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Abstract: Extracting fault features in mechanical fault diagnosis is challenging and leads to low
diagnosis accuracy. A novel fault diagnosis method using multi-scale convolutional neural networks
(MSCNN) and extreme learning machines is presented in this research, which was conducted in
three stages: First, the collected vibration signals were transformed into images using the continuous
wavelet transform. Subsequently, an MSCNN was designed to extract all detailed features of the
original images. The final feature maps were obtained by fusing multiple feature layers. The param-
eters in the network were randomly generated and remained unchanged, which could effectively
accelerate the calculation. Finally, an extreme learning machine was used to classify faults based on
the fused feature maps, and the potential relationship between the fault and labels was established.
The effectiveness of the proposed method was confirmed. This method performs better in mechanical
fault diagnosis and classification than existing methods.

Keywords: multi-scale convolutional neural networks; extreme learning machine; fault diagnosis

1. Introduction

Rolling bearings are extensively used in manufacturing, hydropower, transportation,
and other industries [1]. Rolling bearings are susceptible to various failures when operating
at high speeds and heavy loads, affecting the performance and efficiency of the entire
mechanical system and eventually causing economic losses, environmental pollution,
casualties, and other serious effects [2]. Therefore, the early and accurate detection of
rolling bearing faults is essential to ensure efficient production and avoid catastrophic
accidents in industrial applications.

Recently, as a result of industrial automation, data-driven fault diagnosis technology,
which can discover the potential relationship between collected data and bearing status, has
attracted increasing attention [3]. Traditional fault diagnosis technology includes two main
steps: feature extraction and fault classification [4]. The collected fault signals were first
analyzed using signal analysis techniques and statistical calculations to identify features
related to the machine’s operation state. The obtained features were then input into the
pattern recognition algorithm for fault diagnosis [5]. For example, Wang et al. [6] extracted
multiscale features using generalized composite multiscale weighted permutation entropy
technology. They used a support vector machine (SVM) optimized using the marine
predators algorithm to diagnose and identify bearing faults according to the extracted
features. Vashishtha et al. [7] extracted fault features using a filter-based relief technique
and then realized intelligent recognition using an extreme learning machine (ELM). They
also verified that ELM is superior to SVM in terms of fault diagnosis. Owing to its few
training parameters and short running time, it is a promising model for fast fault diagnosis.

Traditional fault diagnosis methods extract features mainly through engineering
experience, which significantly affects their diagnostic performance [8]. Many data features
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are often extracted to improve fault diagnosis accuracy, easily leading to data redundancy
and calculation waste. To realize adaptive feature extraction, convolutional neural networks
(CNNs) [9], inspired by deep learning, automatically extract fault features by alternately
using convolution and pooling operations, and they have been extensively used in the
field of mechanical fault diagnosis [10]. CNNs have been shown to perform fault diagnosis
more effectively than conventional techniques using shallow structures, such as SVM and
artificial neural networks [11]. Sun et al. [12] combined a symmetrical dot pattern image
with a CNN and realized an accurate rolling mechanical diagnosis based on an optimal
CNN. Khodja et al. [13] used a CNN and vibration spectrum imaging to classify bearing
faults, which exhibited excellent performance in terms of accuracy and robustness.

Traditional CNNs have some flaws, such as information loss during feature extraction,
which reduces detection accuracy. Their generalization ability and accuracy are greatly
improved by increasing the depth of the network structure. However, blindly increasing
the network depth causes a waste of computing resources and overfitting [14]. Therefore,
extracting features from multiple convolution kernels of different sizes makes the network
wider. The realization of multiscale feature extraction can provide a solution to this
problem [15]. For example, Deng et al. [16] designed a novel multi-scale feature fusion
block to fuse sensitive fault features. At the same time, CNNs have shortcomings such as
many parameters and a long running time. Some scholars have found that CNNs with
randomly generated parameters exhibit good feature extraction abilities [17]. Pinto and
Cox [18] extracted features by randomly generating a large number of complex, nonlinear,
and multilayered CNNs combined with standard machine learning techniques, and they
achieved good results in the visual system. Jarrett et al. [19] adopted a CNN with random
weights, which could perform the object recognition task well without training, thus
avoiding a time-consuming learning process. The feature extraction ability of multi-scale
convolutional neural networks (MSCNN) with randomly generated parameters is yet to be
studied. This topic is studied in this paper.

