, the process damping is likely to originate from the tool/workpiece interface.
Different from the cutting stability in the high−speed domain which is mainly affected
by the chip thickness regeneration, the cutting stability in the low−speed domain is also
affected by process damping. A large quantity of research and experimental results show
that process damping plays a certain role in chatter suppression when cutting many
difficult−to−machine materials at low speed. Early researchers [158,159] pointed out that
the dynamic plowing effect between the flank face of the tool and the machined surface of
the workpiece is the main source of process damping, and the accurate identification of
indentation force coefficient and the indented area is the key to characterizing the process
damping. Related research works can be found in Refs. [160–167]. However, these works
are based on the machining process of the rigid workpiece. It should be noted that in
the machining process of thin−walled parts, the rigidity of the workpiece in the wall
thickness direction is weak, and the elastic deformation of the workpiece is bound to
occur under the cutting force excitation, which makes the indented area become small.
Then, the contribution of the plowing effect to the process damping is weakened. At the
same time, the machining process of thin−walled structure is accompanied by severe
self−excited vibration, which will cause the cutting speed to deviate from its nominal
direction [168]. Molnar et al. [169] studied the velocity−dependent process damping effect
in the thin−wall parts milling process. This study captured the stability improvement
of the milling process with large radial immersion. However, their velocity dependency
model only considered the influence of the vibration in the feed direction and introduces
a negative process damping for milling with low radial immersion, which resulted in a
decrease in stability. This is contrary to the widely accepted experimental observations.
As shown in Figure 11, Feng et al. [170] further considered the vibration of the feed
direction and systematically studied the generation mechanism of the velocity−dependent
process damping in thin−walled milling, improving the stability prediction accuracy under
the condition of low radial immersion. In general, the research on process damping of
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thin−wall machining is scarce, and the formation mechanism of nonlinear process damping
still needs to be further explored.
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Figure 11. Velocity−dependent process damping model in thin−walled milling [170]: (a) self−excited
vibrations in milling process; (b) FRFs of workpiece; (c) 3D stability lobes with process damping.

3.4. Stability Prediction Algorithm

The stability prediction of the machining process can provide theoretical guidance
for optimizing the process parameters, tool geometric parameters, and so on. The DDE
governing the machining dynamics with multiple DOFs and multiple modes is usually
written in a matrix form. For predicting the stability of this type of DDEs, a lot of research
work has been conducted in this field. The stability prediction algorithms in the literature
are mainly divided into time, frequency, and discrete−time domain methods, as shown in
Figure 12.

3.4.1. Frequency Domain Method

The frequency domain method consists of the zero−order approximation (ZOA) and
the multi−frequency solution (MFS). Altintas and Budak [171] presented the first analyt-
ical solution, namely, the ZOA, to predict the stability lobes of milling operations in the
frequency domain. This method can efficiently give the relationship between critical cut-
ting depth and spindle speed by scanning the frequencies around the dominant structure
modes, which has a clear physical meaning by directly using raw FRF measurements with-
out identifying modal parameters [172]. In Refs. [173,174], higher−order solutions are also
developed to increase the prediction accuracy of the stability in the highly intermittent ma-
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chining process, e.g., the milling process of flexible workpieces at small radial immersions.
Altintas et al. [175–178] extended the frequency domain method to the stability prediction
of ball end milling, variable−pitch/helix milling, boring processes, etc. In recent years,
the frequency domain method or its improved form [33,91,179,180] has been used in the
stability analysis for the machining of thin−walled parts. For example, Yan and Zhu [179]
introduced a relative transfer function to consider the dynamic characteristics of both the
cutting tool and the thin−wall workpiece and employed an improved multi−frequency
solution to predict the critical axial depth of cut.
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3.4.2. Time Domain Method

The time domain method is the earliest method for predicting machining stability. The
time−domain simulation signals, such as displacement, velocity, acceleration, or cutting
forces are obtained by solving the initial value problem of DDE, and then the stability can
be identified according to the convergence or divergence trend of the obtained signals
over time. The time domain method can easily deal with many nonlinear effects in the
milling process. Montgomery and Altintas [181] integrated process damping and stiffness
into a time−domain simulation model, and they synchronously predicted the occurrence
of chatter and the milling surface texture affected by chatter. Qu et al. [182] studied the
machining stability in the milling of thin−walled plates and predicted a three−dimensional
stability lobe diagram by time−domain simulation which employed statistical variances
of the dynamic displacements as a chatter detection criterion to predict the stability lobe
diagram. Rubeo and Schmitz [183] used peak−to−peak (PTP) force diagrams to predict
the stability of the milling processes where the workpiece is considerably more flexible
than the machine tool system. Their study showed that the PTP diagrams not only offer
the global stability information as provided by the traditional SLD but also preserve the
detailed local information provided by time−domain simulation. The time domain method
is universal and powerful, but low computational efficiency limits its actual application.
Advanced time−domain simulation techniques need to be further studied.

