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Abstract: The mounting increase in the technological complexity of modern engineering systems
requires compound uncertainty quantification, from a quantitative and qualitative perspective. This
paper presents a Compound Uncertainty Quantification and Aggregation (CUQA) framework to
determine compound outputs along with a determination of the greatest uncertainty contribution
via global sensitivity analysis. This was validated in two case studies: a bespoke heat exchanger
test rig and a simulated turbofan engine. The results demonstrated the effective measurement of
compound uncertainty and the individual impact on system reliability. Further work will derive
methods to predict uncertainty in-service and the incorporation of the framework with more complex
case studies.

Keywords: coefficient of variation; global sensitivity analysis; measurement; pedigree; reliability;
uncertainty quantification

1. Introduction

Uncertainty Quantification (UQ) concerning the maintenance of engineering systems is
growing in recognition and rigour as the complexity of such systems surges in the modern
world. Complex Engineering Systems (CESs) are comprised of multiple sub-elements
including equipment and operators that interact simultaneously and nonlinearly with each
other and the environment on multiple levels [1,2]. The consideration of the relationships
between elements is vital to understand emergent behaviour to aid decision-making [3].
Complex systems science is a field in itself, the theory of which is widely discussed in the
literature [3–6], but is outside the scope of this paper.

The maintenance of complex and non-complex engineering systems exhibits a range
of uncertainties from interconnected factors such as quality and the availability of quan-
titative equipment data, as well as the qualitative influence of operators, expert opinion,
experience, and environmental conditions [7]. These uncertainties are represented by
varying Probability Distribution Functions (PDFs) and can lead to underestimation or
overestimation of maintenance costs, reliability measurement, equipment availability, and
delays in maintenance scheduling. Recent research in CESs has explored UQ in micro gear
measurements [2], structured surfaces using metrological characteristics [8], correlation
uncertainty in gear conformity [9], grey-box energy models for office buildings [10], un-
certainty in disassembly line design [11], and others reviewed in various related studies.
Many of these approaches only consider quantitative uncertainty given by variability in
measured data, rather than the compound aggregation of quantitative and qualitative un-
certainties [2,8,10,11]. Methodologies to do this are growing in many areas, but are limited
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from an industrial maintenance perspective. This is necessary to obtain a comprehensive
understanding of system reliability, as well as the inherent risks and knock-on effects
imposed by altering elements within the system. Limited research guiding the aggregation
of compound uncertainty sets the focus for this paper.

A six-step framework is presented to quantify and aggregate compound uncertainties
to enhance system performance assessment. This will provide maintenance planners
with a comprehensive view of the parameters surrounding the above factors to improve
decision-making capabilities.

A literature review into uncertainty classification in the context of this paper and
techniques to combine quantitative and qualitative uncertainties is given in Section 2.
The proposed framework is detailed in Section 3 along with key mathematical formulae,
functions, and the assumptions made. Section 4 applies the framework to two case studies: a
bespoke heat exchanger test rig comprised of multiple sub-systems, developed at Cranfield
University [12], and a simulated dataset for turbofan engine degradation. Individual
uncertainties from quantitative and qualitative sources and correlations between them are
assessed and aggregated to give a confident indication of system performance. Section 5
discusses the results, strengths, and limitations of the framework along with conclusions
and future work in this area.

2. Literature Review
2.1. Deriving Uncertainty and Risk

The distinction between uncertainty and risk is well documented in the literature,
though often blurred in practice. Uncertainty is the degree of—or lack of—knowledge
held concerning a given entity, be it measured data, equipment state, environmental
conditions, or the accuracy of expert opinion. The resulting risk is the negative impact of
uncertainty [13–19].

A confident uncertainty estimate can be positively utilised to aid decision-making.
Two key types of uncertainty are described in the Guide to the Expression of Uncertainty
in Measurement (GUM): Type A, sourced from quantitative measured data; and Type B,
which considers qualitative technical and expert knowledge or experience, as well as
environmental conditions [1,20–25]. The uncertainty of a measured input is given by
its standard deviation around the mean value, termed standard uncertainty, set within
distribution parameters [1,26]. The distinction between types of uncertainty helps to reduce
risk and avoid underestimation or overestimation or of the probability of failure in a
system [13,27,28].

Uncertainties can be further derived as epistemic and aleatory. The former emanates
from knowledge about the measured entity and can be reduced by obtaining additional
data or by refining measurement models. The latter represent variables that can differ each
time they are recorded and, therefore, cannot be reduced [10,27–33].

Risk can be defined from numerous perspectives [13,14,34,35]. In a broad sense, it is
the probability of the loss or gain of a quantity that holds value. In this context, uncertainty
is the lack of knowledge about the degree of risk that exists. It is necessary to distinguish
types of uncertainty to reduce risk and avoid underestimation or overestimation or of
the probability of failure in a system, which could have significant negative knock-on
effects [13,27,28]. Risk assessments in conjunction with uncertainty analysis are highly
beneficial in decision-making, but it is necessary to consider other principles, methods, and
instruments involved [14]. There is a requirement to look beyond the probabilistic world
and embrace subjective and expert opinions.