Aiming at the problems of the feature extraction of the bearing fault not being sufficient
and the time required to adjust the parameters of the deep learning network, we proposed
a novel mechanical fault diagnosis method based on an MSCNN-ELM. It includes three
consecutive steps: signal preprocessing, feature extraction based on the MSCNN, and fault
classification based on the ELM. The main contributions of this study are as follows:

(1) A new fault diagnosis model composed of an MSCNN and ELM was proposed. The
MSCNN was used to extract multiscale features from images obtained using the continuous
wavelet transform (CWT). The ELM was used as a classifier to determine the potential
relationship between the fault features and the labels.

(2) The parameters of the MSCNN in the model were randomly generated with a
Gaussian probability distribution, which reduced the calculation time for adjusting the
parameters compared with a deep neural network. The best parameters were found using
the grid search method to improve the fault diagnosis accuracy.

(3) The self-made idler dataset and bearing dataset of Case Western Reserve University
(CWRU) were used in the fault diagnosis experiments, and the effectiveness of the proposed
method was confirmed. Using accuracy and running time as the evaluation indicators, the
fault diagnosis performance of the MSCNN-ELM was thoroughly examined in comparison
to other methods.

The following summarizes the structure of the paper: Section 2 introduces the basic
principles of the MSCNN and the ELM. Section 3 introduces the algorithm flow chart based
on the MSCNN-ELM. Two other experimental datasets are described to further substantiate
the advantages of the MSCNN-ELM in Section 4. Section 5 summarizes the conclusions
and prospects of this research.
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2. Basic Theory
2.1. MSCNN

The MSCNN is mainly composed of a multi-scale convolution layer (MSCL), pooling
layer, full connection layer, and other structures [20], as shown in Figure 1. In an MSCL,
the input image is convolved by multiple parallel convolution kernels of different scales.
The features are fully expressed from different feature-receptive fields to adaptively extract
the advanced features in the image. The MSCL and pool layers appear alternately, and
the obtained feature maps are concatenated, input to the full connection layer, and finally
classified using a multi-classifier.

Machines 2023, 11, x FOR PEER REVIEW 3 of 18 
 

 

2. Basic Theory 

2.1. MSCNN 

The MSCNN is mainly composed of a multi-scale convolution layer (MSCL), pooling 

layer, full connection layer, and other structures [20], as shown in Figure 1. In an MSCL, 

the input image is convolved by multiple parallel convolution kernels of different scales. 

The features are fully expressed from different feature-receptive fields to adaptively 

extract the advanced features in the image. The MSCL and pool layers appear alternately, 

and the obtained feature maps are concatenated, input to the full connection layer, and 

finally classified using a multi-classifier. 

 

Figure 1. The structure of an MSCNN. 

2.1.1. MSCL 

In an MSCL, the input picture is convolved by a plurality of convolution kernels with 

different scales, and the feature map is obtained using an activation function [21]. The 

expression for the convolution process is as follows: 

1

1

n
l l l l

j i ij j

i

y f x d−

=

 
=  + 

 
 , (1) 

where 
1l

ix −
 denotes the feature map, and ω and d represent the weight and bias of the 

corresponding convolution kernel, respectively. l and j represent the number of layers and 

the number of scales, respectively. 

2.1.2. Pooling Layer 

Based on retaining essential features, a pooling layer changes the size of a feature 

map through a downsampling operation to reduce the feature dimension, improve the 

operation speed, and avoid overfitting in the network model. The mathematical 

expression is as follows: 

( )i i iy f down x b=  +   , (2) 

where down( ) indicates the downsampling function, βi and bi indicate the weight and the 

bias of the i-th feature, respectively, and x represents the output of the previous layer 

(convolution layer) [22]. 

  

Figure 1. The structure of an MSCNN.

2.1.1. MSCL

In an MSCL, the input picture is convolved by a plurality of convolution kernels with
different scales, and the feature map is obtained using an activation function [21]. The
expression for the convolution process is as follows:

yl
j = f

(
n

∑
i=1

xl−1
i ∗ωl

ij + dl
j

)
, (1)

where xl−1
i denotes the feature map, and ω and d represent the weight and bias of the

corresponding convolution kernel, respectively. l and j represent the number of layers and
the number of scales, respectively.