3.4.3. Discrete Time Domain Method

The essence of the discrete−time domain method is to use a numerical method to
calculate the state transition matrix of DDE with periodic coefficients in a single period,
and to construct an equivalent discrete dynamic system that approximates the original
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cutting dynamic system in this period. Specifically, this kind of method needs to discretize
a single cutting period into a series of time intervals, convert the DDE into the state space,
and semi−analytically construct the system state transition matrix on the discrete period.
Then, according to Floquet theory, the relationship between the spectral radius of the state
transition matrix and 1 is compared to realize the stability prediction of the machining
process. Some typical discrete time domain methods include the semi−discretization
method (SDM) [184,185], temporal finite element analysis (TFEA) [186], cluster treatment
of characteristic roots (CTCR) method [187], Chebyshev collocation method [188], ho-
motopy perturbation method [189], full−discretization method (FDM) [190,191], numer-
ical integration method (NIM) [192,193], and some improved methods in accuracy or
efficiency [194–209]. In Ref. [210], 3D stability prediction is achieved for the milling of
thin−walled workpieces by applying the full discretization method and direct integration
scheme. Recently, Zhang et al. [211] used a numerical integration method to calculate the
milling SLD of the thin−walled workpiece with multiple structural modes. Niu et al. [148]
proposed an efficient numerical algorithm using the discrete root finding scheme to de-
termine the state−dependent time delay, by which the state dependency of regenerative
stability and SLE are systematically investigated. Ma et al. [212] constructed a numerical
algorithm with improved stability metrics to analyze the stability behaviors of trimming of
thin−walled structures.

4. Chatter Avoidance/Suppression Methods and Devices

For avoiding or suppressing chatter during the machining process of thin−walled
components, several classes of methods have been developed over the past few decades. It
mainly includes machining parameters optimization, variable−pitch cutting tools, spindle
speed variation, damping/stiffness enhancement, and active chatter control, as shown in
Figure 13.

4.1. Machining Parameters Optimization

From the aspect of machining parameters optimization, constructing a stability lobe
diagram (SLD) is an effective way to avoid chatter, as shown in Figure 14. Bravo et al. [13]
draw three−dimensional SLDs (3D SLDs) for milling of thin−walled workpieces by simul-
taneously considering the flexibility of both workpiece and cutter. Jin et al. [30] utilized
an extended high−order FDM to obtain the 3D SLDs (Figure 14a), which considered
multiple modes of thin−walled workpieces. Niu et al. [148] developed the Runge–Kutta
method [193] to analyze the stability in thin−wall milling by taking into account the
feedback of vibrations. However, these studies neglected the effect of material removal
on the workpiece’s dynamic characteristics. Sun et al. [135] presented a comprehensive
dynamic model to plot the 3D SLDs for milling of thin−walled workpieces considering
force−induced deformation, and time−varying dynamic parameters, which provides a
basis for selecting more reasonable cutting depth and spindle speed. Zhang et al. [213]
proposed a machining parameter optimization model for the thin−wall milling system, in
which spindle speed and axial depth of cut are optimized to maximize material removal and
minimize dynamic deflections under the constraint of no chatter. Germashev et al. [214]
investigated the vibration response of thin−walled parts in the milling process by means
of simulation and experiment. They found that the dynamic interaction between the
workpiece and the cutting forces would be different under different spindle speeds, and
optimal spindle speed should be selected considering the vibration amplitude of the work-
piece. Sofuoglu and Orak et al. [215,216] created a hybrid decision−making algorithm to
determine the optimum machining parameters. This approach may assist operators and
decision makers in making correct decisions in various manufacturing environments free
of chatter vibration.
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In addition to optimizing the depth of cut and spindle speed, the milling chatter
can also be avoided by optimizing tool orientations of regular cutting tools [217–221] or
variable−pitch tools. Ozturk et al. [222,223] extended the frequency domain method to
investigate the effect of tool orientations on the stability of five−axis ball−end milling
operations, and posture SLDs are constructed. Shamoto and Akazawa [224] also presented
an analytical method to predict the stability of the ball−end milling process with tool incli-
nation, but they did not reveal the effect of lead angle on stability. Further, they presented
novel strategies to optimize tool path and posture to avoid chatter [225]. Tunc et al. [226]
adjusted the tool orientation from a five−axis milling path that has been pre−generated
to minimize the total machine tool response time considering cutting forces, chatter sta-
bility, and machine tool motion. Sun et al. [141] also presented a method to optimize
tool orientations for avoiding chatter in five−axis ball−end milling, in which the tool
orientations were optimized at each tool path location by searching the feasible angu-
lar positions and checking their stability. By taking into account the process mechanics,
Huang et al. [227] presented a minimax optimization approach to plan the tool orienta-
tions, by which smooth and chatter−free tool orientations can be generated. Recently,
Zhao et al. [228] analyzed the effect of tool orientation on surface roughness and pre-
sented a chatter−free and interference−free tool orientations optimization algorithm. The
above−mentioned work aimed at optimizing the tool orientations in milling operations
with flexible cutters so as to avoid chatter, in which the flexibility of the workpiece is
ignored. Huang et al. [227] presented a tool orientation optimization method to reduce the
vibration and deformation in the milling process of thin−walled impeller blades. Habibi
et al. [229] presented a purely geometrical approach to adjust tool orientation for reducing
surface errors in the five−axis machining of thin−walled structures. They reported that
the surface error was reduced by more than 90% using the presented method. However,
they did not consider the effect of tool orientations on the stability of the milling process
of thin−walled parts. Urbikain et al. [230] calculated the stability of barrel−shaped end
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milling of thin−walled parts, and comprehensively analyzed the effect of tool orientation
on the dynamic force and stability. Nonetheless, it is worth noting that the machining
parameters optimization strategy is inherently limited in avoiding chatter as it does not
enlarge the stable machining parameter domain in the SLD.
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4.2. Variable−Pitch Cutting Tools

