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Abstract: In recent years, the data-driven based FDD (Fault Detection and Diagnosis) of high-speed
train electric traction systems has made rapid progress, as the safe operation of traction system
is closely related to the reliability and stability of high-speed trains. The internal complexity and
external complexity of the environment mean that fault diagnosis of high-speed train traction sys-
tem faces great challenges. In this paper, a wavelet transform-based FNR (Fault to Noise Ratio)
enhancement is realised to highlight incipient fault information and a Deep PCA (Principal Com-
ponent Analysis)-based diagnosability analysis framework is proposed. First, a scheme for FNR
enhancement-based fault data preprocessing with selection of the intelligent decomposition levels
and optimal noise threshold is proposed. Second, fault information enhancement technology based
on continuous wavelet transform is proposed from the perspective of energy. Further, a Deep-PCA
based incipient fault detectability and isolatability analysis are provided via geometric descriptions.
Finally, experiments on the TDCS-FIB (Traction Drive Control System–Fault Injection Benchmark)
platform fully demonstrate the effectiveness of the method proposed in this paper.

Keywords: wavelet transform; FNR; Deep-PCA; incipient faults; high-speed railway traction devices;
diagnosability analysis

1. Introduction

Research on high-speed train FDD (Fault Detection and Diagnosis) along with safety
warnings to eliminate or reduce safety accidents is key to the sustainable and healthy
development of the high-speed rail system, and has become an urgent need for continued
high-speed rail development all over the world. The electric traction system is the core
part of CRH (China Railway High-speed) trains; as shown in Figure 1, it consists of a
pantograph, traction transformer, impulse rectifier, traction inverter, and induction motor.
Due to the complex and changing environment of train operation, the traction systems on
board experience many harsh environments, which can lead to a variety of incipient faults.
Meanwhile, environmental noise presents enormous challenges for incipient FDD in high-
speed train traction systems, and has attracted more and more attentions recently [1–4].

Generally, the running data collected from high-speed trains involves a lot of noise.
Among the traditional noise reduction methods, wavelet transform-based noise reduction
has been widely used due to its high reliability and easy realization. The main factors
affecting wavelet denoising are wavelet decomposition coefficient and threshold selection,
which have motivated work in recent years. Adaptive wavelet denoising methods [5–8]
involving adjacent coefficients and adaptive threshold design can take into consideration
local features and noise at different decomposition levels. Further, multi-wavelet denoising
methods [9–13] can be realized by merging adjacent coefficients to achieve a unified multi-
wavelet threshold. Wavelet image thresholding schemes have been proposed in [14–18] by
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combining TI (translation-invariant) adjacent coefficients with non-TI adjacent coefficients.
Adaptive wavelet threshold denoising methods based on SURE estimation (Stein Unbiased
Risk Estimation) were investigated in [19–22] for selection of optimal thresholds and
window sizes, which were subsequently extended to the redundant DT-CWT (dual-tree
complex wavelet transform). The thresholds were divided into global thresholds and
local thresholds, based on which soft threshold concept-based optimal threshold selection
methods were proposed [23–27] by analysing the values of SNR (signal-to-noise ratio),
MSE (mean square error), and RMSE (root mean square error). Noise estimation is required
in traditional threshold design, which limits the threshold accuracy and its applications.
To solve this problem, HBTEs (histogram-based threshold estimations) with different noise
levels were provided in [28–32]. Similarly, PSR (Peak-Sum Ratio)-based noise reduction
schemes have been proposed in [33–35], allowing the limitations on noise estimation to
be removed.

Figure 1. The electric traction system of a CRH train.

In recent decades, as the representative of multivariate statistical analysis, PCA (Princi-
pal Component Analysis)-based incipient FDD schemes have been widely used, including
in applications on high-speed train traction systems. KPCA (Kernel Principal Component
Analysis) for removal of the non-Gaussian and nonlinearity of data was proposed in [36]
by projecting the data to higher dimensions through a kernel function. Based on this, and
in combination with SVM (Support Vector Machine) [37], incipient fault information can be
further investigated. The concept of Deep-PCA, combining PCA theory with deep learning,
as in [38], can further improve incipient fault detection capability. However, little research
has been conducted on PCA-based diagnosability analysis, and research on detectability
and isolatability analysis under the Deep-PCA framework is especially lacking.

In this paper, the wavelet transform-based FNR (Failure to Noise Ratio) enhancement
is realised to highlight incipient fault information and diagnosability analysis under a
Deep-PCA framework. The main contributions are as follows:

(1) An intelligent decomposition levels selection scheme is proposed by quantifying the
similarity of detail components, and the selection of noise threshold is determined
and optimized to further improve the accuracy of noise reduction.