2.1.2. Pooling Layer

Based on retaining essential features, a pooling layer changes the size of a feature
map through a downsampling operation to reduce the feature dimension, improve the
operation speed, and avoid overfitting in the network model. The mathematical expression
is as follows:

yi = f [βidown(x) + bi], (2)

where down( ) indicates the downsampling function, βi and bi indicate the weight and
the bias of the i-th feature, respectively, and x represents the output of the previous layer
(convolution layer) [22].
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2.1.3. Full Connection Layer and Softmax Classifier

A full connection layer can integrate local information with a classification in a pool-
ing layer. The collected fault features were classified using the Softmax multi-classifier.
Assuming there are the k classification problems, the output of the Softmax multi-classifier
can be calculated as follows:

O =


P(y = 1|x; β1, b1 )
P(y = 2|x; β2, b2 )

· · ·
P(y = k|x; βk, bk )

. (3)

2.2. ELM

An ELM is primarily composed of an input layer, a hidden layer, and an output
layer [23], as shown in Figure 2. The training speed was improved by randomly generating
weights and bias and keeping them unchanged during the training process.
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For N different training samples, the output result of an ELM is attained when the
hidden layer has L nodes:

y
(
xj
)
=

L

∑
i=1

βih(ωi × xi + bi), j = 1, 2, · · · , N, (4)

where h denotes the activation function, and ωi and bi represent the weight and bias of the
hidden layer neuron, respectively. They were generated randomly and obeyed a continuous
probability distribution. βi represents the weight of the output layer.

Formula (4) can be simplified as follows:

Y = Hβ, (5)

where the weight β is solved by finding the minimum sum of the prediction error loss
functions. The objective function z is represented as follows:

z = min
β∈RL×c

1
2
‖β‖2 +

C
2
‖Hβ− Y‖2, (6)

where the first term represents the weight, the second term represents the training error,
Y is the target matrix, and c is the class number [24].

The solution of the objective function is obtained by transforming it into a least-
squares optimization problem. When the gradient of the objective function to β is zero, the
following can be obtained [25]:

β+ − CHT(Y−Hβ+
)
= 0, (7)
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where the optimal solution of the output weight β+ can be calculated using matrix inversion.
Based on the relationship between the sample number N and the hidden node L, β+ exists
in the following two situations:

β+ =


(

HTH + IL
C

)−1
HTY, N ≥ L;

HT
(

HTH + IN
C

)−1
Y, N ≤ L.

(8)

3. The Proposed Method
3.1. Design of the MSCNN-ELM

If the convolution kernel of a CNN is too large, the model’s detection effect on lo-
cal features will be reduced; in contrast, if the convolution kernel is too small, the net-
work cannot obtain global information well [26]. Inspired by the Inception Network and
SqueezeNet [27], we designed an MSCNN to extract fault feature information to solve this
problem entirely. The MSCNN extracts the scale information through three parallel 1 × 1,
3 × 3, and 5 × 5 convolution kernels. The dimensions of the channel number and parame-
ter variables were reduced using a 1 × 1 convolution kernel. Detailed fault features can be
captured, and the loss of detailed feature information can be reduced using the 3 × 3 and
5 × 5 convolution kernels, which are more sensitive to all detailed features of the image.
The network depth and nonlinear feature extraction ability of the model were enhanced by
using multiple small convolution kernels instead of large convolution kernels [28]. Finally,
the obtained feature information was fused to form a new feature map, which was input
into the strong classifier ELM to build the mapping relationship between the features and
the labels. The MSCNN-ELM model is shown in Figure 3, considering the feature extraction
capabilities of the MSCNN and the classification capabilities of the ELM.
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3.2. Fault Diagnosis Procedure Flow Chart Based on the MSCNN-ELM

As shown in Figure 4, the framework for fault diagnosis based on the MSCNN-ELM
is proposed, and it includes four main steps:

Step 1: Fault-diagnosis experiments were performed on different test rigs, and the
original vibration signals were collected.

Step 2: The vibration signal was converted into a two-dimensional image by the
CWT, which was compressed to pixels 28 × 28 in size. Samples were made according to a
certain proportion.