It is well−known that regenerative chatter is closely related to the time delay of
the milling system. Tuning the system time delay is an effective method to suppress
regenerative chatter, which can be achieved by changing the tool geometry or adjusting the
spindle speed. Next, the chatter suppression technique based on variable−pitch cutting
tools is described below.

Typical variable−pitch cutting tools, which include nonuniform pitch/helix, serrated
and crest−cut cutters, are shown in Figure 15. The application of variable pitch cutters
for chatter suppression was first proposed by Hahn [232]. Based on a simplified milling
process, Slavicek [233] analyzed the stability of variable pitch cutters. Altintas et al. [176]
transformed constant regenerative time delay in uniform cutters into nonuniform multiple
regenerative time delay for variable pitch cutters and designed variable pitch cutters with
optimal pitch angles by an analytical stability prediction method. Based on the single
frequency method [171], Budak [234,235] further proposed a simple analytical method for
determining optimal pitch angles, which establishes explicit relation between the stability
limit and the pitch variation. Later on, Olgac and Sipahi [236] introduced the so−called
Cluster Treatment of Characteristic Roots (CTCR) approach to determine the stability
limit analytically for the milling operation with a variable pitch cutter, which provides a
powerful tool to determine the pitch angle formation and the optimum cutting conditions.
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Stepan et al. [237] proposed a brute force (BF) iterative method to optimize the face milling
cutter geometry. The effectiveness of the designed variable pitch cutter was validated by
laboratory and industrial experiments. Recently, Zhan et al. [231] established a five−axis
variable−pitch milling model, and predicted the milling stability of ball−end cutter under
different combinations of pitch angles and different tool orientations, as shown in Figure 14b.
Based on the principle of maximum stable area, they also proposed an efficient optimization
strategy to determine the optimal pitch angles for ball−end cutters [132].
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able helix tool; (c) serrated tool; (d) crest−cut tool.

Note that each edge of the variable pitch cutter has a fixed helix angle (Figure 15a),
and therefore, the pitch angle between adjacent edges at any height on the cutting edge
is the same as that at the tooltip end. However, the local pitch angles of variable helix
cutters change along the tool axis (Figure 15b), and therefore, the time delay between
adjacent edges changes continuously, which further disturbs the occurrence mechanism of
the regenerative chatter. Turner et al. [177] modeled the milling stability model of variable
helix cutters by approximating the variable helix with average pitch. They claimed that this
model is only suitable for low radial immersion. Yusoff and Sims [238] used the SDM to
accurately obtain the milling stability limits of variable helix cutters and then adopted the
differential evolution algorithm to optimize the tool geometry. Takuya et al. [239] proposed
a new method to design variable helix cutters, where the influence of the regeneration
on the milling process was quantified by a “regeneration factor”. Based on the frequency
domain stability model, Hayasaka et al. [240] proposed a design index (ap/alim) to design
variable helix cutters, and the effectiveness of the proposed method was verified by milling
experiments. Comak and Budak [241] presented a novel iteration method to optimize
the pitch angles of variable pitch and helix cutters, which can avoid time−consuming
numerical simulations. Guo et al. [242] introduced an accurate model to predict 3D surface
topography in the five−axis milling of Plexiglas and metal with the variable pitch and
helix cutter.