(2) A continuous wavelet transform-based fault information enhancement approach is
proposed from the perspective of fault energy.

(3) A Deep-PCA based diagnosability analysis is provided, including detectability and
isolatability analyses using geometric descriptions.

The rest of this paper is organized as follows. FNR enhancement of fault data, including
noise reduction and fault information enhancement, is introduced in Section 2. The Deep
PCA-based diagnosability analysis is introduced in Section 3. In Section 4, experimental
results are provided to illustrate the effectiveness and advantages of the proposed scheme.
Finally, our conclusions are provided in Section 5.

2. FNR Enhancement of Fault Data

It is well known that pure fault data can improve the accuracy of fault detection
and diagnosis, especially in the case of incipient FDD. However, distinguishing the fault
information from the background noise is a huge challenge in real applications. In this paper,
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discrete wavelet transform-based noise reduction is realized, then a continuous wavelet
transform-based scheme for extracting the normal data trend is proposed by projecting
the raw data into the time/frequency domain. Based on this approach, additional fault
information and reduced noise information in newly obtained data is available, improving
the accuracy of incipient FDD via FNR enhancement.

2.1. Noise Reduction Method Based on Discrete Wavelet Transform

Multi-scale refinement of a time series signal can be obtained based on scaling and
translation of the discrete wavelet transform, where the wavelet transform of time series
data x f (t) is described as

Wc(a, b) =
〈

x f (t), ψa,b(t)
〉
=

1√
a

∫ +∞

−∞
x f (t)ψ∗

(
t− b

a

)
dt (1)

where ψa,b(t) is the mother wavelet, a is the scaling factor, and b is the translation factor.
By scaling and translating the mother wavelet, the following wavelet sequence can be
obtained:

ψa,b(t) =
1√
a

ψ∗
(

t− b
a

)
(2)

If scaling factor a varies as the integer power of two, the discrete wavelet can be further
represented as

ψ(j,n)(t) = 2−
j
2 ψ∗(2−j(t− n)) j, n ∈ Z (3)

where j is the scale parameter and n is the translation parameter along the time axis.
According to the above formulas, the discrete wavelet can be redefined as

Wd(j, n) =
∫ +∞

−∞
x f (t)ψ(j,n)(t)dt (4)

2.1.1. An Intelligent Decomposition Levels Selection Scheme

An appropriate number selection of decomposition levels is necessary for discrete
wavelet denoising, as insufficient and excessive decomposition lead to poor results and
information distortion, respectively. In the existing literature, the number of decomposition
levels has been determined through visual observation, which limits its application to
real-time intelligent fault diagnosis of high-speed train traction systems. In this article,
a novel intelligent decomposition level selection approach based on the DTW (Dynamic
Time Warping) distance is proposed by comparing the distance between previous low-pass
filter data and the latest data.

Assuming two time series datasets xa(a0, a1, · · · , an) and xb(b0, b1, · · · , bm) with n 6= m,
the distance matrix Dn,m can be represented as

Dn,m =


d1,1 d1,2 · · · d1,m
d2,1 d2,2 · · · d2,m

...
...

...
...

dn,1 dn,2 · · · dn,m

 (5)

where di,j =
√(

ai − bj
)2, (i = 0, 1, ..., n; j = 0, 1, ..., m).

Unlike Euclidean distance, the original intention of DTW is to search a continuous
matching relationship, including all points in the two given time series. As shown in
Figure 2, the optimal warping path of DTW algorithm represented by W is as follows:
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Figure 2. Optimal Warping Path based on DTW.

W = w1 + w2 + w3 + · · ·+ wk (6)

where wh = di,j (h = 1, 2, · · · , k, i = 0, 1, · · · , n, j = 0, 1, · · · , m, and max(n, m) ≤ k <
n + m− 1). For DTW matching, the following three requirements should be satisfied:

(1) Boundary conditions: w1 = d1,1 and wk = dn,m, indicating that the warping path
should start at one corner and end at the other corner in a diagonal direction;

(2) Continuity condition: each actual warping path should be continuous, that is, if
wh−1 = di′ ,j′ and wh = di,j, then i− i′ ≤ 1 and j− j′ ≤ 1.

(3) Monotonicity condition: neither warping path of two time series should intersects the
other, that is, if wh−1 = di′ ,j′ and wh = di,j, then i− i′ ≥ 0 and j− j′ ≥ 0.