Step 3: The parameters of the MSCNN were randomly generated and remained
unchanged during the training process, and the best parameter combination in the ELM
was selected using the grid search method. The MSCNN-ELM model was built layer by
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layer. The fault features of the training set were obtained using the MSCNN, and then they
were input into the ELM to train the model.

Step 4: The accuracy of the test set was calculated based on the trained MSCNN-ELM,
the fault identification results were recorded, and the model’s performance was evaluated
from all aspects.
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4. Experimental Cases

To reflect the good performance of the MSCNN-CNN, we conducted fault diagnosis
experiments using the self-made idler dataset and bearing dataset from the CWRU. The
experimental results showed that the model had good noise robustness and fault diagnosis
ability, and its advantages were verified by comparison with those of other existing models.
The experiments were implemented in a Python 3.10 environment and carried out using
an AMD Ryzen 5 CPU @ 3.30 ghz, an NVIDIA GPU with 16 GB memory, and an x64-
based processor.

4.1. Fault Diagnosis Based on the Self-Made Idler Dataset
4.1.1. Data Description

As an essential part of the belt conveyor, the idler gradually deteriorates in per-
formance and eventually fails owing to coal dust intrusion, material impact, improper
installation, and other factors during service [29]. To solve this problem, an idler test rig for
fault diagnosis was developed. The test rig consisted of a belt conveyor, vibration sensor,
data acquisition instrument, power supply, computer, and fault idlers [30], as shown in
Figure 5. Four common fault types of the idler were simulated: the inner and outer race
faults were formed by machining 2 mm cracks on the inner and outer races of the bearing
with electro-discharge machining; the idler rotated intermittently by invading the bearing
with foreign matter (gravel and dust); and the idler could not rotate because it was im-
properly installed. When the conveyor belt was running at 1 m/s, the running data in the
states of health, inner-race fault (IF), outer-race fault (OF), intermittent rotation (IR), and
non-rotation (NR) were collected using a data acquisition instrument. The original signals
were processed using an overlapping sampling technique to obtain more samples, and
the step size of the sliding segment was 1024, while the sampling rate was 5120 Hz. Two
hundred samples in each state were collected, and the labels of the five operation states
were indicated from 1 to 5, respectively. The dataset information is presented in Table 1.
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Table 1. Sample description of the idler dataset.

Bearing Conditions Number of Samples Class Label

Health 200 1
IF 200 2
OF 200 3
IR 200 4
NR 200 5
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A CWT has good locality in the time and frequency domains and can extract the
macro and micro characteristics of signals from different scale spaces [31]. It is often more
sensitive to mutation signals, easily captures mutation points, and accurately detects signal
mutations. Therefore, the original vibration signals were preprocessed using the complex
Morlet wavelet function to obtain the impact characteristics.

The wavelet scalograms of the idler in the five operating states are shown in Figure 6a–e.
There are significant differences in the energy distributions of some of the fault types, and
the energy distributions of some faults are similar, which makes it difficult to distinguish
them. Therefore, it is necessary to use the MSCNN to further extract fault features to
accurately identify many faults.
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4.1.2. Parameter Optimization

In the proposed MSCNN-ELM model, based on the ideas of the Inception Network
and SqueezeNet [27], we determined the size and number of the convolution kernels.
However, some key parameters still needed to be determined, such as the hidden node
L (L is the number of neurons in the hidden layer) and penalty factor C in the ELM.
Currently, heuristic optimization algorithms, bionic algorithms, and swarm intelligence
algorithms are often used to optimize the parameters. These methods may fall into the
optimal local solution during optimization and require assistance in obtaining the optimal
solution. Although computationally intensive, the grid search method can search for all
parameter combinations. Therefore, this study adopted the simplest grid search method,
taking the test accuracy as the objective function, to determine the parameter combination
corresponding to the maximum test accuracy. First, the range of L is set to (100, 200, 300,
400, 500, 600, 700, 800, 900, and 1000), and the range of C is set to (10−3, 10−2, 10−1, 100, 101,
102, and 103).