In addition to the above−mentioned variable pitch/helix cutters, serrated and crest−cut
cutters are also used to suppress chatter in milling operations. Differently from variable
pitch/helix cutters, they have more complex geometry, as shown in Figure 15c,d. It can
be seen from Figure 15c that serrated tools have wave edges on their flank faces. Due to
this special profile, the serrated tools result in non−uniform distribution of chip thickness,
and the time delay may differ at any point along their flutes. Merdol and Altintas [243]
and Bari et al. [244] established dynamic models and analyzed the milling stability of this
type of milling cutters. Tehranizadeh et al. [245] developed a generalized mechanics and
stability model of the milling process with end mills involving different serration wave
shapes, including trapezoidal, sinusoidal, and circular shapes. The optimum serration
profile, along with its corresponding stability, was obtained by using genetic algorithm. It is
demonstrated that the stability limits are increased significantly, while the cutting forces are
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reduced by 30%. However, serrated tools produce periodic cutting marks on the finished
surface, so the serrated tools cannot be used in finishing operations.

There is another type of milling cutter with wave edges, namely, crest−cut tools, as
shown in Figure 15d. Since the wave edges are on the rake faces of the cutter, both pitch
and helix angles vary continuously along the cutter axis. This type of cutter is able to
provide excellent chatter suppression performance, as shown in Figure 16. In addition,
it can be used for both rough machining and finishing. Dombovari and Stepan [246]
and Tehranizadeh et al. [247] used the SDM to obtain the milling stability for different
cases with crest−cut cutters. Tehranizadeh et al. [248] proposed a comprehensive stability
model for crest−cut tools and presented a method for selecting their wave geometry to
maximize stability in desired cutting conditions. In a recent study, Tehranizadeh et al. [249]
investigated the chatter stability of standard cutter, variable pitch cutter, and crest−cut
cutter in the milling of thin−walled parts, and they optimized the geometry of these cutting
tools considering the influence of parts dynamics. They observed that crest−cut cutters
have better chatter stability performance in the milling of thin−walled parts in comparison
with the regular and variable pitch cutters.
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From the perspective of chatter suppression, the above studies on variable−pitch
cutting tools only focus on the flexibility of the cutters but ignore the weak rigidity of the
workpiece when machining thin−walled parts. In addition, cutting tools may contain
many other geometric parameters which also affect the machining dynamics, so there still
is a lack of clear and comprehensive tool design criteria.

4.3. Spindle Speed Variation

Spindle speed variation (SSV) is another effective strategy to suppress chatter by
disrupting the regenerative effect. Although the suppression principles of SSV and special
tool geometries are similar, SSV has better flexibility since the variation of spindle speed
can be adaptive to the variance of system process characteristics, while the special tool
geometries with variable pitch/helix or special edges are not changeable once produced.
The SSV strategy is generally divided into discrete spindle speed tuning (DSST) and
continuous spindle speed variation (CSSV).
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In DSST, the spindle speed is tuned based on measured chatter conditions, so the
machining can enter the stable process. Smith et al. [250,251] presented the basic theory for
chatter suppression in milling by spindle speed adaptation and investigated the possibility
of monitoring the chatter vibration with sensors. Liao and Young [252] proposed a new
method for online chatter suppression. In their method, the chatter frequency is identified
according to the milling force signals measured in real−time, and then the chatter can be
suppressed by adjusting the phase difference between the present and previous spindle
speed to π/2. Tsai et al. [253,254] used the acoustic signal to identify the milling chatter,
and then they proposed an adaptive adjustment method of spindle speed. Usually, DSST is
suitable for high−speed cutting conditions with few system modes.

Compared with DSST, CSSV shows strong practicability, especially in low−speed
machining. There are different ways to continuously vary the spindle speed with sinu-
soidal [255–257], triangular [258], and rectangular [259] shape variations, as shown in
Figure 17. Among them, the sinusoidal spindle speed variation (SSSV) is recommended as
the most suitable form [257,260]. In CSSV, the variation of spindle speed needs to deter-
mine the appropriate amplitude and frequency. Many researchers applied complex and
time−consuming stability simulations to determine the optimal amplitude and frequency.
For example, Zatarain et al. [260] used the multi−frequency method to obtain the 3D SLD
of a milling process with SSSV and triangular spindle speed variation (TSSV) and then de-
termine the optimal design parameters in SSSV and TSSV. The results showed that SSSV is
more effective than TSSV in suppressing chatter in low−speed machining. Niu et al. [261]
proposed a variable−step numerical integration method to analyze the stability and op-
timize the design parameters for the milling processes with CSSV, which can reduce the
computation time and improve the efficiency in calculating the 3D SLD. However, the
dynamic characteristics of the milling process especially the thin−wall milling process
generally vary and ultimately lead to the change in the 3D SLD. Therefore, the effects of the
above−mentioned design methods [258,260,261] cannot be guaranteed in actual machining.
Al−Regib et al. [256] proposed simple criteria to select the optimal design parameters in
SSSV depending on the measured chatter frequency. Recently, Yamato et al. [262] presented
a practical design method for optimal SSSV based on the minimization of kinematic internal
process energy balance, which was verified by a series of time−domain simulations and
boring experiments.
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4.4. Damping/Stiffness Enhancement

During the machining of thin−walled components, two main reasons for the chatter are
the weak rigidity and the low damping of the machining system. Thus, to suppress or avoid
the machining chatter, these two aspects should be considered as shown in Figure 18.