The task of the DTW algorithm is to search the optimal path by minimizing the
warping cost, represented as

DTW(xa, xb) = min


√√√√ k

∑
1

wh/k

 (7)

where DTW(xa, xb) can be obtained by the recursion provided below and γ(i, j) is the total
distance of the warping path from the starting point to di,j.

γ(i, j) = di,j + min{γ(i− 1, j− 1), γ(i− 1, j), γ(i, j− 1)} (8)

The high-pass filtering (HPF) and low-pass filtering (LPF) comparisons of eight de-
composition levels are shown in Figure 3. In the first decomposition level, HPF D1 mainly
contains noise, while LPF A1 contains both the data tendency and details of the noise signal.
In the second decomposition level, the burst data information in HPF D2 increases signifi-
cantly, while the noise information is reduced compared with the previous level. Compared
with A1, the noise information in A2 is reduced and the data tendency is more obvious. As
the number of decomposition levels increases, the noise information included in the HPF
becomes less and less, which leads to the DTW distance between the given HPF and the
previous one becoming shorter and shorter. However, for the most part only burst data
information with no noise exists in HPF under the decomposition case, which results in the
DTW distance increasing. According to the above analysis and the relationship between
the DTW distance and decomposition levels shown in Figure 4, the optimal decomposition
level jo is chosen as the previous level of the DTW change point.
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Figure 3. Comparison of HPF and LPF.

Figure 4. The relationship between DTW distance and decomposition level.

2.1.2. Noise Threshold Selection

Compared with the optimal selection of decomposition levels, the noise threshold
selection is a more important procedure that causes different denoising results directly.
An inappropriate noise threshold selection will cause signal distortion, meaning that in-
terference from noise cannot be completely eliminated. The noise coefficients of the detail
components are not in a uniform and symmetric distribution, which increases the diffi-
culty of noise reduction. Due to this non-adaptive threshold, the applications of existing
threshold selection methods based on noise estimation are not ideal.

The upper and lower noise thresholds λj,H and λj,L can be denoted as follows:

λj,H = µj + κj,Hσj (9)

λj,L = µj − κj,Lσj (10)
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where the subscript j represents the number of decomposition levels, κj,H and κj,L are
adjustable parameters related to each threshold, and the mean and standard deviations of
the jth decomposition level, µj and σj, respectively, can be represented as

µj =
∑

Nj
i=1 wj,i

Nj
(11)

σj =

√√√√ 1
Nj − 1

Nj

∑
i=1

(
wj,i − µj

)2 (12)

where wj,i is the ith element in the detail components Dj and Nj represents the length of Dj.
The minimum values of the above κj,H and κj,L can be calculated as

κj,Lmin =
µj −max

(∣∣wj < 0
∣∣)

σj
(13)

κj,Hmin =
max

(∣∣wj > 0
∣∣)− µj

σj
(14)

where wj is the element in detail components Dj.
In order to obtain an appropriate threshold, the threshold of each decomposition level

needs to be designed separately. Meanwhile, the PSR Sj reflecting the sparsity of detail
components can be represented as

Sj =
max

(∣∣wj
∣∣)

∑
Nj
i=1

∣∣wj,i
∣∣ (15)

Furthermore, the threshold selections can be divided into the following three categories:

(1) Sj ≤ 0.01.

The detail components Dj mainly includes noise. In this case, κj,H = κj,Hmin, κj,L = κj,Lmin
and all the coefficients of detail components are assigned values of zero.

(2) 0.01 < Sj < Tr and j < jo.

The above relationships indicate that detail components Dj include both noise and
signal tendency, where jo represents the optimal decomposition level and Tr is a criterion
for distinguishing between the detail components with noise and others without noise,
which can be determined as follows [33]:

κj,L =

(Sr,L − Sj,L

Sr,L

)
κj,Lmin (16)

κj,H =

(Sr,H − Sj,H

Sr,H

)
κj,Hmin (17)

where Sr,L and Sj,L are the reference PSR coefficients, and can be defined as follows:

Sr,L ,
Sjo ,L + Sjo+1,L

2
(18)

Sr,H ,
Sjo ,H + Sjo+1,H

2
(19)
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where Sj,L and Sj,H are the PSR of the negative and positive coefficients, respectively, and
are defined as

Sj,L =
max

(∣∣wj < 0
∣∣)

∑
Nj
i=1

∣∣wj,i < 0
∣∣ (20)

Sj,H =
max

(∣∣wj ≥ 0
∣∣)

∑
Nj
i=1

∣∣wj,i ≥ 0
∣∣ (21)

(3) Sj ≥ Tr and j ≥ jo.