The results of optimizing the parameters using the grid search method are shown in
Figure 7. When L is a constant, there is an irregular change between parameter C and the
test accuracy. When C is a constant, the precision first decreases and then increases with an
increase in L. When L is in the range of 500–700, the test accuracy is low; therefore, it should
be avoided. When the values of the parameters L and C are 300 and 0.1, the maximum test
accuracy is 100%.
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4.1.3. The Efficiency of the MSCNN

We built a new network model (called a CNN-ELM) to highlight the feature ex-
traction capability of the MSCNN by comparing it with the MSCNN-ELM model. The
CNN-ELM model was introduced as follows: The input image was convolved by three
4 × 4 convolution kernels, and then the dimension was reduced by a 2 × 2 maximum pool
kernel. Finally, the obtained features were combined into a column vector through the full
connection layer and input into the ELM for fault classification. The parameters of the
CNN in the two structures were randomly generated using a Gaussian distribution.

The hidden nodes L and penalty factor C in the CNN-ELM were also selected by
the grid search method, and the optimal parameters were (200, 0.01). Ten experiments
were conducted using the same dataset to reduce the random error. The test accuracy
and calculation time (excluding the preprocessing time) are listed in Table 2. The training
accuracy of both methods reached 100%, indicating that a good fault diagnosis model was
established through training. The test accuracy of both methods was very high. Compared
with the CNN-ELM, the test accuracy of the MSCNN-ELM was slightly higher. Both
methods have low calculation costs and can meet the demand for idler fault diagnosis in
coal mines.

Table 2. Comparison of the accuracy and calculation time between the CNN-ELM and the
MSCNN-ELM.

Model Training Accuracy (%) Testing Accuracy (%) Training Time (s) Testing Time (s)

CNN-ELM 100 ± 0 99.40 ± 0.60 1.15 0.08
MSCNN-ELM 100 ± 0 99.53 ± 0.47 1.12 0.08

4.1.4. Result Comparison with Other Methods

Machine learning techniques, including ELM, random forest (RF), k-nearest neighbors
(KNN), SVM, and CNN, were tested in the same scenarios as the proposed method to
further highlight its superiority [32]. The parameters of the other algorithms were chosen
in the manner described below.

(1) CNN: Two convolution and pooling layers were constructed. The first convolution
layer had four convolution kernels with a size of three, whereas the parameters of the
second were eight and three, respectively. There were 200 neurons in this dense layer.
Taking the cross entropy as the objective function, the Aam optimizer was selected to
update iteratively 100 times, and Softmax was used for classification.

(2) ELM: The hidden node L and penalty coefficient C were set to 200 and 0.001, respectively.
(3) RF: The number of classifiers (n_estimators) and random number (random_state)

were set to 100 and 0, respectively.
(4) KNN: The value of parameter K in the range (1, 2, . . . , 10) was set to 2.
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(5) SVM: Radial-basis SVM was used for classification. The penalty coefficient C was
10 in the range of (10, 20, . . . , 100), and the kernel parameter g was 0.001 in the range of
(10−3, 10−2, 10−1, 100, 101, 102, 103).

All algorithms were tested ten times to reduce the effect of random initialization on
the fault diagnosis results, and the average value was used as the final result, as shown
in Figure 8. The test accuracy of all algorithms was greater than 97%, which meets the
requirements for fault diagnosis. In particular, the CNN and MSCNN-ELM have higher test
accuracies than the other methods. To quantitatively evaluate the benefits and drawbacks
of all the methods, they were compared in terms of accuracy and calculation time, as shown
in Table 3. The training accuracy of all the algorithms reached 100%, and all algorithms
achieved good training results. The test accuracy of the ELM alone was 99.32%, whereas
that of the MSCNN combined with the ELM was 99.53%, which improved the classification
performance. Compared with deep learning methods, machine learning methods consume
less time. The CNN updates 100 times iteratively, which requires the most time, and the
training time is 3.25 s. The ELM and MSCNN-ELM consume less time—0.07 s and 0.08 s,
respectively. The computation time of the MSCNN-ELM method is much less than that
of the CNN method, mainly because the weights and bias in the MSCNN are randomly
generated and remain unchanged during the training process. The ELM classifier can
provide faster convergence speeds and a superior classification performance.
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Table 3. Comparison of the accuracy and calculation times of the different methods.