From the aspect of stiffness enhancement, supporting fixtures and double−sided ma-
chining can be used, as shown in Figure 19. For using supporting fixtures, Aoyama et al. [263]
proposed a new fixture device with multi−pin supports to increase the stiffness of a thin
plate. The results showed that the vibration amplitude of the thin plate at the resonance
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frequency decreased by about 66%. Kolluru et al. [264] presented a novel torsion spring
ancillary device to improve the stiffness of a thin−walled casing for minimizing the chatter
vibrations during its milling process (Figure 19a). Similarly, Wang et al. [265] designed a
new flexible fixture to hold a thin−walled casing, which reduced the vibration amplitude of
the workpiece by about 20 times. Zeng et al. [266] introduced a fixture design approach for
suppressing the machining vibration of a flexible workpiece, by which the element location,
the element number, and the applied force can be simultaneously optimized (Figure 19b).
It is worth noting that the above fixtures are fixed.
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In recent years, moving support technology has been receiving more and more at-
tention. Matsubara et al. [271] developed a simple pivot support to suppress the vibra-
tions in milling thin−walled parts. The experimental results showed that pivot sup-
port could provide a better vibration suppression performance compared to the fixed
pivot. Fei et al. [268,272] presented a moving damper to support the back surface of a
thin−wall part to suppress chatter and workpiece deformation. The moving damper was
realized by connecting an auxiliary device to the spindle of the machine tool (Figure 19c).
Wan et al. [267] also designed a moving device to suppress the chatter vibrations, by which
the surface quality of the workpiece is obviously improved (Figure 19d).

Double−sided machining is also an efficient way to increase workpiece stiffness.
Shamoto et al. [270] used two cutters simultaneously to roughly mill both sides of the thin
plate (Figure 19e). Their study showed that both the machining efficiency and the machined
flatness are improved about three times that of the conventional one-sided face milling, but
it will cause light forced vibrations. To address this problem, Mori et al. [273] attempted
to use synchronized single−tooth cutters for machining to effectively suppress the forced
vibrations. Recently, Fu et al. [269] used dual collaborative parallel kinematic machines to
machine the thin-walled parts with double−sided features (Figure 19f), which obtained
good chatter suppression results and further improved productivity.