The above relationships indicate that the number of decomposition levels j has ex-
ceeded the optimal number of decomposition levels jo. There is no need to select a noise
threshold, as the detail components have no noise in this case.

Remark 1. According to the methods above derived from [33], the optimal noise thresholds κj,H
and κj,L are chosen. By comparing Tr and Sj, it is feasible to determine the number of decomposition
levels. However, Tr depends on artificial adjustment, which leads to false judgments as to whether
or not the system involves noise. In this paper, an intelligent decomposition level selection scheme
is proposed by quantifying the similarity of detail components between the upper and lower levels.
In this way, the condition Sj ≥ Tr when j ≥ jo can be guaranteed, and incomplete noise reduction
due to inaccurate Tr design can be avoided.

2.2. Fault Information Enhancement Technology Based on Continuous Wavelet Transform

The incipient fault of high-speed train traction systems are easily contaminated by
noise, as the fault signals are weak in the early stage, and such weak fault information is
difficult to extract with traditional fault diagnosis methods. In this paper, a fault information
enhancement approach based on the continuous wavelet transform is proposed. The main
ideas on how to highlight fault characteristics are expounded as follows.

In the time-frequency space based on the continuous wavelet transform, both fre-
quency domain information and energy change can be monitored. In view of this, the trac-
tion system signals of a high-speed train are transformed into the time–frequency domain
and the energy change trends are used instead of signal change trends in fault diagnosis
analysis. For data with noise reduction (xr), the change trends of signal Tn(xr) can be
obtained by continuous wavelet transform as follows:

Tn(xr) =
1√
a

∫ +∞

−∞
xr(t)ψ∗

(
t− b

a

)
dt (22)

where ψ∗
(

t−b
a

)
is the mother wavelet, a is the scaling factor, and b is the translation factor.

Further, the energy change trend of the fault data TF(xr) can be obtained as

TF(xr) = Tn(xr)− Tp(xr) (23)

where Tp(xr) is the energy variation trend of the signal. Further, TF(xr) can be transformed
into fault data xF containing rich fault information by ICWT (inverse transform of contin-
uous wavelet transform). Based on the above data preprocessing, traction system faults
with weak fault characteristics can be diagnosed by combination with existing work on
Deep-PCA theories [38].

3. Deep-PCA Based Diagnosability Analysis

According to the noise reduction and fault information enhancement proposed in
the previous sections, FNR enhancement-based data preprocessing is realised. For this
reason, there is no need to consider the impact of noise in fault detection threshold design,
and the sensitivity of the threshold is improved. The proposed approach in this paper is
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verified in a Deep PCA-based incipient FDD framework, and a diagnosability analysis with
Deep-PCA theory is discussed further on the basis of [38].

3.1. Detectability Analysis

The normalized dataset X ∈ RM×N (where M is the number of variables that can be
measured and N is the number of measurements) can be denoted as

X = X + X̂ (24)

where X represents normal data and X̂ represents fault data.
Implementing SVD (singular value decomposition) on the covariance matrix S of X,

we obtain
1

M− 1
XXT = S = P1Λ0,1PT

1 (25)

where M represents the number of variables, Λ0,1 = diag(λ0,1, · · · , λ0,M) ∈ RM×M, λ0,i(i =
1, 2, · · · , m) is the ith eigenvalue of S in descending order, and P1 ∈ RM×M is the singular
value vector of covariance matrix S.

According to the contribution rate, some singular value vectors are selected to con-
struct P1,1 and the remaining part is denoted as P1,2, that is, P1 = [P1,1, P1,2]. Further, X can
be decomposed into two parts, as follows:

X = X1,1 + X1,2 (26)

where

X1,1 = P1,1PT
1,1X = P1,1PT

1,1(X + X̂)

= P1,1PT
1,1X + P1,1PT

1,1X̂ = X1,1 + X̂1,1 (27)

X1,2 =
(

I − P1,1PT
1,1

)
X =

(
I − P1,1PT

1,1

)
(X + X̂)

=
(

I − P1,1PT
1,1

)
X +

(
I − P1,1PT

1,1

)
X̂

= X1,2 + X̂1,2 (28)

Similarly, we can obtain
Xj,k = X j,k + X̂j,k (29)

where j represents the number of Deep PCA decomposition levels and Xj,k represents
the kth data-set of the jth level. Below, the framework of the Deep PCA design and
implementation is shown in Figure 5.