Model Training Accuracy (%) Testing Accuracy (%) Training Time (s) Testing Time (s)

CNN 100 ± 0 99.60 ± 0.40 3.25 0.23
ELM 100 ± 0 99.32 ± 0.68 1.02 0.07
RF 100 ± 0 97.33 ± 0 1.13 0.08

KNN 100 ± 0 98.67 ± 0 1.10 0.08
SVM 100 ± 0 99.25 ± 0 1.08 0.11

MSCNN-ELM 100 ± 0 99.53 ± 0.47 1.12 0.08

Finally, the confusion matrix for the idler dataset obtained using this method is shown
in Figure 9. Many of the samples were correctly predicted and classified. Some idlers with
inner-ring failure are considered healthy. This is mainly because the inner-race fault impact
is weak, and its fault features are submerged by the periodic harmonic generated by the
rotating shaft, mistaking the inner-race fault for a healthy state.
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4.1.5. The Effect of Noise on the Model

Considering the harsh working environment of a coal mine, the collected idler running
signals inevitably interfere with various noises, setting a higher standard for the robustness
of the MSCNN-ELM method. Therefore, noise with various signal-to-noise ratios (SNR)
ranging from 15 to−2.5 dB with an interval of−2.5 dB were added to the original vibration
signal to simulate noise interference in industrial production [33]. The processed signals
were converted into datasets and input into the MSCNN-ELM model to test the anti-
interference performance of the model. It should be noted that the parameters of the
MSCNN-ELM remained unchanged in different experiments.

Figure 10 shows the test accuracy of the MSCNN-ELM under different noise inter-
ference conditions. In the initial stage of noise increase, even if these images are slightly
disturbed by noise, the MSCNN-ELM model can still learn relevant fault features from the
images, correctly classify the faults, and achieve high test accuracy. With a further increase
in noise interference, some fault features in the signal are submerged by noise, which leads
to a failure of the model to fully extract the correct fault features and a decline in the test
accuracy. When the input interference noise is −2.5 dB, the MSCNN-ELM model can still
achieve 93.67% accuracy and has reliable fault diagnosis performance, which can meet the
demand for fault diagnosis of idlers in coal mines.
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4.2. Fault Diagnosis Based on the Bearing Dataset of the CWRU
4.2.1. Data Description

The bearing data provided by the CWRU Bearing Data Center were used for the ex-
periments to verify the performance of the MSCNN-ELM method in the field of mechanical
fault diagnosis (data source: https://engineering.case.edu/bearingdata center (accessed
on 5 January 2023)) [34]. The test rig consisted of a motor, torque transducer, dynamometer,
and test bearings [35], as shown in Figure 11. Single-point faults with different wear levels
were machined on SKF6205 bearings using electro-discharge machining. Under various
load conditions (0, 1, 2, and 3 hp), the operating data of the bearings under the conditions
of health, inner-race fault (IF), outer-race fault (OF), and ball fault (BF) with different wear
degrees were collected. The original data were divided into samples of 2000 points in
length. The sliding step was set at 1000, and 400 samples were collected in each state; thus,
4000 samples in 10 states were obtained. The dataset information is presented in Table 4.
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Table 4. Sample descriptions of the bearing dataset of the CWRU.

Load (hp) Bearing Conditions Fault Diameters (inch) Number of Samples Class Label

0, 1, 2, and 3

Health 0 400 1
BF 0.007 400 2
IF 0.007 400 3
OF 0.007 400 4
BF 0.014 400 5
IF 0.014 400 6
OF 0.014 400 7
BF 0.021 400 8
IF 0.021 400 9
OF 0.021 400 10

The CWT was performed on the collected data samples, and the wavelet-scale di-
agrams are shown in Figure 12a–j. The energy distributions of the different faults are
significantly different, which is conducive to accurate fault diagnosis.

https://engineering.case.edu/bearingdata
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4.2.2. The Efficiency of the MSCNN

The comparative results between the CNN-ELM and MSCNN-CNN models are pre-
sented in Table 5. The two models are similar in terms of computing time and testing
accuracy. The testing accuracies of the MSCNN-ELM and the CNN-ELM are 99.43% and
99.37%, respectively. The MSCNN-ELM model has a higher testing accuracy and smaller
standard deviation, which indicates that the MSCNN has a better feature extraction capability.
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Table 5. Comparison of the accuracy and calculation times between the CNN-ELM and the
MSCNN-ELM.