In addition to the above method, adding sacrificial structure and optimizing the mate-
rial removal process are also effective chatter suppression methods from the perspective of
stiffness enhancement. The sacrificial structure is not part of the finished component, but it
can support the thin-walled part during machining. Smith et al. [274] used sacrificial struc-
tures to increase the stiffness of the walls during roughing and semi−finishing (Figure 20a).
Alan et al. [275] compared different cutting strategies for increasing the chatter−free ma-
terial removal rate considering workpiece dynamics. Luo et al. [276] further presented a
method for optimizing the material removal sequence. They experimentally proved that
such optimization can improve the stability in milling thin−walled parts. Lutfi et al. [277]
proposed a method to select the stock thickness, stock shape, and tool axis to improve
the stability of thin−wall parts during five−axis ball−end milling (Figure 20b). Recently,
Wu et al. [278] proposed a method to optimize the machining allowance distribution of
integral impellers in milling. Their simulation results showed that the machining system
stiffness with non−uniform allowance is two times that of uniform allowance, and the
limit of chatter stability is increased by three times.
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Increasing the damping of the machining system can also suppress the chatter vi-
bration during the machining of thin−walled parts. Passive damping can dissipate the
vibration energy without any external power supply, and it has been widely used in ma-
chining processes for chatter suppression. There are different types of passive damping
devices, such as the impact damper, friction damper, and tuned mass damper (TMD),
as shown in Figure 21. Among them, the TMD is the most commonly used one due
to its easy implementation and low cost. The TMD consists of a mass, a spring, and a
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damping. The parameters of the whole damper can be tuned to suppress the specific
modes of the workpiece or machine tool. Bolsunovsky et al. [279] applied a damper in the
machining of thin−wall workpiece, which reduces the workpiece vibrations by 20 times
(Figure 21a). Hamed et al. [280] used a TMD to suppress the chatter in the milling of
cantilever plates with nonlinear milling force and optimized the absorber position and
its spring stiffness. Yuan et al. [281] implemented a TMD to suppress the chatter in the
milling of cylindrical parts. The results showed that using TMD during machining can
reduce vibrations and improve stability limits. Taking the material removal process into
consideration, Yang et al. [282] and Yuan et al. [283] proposed passive dampers with tun-
able stiffness to suppress the chatter in thin−walled part milling. It is worth noting that
a single−degree−of−freedom TMD can only suppress a single mode of vibrations, and
sometimes, the chatter may be affected by multiple modes of the machining system. To
suppress the milling vibration of the workpiece with two main modes, Yang et al. [284,285]
proposed a two−degrees−of−freedom TMD. Wan et al. [286] attached multiple masses to
the thin−wall workpiece for suppressing multi−modal vibration in the milling process and
optimized the number and position of the masses (Figure 21b). Recently, Nakano et al. [287]
attached multiple TMDs to the thin−walled cylinder for chatter suppression and investi-
gated the effect of the mounting arrangement of the TMDs (Figure 21c).
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Many researchers have proposed to add the damping material/structure to the
un−machining surface of the workpiece to improve the structural damping of thin−walled
workpieces, as shown in Figure 22. For instance, Kolluru et al. [88] proposed a surface
damping solution to minimize the vibrations of the thin−walled workpiece during milling,
and the solution was composed of viscoelastic damping layer and distributed masses
(Figure 22a). The results show the vibration amplitude can be reduced by 4.2 times using
the proposed damping solution. Shi et al. [288] designed a constrained layer damper for
vibration suppression in thin−walled component milling. With the local surface damper,
the vibration amplitude is reduced by 80%. Scalzo et al. [289] integrated the high−damping
lattice structures on the workpiece surface, and the machining stability is obviously im-
proved. In addition, viscous fluid can be also used to increase the structural damping.
Zhang et al. [290,291] presented a new approach by submerging the workpiece into the
viscous fluid to improve the machining stability. Dang et al. [292] added the viscous fluid
into the pocket of the workpiece to mitigate chatter during the milling process of the
thin−walled workpiece (Figure 22b). Results demonstrated that the chatter vibration can
be well suppressed, and the MRR can be increased by more than 140% after using the
viscous fluid.
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solution [88]. (b) Using viscous fluid [292].

4.5. Active Chatter Control

Differently from passive chatter suppression methods, the active chatter control meth-
ods adopt appropriate sensors to monitor the current state of machining processes and
then apply active forces with actuators to suppress the chatter vibration as shown in
Figure 23. According to the position of the actuators, the active control systems can be
classified into three main categories: active spindle system, active tool holder, and active
workpiece holder.

The active spindle system can produce forces to the rotating shaft for chatter sup-
pression [293] (Figure 23a). Denkena et al. [294] placed three piezo actuators around the
spindle to generate superposed vibrations in the feed direction, which can disturb the
regenerative effect and suppress the chatter. Monnin et al. [96,97] integrated piezoelectric
actuators into the spindle system and proposed two different control strategies to control
the front bearing position of the spindle, which can enlarge the stability limits at certain
desired spindle speed range. By integrating an active magnetic bearing into the spindle,
Dijk et al. [295,296] presented a robust chatter control strategy to suppress the chatter dur-
ing high−speed milling and verified the effectiveness of the presented strategy. Similarly,
Wan et al. [297,298] integrated an electromagnetic actuator into the spindle and presented
a sliding mode control method and a discrete output feedback robust controller for sup-
pressing the chatter. The experimental results showed that the stability was improved
significantly over a wide spindle speed. Aiming at suppressing the chatter in the machining
of thin−walled workpieces, Li et al. [299] designed an active chatter control structure by in-
tegrating piezoelectric actuators and displacement sensors into the spindle–tool–workpiece
system. The maximum material removal rate was significantly improved by using the
proposed control structure.

In terms of the active tool holder, Wang et al. [300] proposed a stiffness variation
method to suppress milling chatter, in which piezoelectric stack actuators acted on a special
tool holder. Vashisht et al. [301] applied an electromagnetic actuator near the boring bar’s
end and proposed an optimal fractional order PD lambda controller to mitigate the chatter.
They reported that the critical depth of cut was increased by two times with a limited
actuator size. Basovich et al. [302] designed an active slender bar structure that integrated
electromagnetic actuators and eddy current sensors, and developed a robust stabilizing
controller. The experimental results showed that the stability was improved by about 100%.
Saleh et al. [303,304] integrated magnetorheological fluid into the boring bar to actively
increase the damping of the machining system (Figure 23b, and significantly increased
stability limits are obtained. Bahador et al. [305] designed a novel tool fixture to suppress
the chatter in hard turning processes. The designed tool fixture is mainly composed of
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a piezoelectric actuator and stiffeners (Figure 23c), by which the chatter was effectively
suppressed, and the surface roughness was improved.