Figure 5. Framework of Deep-PCA.
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The Deep-PCA based fault detection statistics

T2
j,k =XT P(j+1),(2k−1)Λ

−1
j,k PT

(j+1),(2k−1)X

=(X + X̂)T P(j+1),(2k−1)Λ
−1
j,k PT

(j+1),(2k−1)(X + X̂)

=XP(j+1),(2k−1)Λ
−1
j,k PT

(j+1),(2k−1)X

+ XP(j+1),(2k−1)Λ
−1
j,k PT

(j+1),(2k−1)X̂

+ X̂P(j+1),(2k−1)Λ
−1
j,k PT

(j+1),(2k−1)X

+ X̂P(j+1),(2k−1)Λ
−1
j,k PT

(j+1),(2k−1)X̂ (30)

SPEj,k =
(

I − P(j+1),(2k−1)P
T
(j+1),(2k−1)

)
X

=
(

I − P(j+1),(2k−1)P
T
(j+1),(2k−1)

)
(X + X̂)

=
(

I − P(j+1),(2k−1)P
T
(j+1),(2k−1)

)
X

+
(

I − P(j+1),(2k−1)P
T
(j+1),(2k−1)

)
X̂ (31)

where XP(j+1),(2k−1)Λ
−1
j,k PT

(j+1),(2k−1)X̂ are used for the data model involving normal data X

and fault data X̂. Further, we denote DT2(X, X) as the distance from X to the model center
of X, DT2(X, X̂) as the distance from X to the model center of X̂, and DT2(X̂, X̂) as the dis-

tance from X̂ to the model center of X̂, respectively; here,
(

I − P(j+1),(2k−1)PT
(j+1),(2k−1)

)
X

represents the correlation between the principal components in the dataset X (denoted
as RSPE(X)) and

(
I − P(j+1),(2k−1)PT

(j+1),(2k−1)

)
X̂ represents the correlation between the

principal components in the dataset X̂ (denoted as RSPE(X̂)). The above formulas can be
abbreviated as follows:

T2
j,k = DT2(X, X) + 2DT2(X, X̂) + DT2(X̂, X̂) (32)

SPEj,k = RSPE(X) + RSPE(X̂) (33)

The fault detection logic is as follows:{
T2 ≤ JT2 and SPE ≤ JSPE normal
Others faulty

(34)

where JT2 and JSPE represent the fault detection thresholds of statistics T2 and SPE, respec-
tively. In general, the above thresholds correspond to the working conditions of the nominal
maximum load of the traction system. Further, we denote the dataset under maximum load

working conditions as X and its corresponding statistics as T
2
=

(
T

2
1, T

2
2, T

2
3, . . . , T

2

N

)
and

SPE =
(

SPE1, SPE2, SPE3, . . . , SPE
N

)
, where N represents the total number of statistics.

Due to the complex and changing environment of train operation and demand for system

robustness, the statistics datasets T
2

and SPE can only be obtained by prior conditions.
Then, the density function of statistics can be estimated using the KDE (kernel density esti-
mation) function, based on which the corresponding statistic can be used as the detection
threshold when the probability is close to 1. In this paper, the KDE functions with Gaussian
kernel function are as follows:
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f
(

T
2
)
=

1

Nh
√

2π

N

∑
i=1

exp

−
(

T2
x − T

2
i

)2

2h2


f (SPE) =

1

Nh
√

2π

N

∑
i=1

exp

−
(

SPEx − SPEi

)2

2h2


(35)

where h is the window width (called the smoothing parameter), SPEi is the ith element in

dataset SPE, T
2
i is the ith element in dataset T

2
, and the subscript x denotes xth element

of independent statistics T2
x and SPEx. The probability density functions of the statistics

are simulated using the KDE functions shown above. In this paper, the corresponding

statistic is selected as the threshold when the probability is 0.98 (denoted as f−1
0.98(T

2
) and

f−1
0.98(SPE)).

JT2 = f−1
0.98(T

2
) (36)

JSPE = f−1
0.98(SPE) (37)

Further, the fault detectability logic under the Deep PCA framework can be obtained
as

DT2(X, X) + 2DT2(X, X̂) + DT2(X̂, X̂) > JT2 (38)

RSPE(X) + RSPE(X̂) > JSPE (39)

According to the Deep-PCA based fault detectability analysis above (T2 > JT2 or SPE >
JSPE), at least one of the two above conditions should be met.

The geometric description of fault detectability analysis based on a second-order
Deep PCA is shown in Figure 6, where the black arrow represents the raw dataset X, the
orange arrows represent the first-order decomposition datasets X1,1 and X1,2, and the dark
green arrows represent the second-order decomposition datasets X2,1, X2,2, X2,3, and X2,4.
Meanwhile, the normal dataset x with its decomposition datasets x2,1, x2,2, x2,3, and x2,4
are marked as black dots and the fault dataset x̂ with its decomposition datasets x̂2,1, x̂2,2,
x̂2,3, and x̂2,4 are marked as red dots.