2.2. Combining Quantitative and Qualitative Uncertainty

The GUM has been implemented in numerous applications utilising
UQ [1,2,9,20,21,23,25,36–39]. The main process defined involves five core stages: (1) identify
the measurand; (2) identify uncertainty sources and associated probability distributions;
(3) quantify uncertainties (simulation); (4) aggregate uncertainties; (5) report analysis re-
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sults. UQ is not always considered a core task, especially considering qualitative factors [40].
Coverage factors are applied to account for purely qualitative estimates or a combination
of the two types. While proficient for purely quantitative analysis, the coverage factors
have been found to lead to underestimation and cannot be realistically applied in dynamic
complex systems [41,42].

UQ in CESs involves the propagation of errors around the sample mean of each param-
eter via simulation [39]. The three most-common and -validated propagation techniques
are Taylor series expansion, Monte Carlo simulation, and Latin Hypercube Sampling (LHS).
Taylor series expansion is not suitable for complex nonlinear models, but the derivation
of normalised sensitivity coefficients would be beneficial to identify the most-significant
parameters [43]. Monte Carlo simulation is widely used, relatively simple, adaptable, and
applicable for more complex applications [9,32,44–46]. LHS migrates simple Monte Carlo to
assess the convergence of cumulative probability distributions for output variables [6,10,25].

Clarke et al. [25] reviewed the application of these techniques and applied them in a
thermodynamic analysis of heat exchanger designs, which highlighted the need to consider
both quantitative and qualitative uncertainty and the identification of parameters that pose
the greatest influence on uncertainty through Sensitivity Analysis (SA). The approaches
used were influenced by Vasquez and Whiting [47]. Similarly, Tatara and Lupia [48]
examined heat exchanger performance through temperature measurement uncertainty,
with a spotlight on the effect data acquisition methods and measurement devices have
on the resulting uncertainty. The heat transfer coefficient was calculated considering the
quantified uncertainties.

2.2.1. Qualitative Contributions

The consideration of qualitative uncertainty factors can have significant effects on the
overall estimate. This is often overlooked in practice or assigned a general bias element
considering data acquisition and aleatory factors. The pedigree approach is a widely
renowned and verified approach to equate qualitative estimates in line with quantitative
data. First proposed by Funtowicz and Ravetz [49], the approach comprises a matrix to
score expert knowledge and opinion according to predefined criteria to permit quantitative
reliability assessment. This has been applied in a range of fields including oil and gas,
meteorology, and genealogy [7,24,38,40,50,51]. It can be applied on its own or through an
encompassing approach to standardise combined uncertainty dimensions via five qualifiers:
Numeral, Unit, Spread, Assessment, and Pedigree (NUSAP) [24,38,50,52]. The first three
terms consider quantitative factors: quantity value, acquisition date, and the random error
of the variance of the dataset (addressed by SA and Monte Carlo simulation), respectively.

Ciroth et al. [38] presented a process to improve uncertainty estimation by gauging
qualitative uncertainty factors through the pedigree approach for flow data in a multidi-
mensional database. Estimates are attributed by their Geometric Standard Deviation (GSD),
where inputs fit the multiplicative lognormal distribution (Equation (1)) [38,53,54]. It is
stated that the arithmetic standard deviation used to attribute uncertainty in quantitative
data has the disadvantage of relying on the scale (unit) of data in a linear manner [38,53].
Therefore, for the analysis of data from varying sources and measured in different units, un-
certainty factors need to be independent of scaling effects. Using the GSD as the uncertainty
measure overcomes scale dependency.

σg = exp


√√√√√ 1

n
×

n

∑
i=1

ln

 xi
−
xg

2
 (1)

where: σg = GSD; n = number of inputs; xi = dataset;
−
xg = geometric mean of dataset.

To enable aggregation where data sources do not follow a lognormal distribution, GSD
ratios are obtained via the Coefficient of Variation (CV) [53,55]. This is a dimensionless
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measure of variability defined as the ratio between the standard deviation and the mean [55,56].
Muller et al. [53] provided formulas to apply the CV to various distributions to allow the
user to select the most-appropriate types for analysis. This is a key method to aggregate
compound uncertainties through different PDFs, given in Table 1, the robustness of which
was tested for each parameter PDF using Monte Carlo simulation.

Table 1. Probability Distribution Function (PDF) and relative Coefficient of Variation (CV)
calculations [38,53].