The active workpiece holder can compensate for the relative vibrations between a
cutter and a workpiece to suppress the machining chatter. With the purpose of alleviating
the chatter in machining the thin−walled workpiece, many researchers proposed a variety
of active workpiece holders. For example, Zhang et al. [306] reduced the vibrations of the
thin−walled workpiece by mounting piezoelectric actuators and sensors to the workpiece
surface. The experimental results showed that the critical cutting depth can be increased
by seven times using the proposed control method. Parus et al. [307] used a piezoelectric
actuator and a Linear Quadratic Gaussian algorithm to form an active fixture system that
alleviated the machining vibration of the flexible workpiece. Jia et al. [308] proposed
a force−tunable pneumatic fixture to provide support on the workpiece to mitigate vi-
brations and improve stability limits. They systematically investigated the influence of
fixture support force on the milling dynamics of the thin−walled workpiece (Figure 23d).
Ozturk et al. [106,309] employed a robot to provide mobile support to actively increase
the stiffness of the thin−wall parts, and consequently, the stability of the milling process
was improved. Guo et al. [310] conducted a systematic review of robotic milling of com-
plex parts. Beudaert et al. [311] designed a portable and tunable electromagnetic actuator
to suppress the chatter by changing the damping of the thin−walled part (Figure 23e).
Jiang et al. [312] designed a magnetorheological fluid flexible fixture to fix the thin−walled
part, which improved the surface finish quality.

In recent years, many researchers have attempted to design better controllers or control
algorithms to improve the response speed of the designed devices/systems, so as to more
accurately control the machining processes. For example, Paul et al. [313] applied an
intelligent PD/PID controller combined with fuzzy logic to reduce chatter in the milling
processes. The results showed that the proposed controller performed better than the
classical PD/PID controllers. Wang et al. [314] adopted the adaptive vibration reshaping
algorithm to precisely modify and control the milling vibration frequencies, which can
suppress chatter frequencies effectively. Based on the delay−dependent output feedback
controller synthesis, Mizrachi et al. [315] presented a control method for chatter suppression
in the internal turning of the flexible bar with consideration of the hardware limitations, the
uncertainties of the bar model, and the delayed dynamics of the regenerative chatter. The
above active devices/systems change the dynamic characteristics of the machining system
and thereby enlarge the stability domains in the SLD. However, the implementations of
these active control methods require many auxiliary devices. This not only requires sensors,
actuators, and controllers but also needs complex control algorithms and consumes a lot
of energy. Meanwhile, these auxiliaries are easily damaged due to the harsh machining
environment, such as coolants, chips, and so on. These factors limit the application of the
active control method in actual thin−wall machining.
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5. Discussion and Future Prospects
5.1. Identification of System Dynamic Characteristics

With the improvement of the performance requirements, the shapes of the thin−walled
parts are increasingly complex. At this time, the methods based on FEMA are the most
suitable methods to identify the in−process dynamic parameters for the thin−walled
parts. However, existing methods sometimes oversimplify the FE models, which could
hardly apply to the time−varying cutting conditions under complex clamping conditions.
In addition, in the practical use of the FEMA−based methods, the calculation efficiency
issue is also a major limitation. Although the methods combined with the structural
dynamics modification scheme can improve the calculation efficiency to some extent, it
is still necessary to develop more efficient and applicable methods for more complex
thin−walled structures, especially when involving damping, support, and lubrication
boundary conditions.



Machines 2023, 11, 359 31 of 44

As for slender cutting tools, EMA−based methods are preferred in theoretical research
and practical application. To minimize the number of standard impact test, the RCSA theory
was developed to predict the tool tip acceptance for tool–holder–spindle−machine assem-
blies. It is noted that in some processing machines, such as birotary milling machines and
industrial robots, the cutting tool presents the dynamic characteristics of pose dependence.
Data−driven and statistical methods can be employed to obtain the pose−dependent
structural dynamic parameters. However, they are unable to mechanistically investigate
the laws governing the changes in the dynamics. In addition, in the case of high−speed
machining, the dynamics of the rotating cutting tool exhibit in−process variations due to
the effect of the gyroscopic moments and centrifugal forces.

5.2. Modeling and Prediction of Chatter Stability

Obviously, differently from the machining of simple rigid parts, during the thin−walled
machining process, the interaction between the thin−walled part and cutting tool is more
complex, especially with the application of difficult−to−machine materials. Its accurate
dynamics modeling is very challenging because the machining system exhibits complex
nonlinear behavior. The nonlinear dynamic cutting force model should be accurately cali-
brated, and the real contact region between the cutting tool and thin−walled parts should
be accurately extracted. Future research should further study the nonlinear tool/workpiece
interaction mechanism, clarify the influence mechanism of tool wear and process damping
on thin−wall machining dynamics, and establish a reliable and accurate cutting dynamic
model with real tool–part engagement conditions.