Figure 6. Geometric description of fault detectability analysis based on Deep PCA framework.

(1) Fault detectability analysis based on statistic T2
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In the proposed geometric description of detectability analysis, the T2 statistic repre-
sents the distance from the dataset to the Deep PCA model center. Supposing the blue dot
O in Figure 6 is the center of Deep PCA model, both x̂2,2 and x̂2,4 are on the extension lines
of X2,2 and X2,4, indicating the incipient fault, as the distance between the dataset and dot
O in the normal case has an established range.

(2) Fault detectability analysis based on statistic SPE

Similarly, the SPE statistic represents the degree of correlation between the principal
components, which can be simplified as the distance between the two dots in Figure 6.
Obviously, both x̂2,2 and x̂2,4 are on the extension line of X2,2 and X2,4.

3.2. Isolatability Analysis

In the Deep PCA-based fault isolation scheme, the indicator statistics and correspond-
ing thresholds are extracted in real time to form a fault vector rc, shown as follows:

rc =

 T2
j,1

JT2,j,1

SPEj,1

JSPE,j,1
· · ·

T2
j,2j

JT2,j,2j

SPEj,2j

JSPE,j,2j

T

(40)

where rc represents the feature vector of the cth fault, j represents the number of Deep-PCA
decomposition levels, T2

j,k and SPEj,k represent the two statistics of dataset Xj,k, and JT2,j,k

and JSPE,j,k are the corresponding thresholds of T2
j,k and SPEj,k. Further, the vector p is

obtained by projecting the fault eigenvector rc onto the interval [0.5, 1).

pk =
1

1 + exp(−(rc
k))

, (k = 1, 2, ..., 2j) (41)

p = [p1, p2, . . . pk]
T (42)

where rc
k represents the kth element of rc. Assuming that Nc groups of fault data with Nc

vectors p are obtained under the cth fault case, a fault characteristic matrix Pc is formed by
vectors p in columns, and its corresponding mean vector µc and covariance matrix Σc are
as follows:

µc
d =

1
Nc

Nc

∑
b=1

Pc
d,b (43)

µc = [µc
1, µc

2, . . . µc
8]

T

Σc =
1

Nc
(Pc − Iµc)(Pc − Iµc)T (44)

where Pc
d,b is the bth element of the dth row of Pc, µc

d is the mean of the dth row of matrix
Pc, and I is the identity matrix. Further, the KLD (Kullback–Leibler Distance) between the
real-time feature matrix Pc and fault characteristic matrix P̃c can be represented as

K(Pc, P̃c) =
1
2

tr
[
(Σc)−1Σ̃c + (Σ̃c)−1Σc − 2× I2j×2j

]
+

1
2
(µc − µ̃c)T

(
(Σc)−1 + (Σ̃c)−1

)
(µc
−µ̃c) (45)

In conclusion, the incipient fault can be isolated under the Deep PCA framework if
and only if

(Σc)−1 exists. (46)

Furthermore, we have the following fault isolation logic.
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It is assumed that Q types of fault characteristic matrices P̃i(i = 1, · · · , Q) exist.
The distance between Pc and the corresponding fault characteristic matrix P̃i can be ob-
tained using Formula (45), and the minimum value can be represented as

DKl = min{K(Pc, P̃1), · · · , K(Pc, P̃Q)} (47)

DKl ≤ Jth indicates the occurrence of fault P̃l , where Jth is the KLD threshold of the
corresponding fault type.

4. Experimental Verification

In this study, real time simulation data for a high-speed train running were derived
from the TDCS-FIB (Traction Drive Control System–Fault Injection Benchmark) platform,
shown as Figure 7. Three types of incipient faults (motor bearing faults, sensor drift faults,
and periodic faults on the inverter circuit) containing noise signals were considered, as
shown in Table 1.

Figure 7. The electric traction system of a high-speed train.

Table 1. Fault injection.

Number Type Time

f1 Incipient bearing fault on induction motor 1× 105 sampling time
f2 Incipient drift fault on inverter sensors 1× 105 sampling time
f3 Incipient periodic fault on inverter circuit 1× 105 sampling time

4.1. Experimental Results for FNR Enhancement-Based Data Preprocessing

According to the FNR signal enhancement theories proposed in the sections above,
the data preprocessing results are shown in the following sections, including noise reduction
and fault information enhancement of the current signal. In particular, to show the noise
reduction results in detail, 8000 samples near the fault injection instant are chosen.