Model Training Accuracy (%) Testing Accuracy (%) Training Time (s) Testing Time (s)

CNN-ELM 99.85 ± 0.11 99.37 ± 0.21 9.37 0.67
MSCNN-ELM 99.88 ± 0.13 99.43 ± 0.15 9.45 0.68

4.2.3. Results Comparison with Other Methods

The experiment was repeated ten times using the same dataset, and the average testing
accuracy and training accuracy were taken as the final results, as shown in Figure 13. The
accuracy and calculation costs (excluding the preprocessing time) of the other methods
are listed in Table 6. The results show that, based on good training, each model achieves
good testing accuracy, and the overall accuracy is above 98%. The training and testing
accuracies of the RF, KNN, and SVM remained unchanged in many experiments, which
shows that these models have excellent stability. The training times for the ELM, RF, KNN,
and SVM are 8.97 s, 9.98 s, 6.16 s, and 10.08 s, respectively, and the testing times are 0.64 s,
0.71 s, 0.65 s, and 0.72 s, respectively. These methods require less time to train the models
and accurately identify faults. The training time and testing time of the CNN are 28.55 s
and 2.04 s, respectively, and the calculation time is approximately three times that of the
shallow learning method. There are many parameters in the CNN, such as weights and
bias, that need to be determined through 100 iterations. The training and testing times
of the MSCNN-ELM model are 9.45 s and 0.67 s, respectively, which are similar to the
calculation costs of the shallow learning method. Its testing accuracy is 99.43%, which is
higher than that of the shallow learning model, and it saves considerable time compared to
the CNN.
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Table 6. Comparison of the accuracy and calculation times of the different methods.

Model Training Accuracy (%) Testing Accuracy (%) Training Time (s) Testing Time (s)

CNN 99.80 ± 0.13 99.47 ± 0.20 28.55 2.04
ELM 99.99 ± 0.01 99.33 ± 0.22 8.97 0.64
RF 100 ± 0 98.75 ± 0 9.98 0.71

KNN 99.82 ± 0 99.33 ± 0 9.16 0.65
SVM 100 ± 0 99.31 ± 0 10.08 0.72

MSCNN-ELM 99.88 ± 0.13 99.43 ± 0.15 9.45 0.67
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The confusion matrix for the final test is shown in Figure 14. The results show that
misclassification occurs mainly in samples 2, 3, 5, and 9, and a few inner-race faults are
mistaken for rolling-element faults. The energy distributions of these two faults are similar,
as shown in Figure 12, which makes it difficult to distinguish faults.
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4.2.4. The Effect of Noise on the Model

The fault diagnosis results of the MSCNN-ELM model under different noise levels
are shown in Figure 15. With a gradual increase in noise interference, the model’s fault
diagnosis performance gradually decreased. Faults were accurately classified in the initial
stage of an increase in noise. When SNR = 10 dB, this method can accurately identify most
of the faults. Below that, the model’s fault diagnosis performance drops sharply because
the fault features are masked by noise interference. Finally, it could still accurately identify
samples 4, 5, and 10.
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5. Conclusions

A novel method of mechanical fault diagnosis based on the MSCNN-ELM is proposed,
which effectively solves the problems of difficult fault feature extraction and low diagnostic
accuracy in industrial production. We used numerous convolution layers with various
branches to extract features and verified that their feature extraction ability was better than
that of a single-scale model. The parameters in the MSCNN are randomly generated and
follow a Gaussian probability distribution, which speeds up the calculation. The extracted
final features were input into the strong classifier ELM to achieve fault classification. We
employed a grid search algorithm to optimize the parameters of the ELM. The validity of
the MSCNN-ELM was verified using the self-made idler dataset and the bearing dataset
of the CWRU. The MSCNN-ELM has a high diagnostic accuracy and low running cost.
The model exhibited outstanding fault identification ability and robustness, even under
challenging working conditions.

In the future, we will consider combining transfer learning with the MSCNN-ELM to
achieve fault diagnosis under variable operating conditions and ensure that the MSCNN-
ELM model maintains a high fault diagnosis accuracy under complex operating conditions.
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