Note that when considering the influence of more physical factors, e.g., deformation,
vibration, and cutter runout, although the CWE extraction becomes more accurate, in the
meantime, it is also difficult to operate in complex working conditions, and the consumed
computation time will increase significantly. Therefore, advanced methods with better
practicability and higher computational efficiency need to be explored further. In addition,
the multiple process damping effects may coexist in the machining process of thin−walled
structural parts, and the contribution ratio is closely related to the time−varying stiffness
of the workpiece [316]. In particular, in the five−axis machining of the complex curved
surface workpiece, the change in tool axis vector leads to the imbalance of cutting load and
the changeable cutting tool–workpiece engagement relationship, so its influence on tool
wear and process damping needs to be further studied.

The dynamic equation of the thin−wall machining system is nonlinear with a com-
plex delay, especially when the wall thickness of the workpiece reaches a very thin
semi−finishing or finishing stage. Complex nonlinear problems may lead to the diffi-
culty of applying frequency−domain methods and discrete−time domain methods to
the prediction of machining stability. The stability−solving research may depend on the
time−domain methods in the future. However, because of the low computational efficiency,
multiple modes of thin−wall machining system, and large matrix dimension of the dy-
namic equation, it is necessary to combine time−domain methods with advanced numerical
computing techniques, and to develop more efficient time−domain stability criteria.

5.3. Chatter Avoidance/Suppression Methods and Devices

Tool geometry optimization at the design stage can effectively increase cutting stabil-
ity, and therefore, more and more attention has been paid to the optimization design of
tool edge profile and internal structure with innovative features. However, the existing
tool design criteria are relatively simple, such as minimizing cutting force, maximizing
machining stability, or smoothing the finishing surface. Moreover, from the perspective of
dynamics, most studies only focus on the optimization of helix angles and pitch angles. In
fact, tool geometry includes many angles and other geometric parameters, i.e., pitch angles,
helix angles, rake angles, clearance angles, honed radius, etc. Future research should estab-
lish a more comprehensive optimization objective, and simultaneously optimize multiple
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geometric parameters. At the same time, as constraint conditions, the tool strength and
manufacturing difficulty should be fully considered.

The improvement of stiffness and damping for thin−wall machining systems can
directly suppress machining chatter. Many novel fixtures and damping devices have
been proposed, which effectively take advantage of the stiffness increase obtained by the
clamping and support units and the damping increase obtained by the active and passive
damping devices. However, it should be noted that some fixed devices cannot match the
time−varying dynamic characteristics of thin−wall parts due to a lot of material removal.
Therefore, mobile fixture devices and double−sided machining have currently gained more
and more scholars’ research interests. Considering the limited operational space of some
thin−walled parts with complex structural features, it is also a good research idea to adopt
a sacrificed structure or optimize the material removal sequence to make the remaining
unremoved materials play a supporting role, which should also be paid more attention in
future research.

The active devices/systems can significantly improve the dynamic characteristics of
the machining system and enlarge the stability domains of machining parameters, but they
need to configure many auxiliary devices, e.g., actuators, controllers, etc., and also require
complex control algorithms. These devices are easily damaged due to harsh conditions in
the machining environment, e.g., humidity, impact, etc. This limits their application. Future
research can make full use of built−in sensors and/or external sensors to establish reliable
communication with the CNC control system. Based on collected signals by the sensors,
intelligent monitoring models with rapid recognition of chatter should be established. The
speed and feed parameters are adjusted in real−time through the CNC control system to
achieve the purpose of eliminating chatter.

6. Conclusions

In the machining of weak−rigidity thin−walled parts, chatter instability is the main
factor that reduces surface machining quality and restricts production efficiency. There-
fore, it is very important to develop an accurate stability analysis method and effective
chatter suppression technology for the high−performance machining of thin−walled parts.
This paper comprehensively reviews the research on dynamic characteristic identification,
chatter stability modeling, and chatter suppression of thin−walled machining systems,
and the research status of regenerative chatter in thin−walled machining is systematically
described. As can be seen, significant progress has been made in the past decade, during
which time many efficient identification methods for time−varying dynamic characteris-
tics, chatter stability models considering the system stiffness at different machining stages,
and various effective chatter avoidance/suppression strategies are proposed. This paper
conducted a critical review of the relevant literature. The existing problems in the study
of thin−wall machining dynamics are discussed in the meantime with concluding future
research work.
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