Taking ia as an example, the raw data of the current signal ia with noise is shown in
Figure 8. Due to the weak characteristics of incipient faults in the early stage, random
noise causes high numbers of false alarms and missed alarms. The experimental results
for current signal ia with noise reduction are shown in Figure 9, in which the tendency
is obvious and the prominent perturbation is removed. According to further analysis of
the experimental results, the noise reduction effect depends on the number of decomposi-
tion levels and the noise threshold selection. In this paper, an intelligent decomposition
level selection scheme is proposed by quantifying the distance between high-pass filters.
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The threshold design using the peak–sum ratio and intelligent decomposition-based Tr
selection improves the noise reduction performance even further.

Sampling time

i a

Figure 8. Current signal ia with noise.

Sampling time

i a

Figure 9. Current signal ia with noise reduction.

Analyzing the data trend from the viewpoint of energy is one of the main innovations
of this article. Based on continuous wavelet transform, the time-frequency domain property
of current signal ia is shown in Figure 10, where the yellow region denotes high energy and
the blue region denotes low energy. By comparing the periods before and after the fault
instant, it is clear that the energy band drifts upward. The time–frequency domain property
of current signal ia with the normal trend removed is shown in Figure 11. The energy band
color before fault injection instantly changes from yellow to blue, which indicates even
further the obvious fault trend that can be obtained using continuous wavelet transform to
extract the normal data trend and remove the normal trend of the fault data in real time.

For the time-frequency domain property of current signal ia with the normal trend
removed to the original dataset dimension, the current signal ia in the time domain with
FNR enhancement is shown in Figure 12. In particular, the sudden change in Figure 12
is related to the raw dataset and fault injection instant, which indicate that the current
residuals cannot be used as a fault detection indicator directly. Therefore, the current data
with FNR enhancement, including noise reduction and fault information enhancement,
can be used as the actual dataset for fault detection. Related experimental results on fault
detection and isolation in combination with the Deep PCA-based incipient fault diagnosis
scheme are shown in the following sections.
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Figure 10. The time-frequency domain property of current signal ia.

Figure 11. The time-frequency domain property of current signal ia with the normal trend removed.

Sampling time

i a

Figure 12. The current signal ia with FNR enhancement.

4.2. Fault Detection and Isolation

According to the experimental results in this section based on FNR enhancement of
the current signal in a high-speed train traction system, better incipient fault detection
and isolation performance can be achieved under the Deep PCA framework. Taking a
second-order Deep PCA model as an example, four datasets (X2,1, X2,2, X2,3, and X2,4) and
eight statistics (T2

2,1, T2
2,2, T2

2,3, T2
2,4, SPE2,1, SPE2,2, SPE2,3, and SPE2,4) were obtained. In the

following experimental result analysis, the blue lines represent the statistic residuals and
the red lines represent the corresponding thresholds. Meanwhile, the fault detection and
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isolation comparisons between the raw data and data with FNR enhancement are provided
to illustrate the effectiveness of the proposed data preprocessing and Deep PCA-based
incipient fault diagnosis scheme.

4.2.1. Fault Detection and Isolation of Raw Data

Taking the raw data on incipient bearing faults in the induction motor ( f1 in Table 1)
containing noise as an example, both Figures 13 and 14 show the experimental results on
Deep PCA-based fault detection for the raw data. Obviously, neither the T2 nor the SPE
statistics can achieve relatively ideal detection performance, which results in high error
rates in isolation, as fault isolation is the next step in fault detection in the Deep PCA-based
fault diagnosis framework.
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Figure 13. Deep PCA-based fault detection for f1 (raw data).
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Figure 14. Deep PCA-based fault detection for f1 (raw data).

4.2.2. Fault Detection and Isolation for Data with FNR Enhancement

The fault detection and isolation results for fault data including incipient bearing faults
on induction motor ( f1), incipient drift faults on inverter sensors ( f2), and incipient periodic
faults on inverter circuit ( f3) with FNR enhancement are shown in the following section.
Furthermore, comparisons with the raw data case and related analysis are provided at the
same time.

The experimental results of Deep PCA-based fault detection for f1, f2, and f3 with
FNR enhancement are shown in Figures 15–20. According to the responses of statistics
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T2
2,1, T2

2,2, T2
2,3, T2

2,4, SPE2,1, SPE2,2, SPE2,3, and SPE2,4, the three kinds of incipient traction
system faults considered in this paper can be detected in a timely fashion.
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Figure 15. Deep PCA-based fault detection for f1 with FNR enhancement.

0 0.5 1 1.5 2 2.5 3

10
5

0

10

20

30

40

S
P

E
2

,1

0 0.5 1 1.5 2 2.5 3

10
5

0

10

20

30

40

S
P

E
2

,2

0 0.5 1 1.5 2 2.5 3

Sampling time 10
5

0

20

40

60

S
P

E
2

,3

0 0.5 1 1.5 2 2.5 3

Sampling time 10
5

0

10

20

30

40

S
P

E
2

,4

Figure 16. Deep PCA-based fault detection for f1 with FNR enhancement.
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Figure 17. Deep PCA-based fault detection for f2 with FNR enhancement.
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Figure 18. Deep PCA-based fault detection for f2 with FNR enhancement.
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Figure 19. Deep PCA-based fault detection for f3 with FNR enhancement.
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Figure 20. Deep PCA-based fault detection for f3 with FNR enhancement.

Remark 2. Compared with the SPE statistic, T2 is more sensitive to incipient faults. Compared
with fault the detection results for the raw data, a higher fault detection sensitivity and fault
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identification capability is obtained with FNR enhancement-based data preprocessing technology.
Furthermore, taking the weak periodical fault signal f3 as an example, the existing Deep PCA-
based incipient fault detection scheme [38] only issues alarms when the fault amplitude increases.
According to the experimental results shown in Figures 19 and 20, this problem can be solved by the
data preprocessing method based on FNR enhancement from the perspective of fault energy.

According to the isolatability analysis proposed in this paper, incipient faults can be
isolated under the Deep PCA framework if and only if (Σc)−1 exists. In the experimental
results on fault isolation,

(
Σc

f1

)−1
=



a b c c −a −b −c −c
b d −e −e −b −d e e
c −e f −g −c e − f g
c −e −g f −c e g − f
−a −b −c −c a b c c
−b −d e e b d −e −e
−c e − f g c −e f −g
−c e g − f c −e −g f


(48)

where a = 1.91× 1017; b = 8.81× 1016; c = 8.00× 1016; d = 1.33× 1017; e = 6.69× 1016;
f = 1.49× 1017; g = 8.21× 1016.

(
Σc

f2

)−1
=



−a b c −d a −b −c d
b e − f −g −b −e f g
c − f −b −a −c f b a
−d −g −a e d g a −e
a −b −c d −a b c −d
−b −e f g b e − f −g
−c f b a c − f −b −a
d g a −e −d −g −a e


(49)

where a = 1.79× 1017; b = 2.16× 1016; c = 9.65× 1016; d = 1.91× 1017; e = 9.05× 1016;
f = 1.15× 1017; g = 8.07× 1016.

(
Σc

f3

)−1
=



−a b −c −c a −b c c
b −d −e −e −b d e e
−c −e f −g c e − f g
−c −e −g f c e g − f
a −b c c −a b −c −c
−b d e e b −d −e −e
c e − f g −c −e f −g
c e g − f −c −e −g f


(50)

where a = 1.56× 1017; b = 1.53× 1016; c = 6.55× 1016; d = 5.71× 1016; e = 3.95× 1016;
f = 8.81× 1016; g = 1.42× 1017. In the above representations, Σc

f1
, Σc

f2
, and Σc

f3
are the co-

variance matrices corresponding to f1, f2, and f3, respectively. Further, the Deep PCA-based
and KLD-based fault isolation results for f1, f2, and f3 with FNR enhancement are shown in
Figures 21–23. The simulation results show the effectiveness and feasibility of the proposed
Deep PCA-based isolatability analysis, while the proposed FNR enhancement-based data
preprocessing approach can further improve the accuracy of incipient fault isolation.
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Figure 21. Deep PCA-based and KLD-based fault isolation for f1 with FNR enhancement.
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Figure 22. Deep PCA-based and KLD-based fault isolation for f2 with FNR enhancement.
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Figure 23. Deep PCA-based and KLD-based fault isolation for f3 with FNR enhancement.

5. Conclusions

In this paper, an FNR enhancement scheme including noise reduction based on dis-
crete wavelet transform and fault information enhancement based on continuous wavelet
transform is proposed, then applied to Deep PCA-based incipient fault diagnosis of a
high-speed railway traction system. The contributions of this paper can be summarized as
follows: (1) an intelligent decomposition level selection scheme is proposed by quantifying
the similarity of detail components; (2) selection of the noise threshold is determined and
optimized to further improve the accuracy of noise reduction; (3) a continuous wavelet
transform-based fault information enhancement approach is proposed from the perspective
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of fault energy; (4) a diagnosability analysis under the Deep PCA framework is provided
using geometric descriptions.
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