Distribution Parameters Deterministic Value PDF CV Calculation

Lognormal

x: Input dataset
µg : Geometric mean
σg : Geometric Standard
Deviation (GSD)

Median: µg
f
(
x, µg , σg

)
=

exp

− (lnx−lnµg)
2

2ln2σg


√

2πlnσg

CV =

√
exp

(
ln2σg

)
− 1

Normal

x: Input dataset
µ: Arithmetic mean
σ: Arithmetic standard
deviation

Mean: µ
f (x, µ, σ) =

exp

(
− (x−µ)2

2σ2

)
σ
√

2π

CV = σ
µ

Uniform
x: Input dataset
a: Minimum value
b: Maximum value

Mean: a+b
2

{
f (x, a, b) = 1

b−a f or a < x < b
otherwise, f (x, a, b) = 0

CV = b−a√
3(b+a)

Triangular

x: Input dataset
a: Minimum value
b: Maximum value
c: Most likely value

Most likely value: c


f (x, a, b, c) = 2(x−a)
(b−a)(c−a) f or a < x < c

f (x, a, b, c) = 2(b−x)
(b−a)(b−c) f or c < x < b

otherwise, f (x, a, b, c) = 0

CV =

√
a2+b2+c2−ab−ac−cb√

2(a+b+c)

Given as a dimensionless measure of variability, the CV can be used as a measure of
uncertainty for each input and aggregated to give a representative total. The application
of the CV and pedigree aims to convert quality and lack of knowledge into uncertainty
figures [53].

2.2.2. Correlation and Sensitivity Analysis

Dependencies between input parameters should be accounted for through correla-
tion [1,8,26,39,48,57]. Qualitative uncertainties given by subjective opinion are intuitively
correlated in terms of rank rather than linear relationships [6]. Spearman’s rank correlation
(ρ) is, therefore, best suited to consider the correlation between compound uncertainties
(x, y)—given by Equation (2).

ρx,y =
∑n

i=1 [ρ(xi)−
−
ρ(x)][ρ(yi)−

−
ρ(y)]√

∑n
i=1 [ρ(xi)−

−
ρ(x)]2·∑n

i=1 [ρ(yi)−
−
ρ(y)]2

(2)

The significance of positive and negative correlations on the aggregated uncertainty
estimate will vary with system complexity, as well as the coefficient value. It is important to
remember that correlation is not causation and while two parameters can show a significant
correlation, they may not be impacted by one another in practice.

Sensitivity Analysis (SA) identifies parameters whose uncertainty has the greatest rel-
ative impact on the system [1,39,58–62]. It gives an illustration of the relationships between
different inputs of various PDFs and parameters, as well as those with negligible effects that
can be removed. An important tool in uncertainty assessment, design optimisation, and
reliability measurement, SA is performed in two ways—local and global. Local Sensitivity
Analysis (LSA) explores the change of the quantity of interest around a certain reference
point, such as nominal values via partial derivatives. This is the simplest approach, but can
prove arduous when applied for a large number of parameters. Global Sensitivity Analysis
(GSA) studies the effect over the full range of the input space, typically adopting Monte
Carlo techniques.

Groen [63] compared five GSA methods in environmental life cycle assessment:
squared standardized regression coefficient, squared Spearman correlation coefficient,
key issue analysis, Sobol’ indices and random balance design. Spearman correlation coeffi-
cients and Sobol’ indices were found to give the best overall performance. Generally, the
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best method depends on the available data, the uncertainty magnitude, and the goal of the
study. Spearman correlation coefficients assume linearity in the system, which is often not
the case in practice. Sobol’ indices allow for nonlinearity, but assume all parameters to be
independent to identify the influence of each input parameter on the output [6,10,58–66].
Correlation coefficients should ideally be established between input parameters [63,67]. Dis-
counting correlation is acceptable when the sensitivity of parameter x is significantly greater
than parameter y, rendering ρx,y negligible [68]. Where it is not, discounting correlation
can lead to underestimation or overestimation of the resulting uncertainty estimate.

Further from the selection of the best sensitivity approach, Groen [68] compared an
analytical and a sampling approach to consider dependant variables in GSA, achievable
with small datasets through adjusted regression models devised by Xu and Gertner [67].
Both approaches resulted in relatively equal output variance and sensitivity indices for the
applied case study. The sampling approach assumed all inputs to be normally distributed.
Knowledge of parameter PDFs, means, standard deviations, and correlations is required
prior to sampling—a prerequisite of the model proposed in this paper.

2.2.3. Compound Aggregation

The aggregated uncertainty (UT) due to the uncertainty in the quantitative parameters
is equal to the Root-Sum-Square (RSS) of those uncertainties (σ) added to significant
correlation coefficients (Equation (3)) [69] (xi and yi are parameter x and parameter y,
where I = 1 for the sum of those parameters; σxi is the uncertainty for parameter xi). If
parameters are independent (ρ = 0), the second half of the equation is zero and cancels
out. The widely used propagation of error model uses Taylor series expansion to consider
local sensitivity coefficients within the aggregation, given by partial derivatives [1,25,39,69].
While suitable for non-complex models, the use of partial derivatives in complex nonlinear
models can give a large degree of error and lead to underestimation or overestimation
of the uncertainty propagation [25]. This paper, therefore, propagates uncertainties via
Monte Carlo simulation and assesses their effect on the output response through GSA, as
discussed previously.

UT =

√
n

∑
i=1

(
σ2

xi
+ σ2

yi

)
+ 2
(
ρx,yσxσy

)
(3)

To combine quantitative, recorded parameters with qualitative factors, recorded stan-
dard deviations are converted to their respective CVs according to their PDF type. The
arithmetic mean of symmetric PDFs such as normal and uniform is equal to the mode and,
as such, does not change when uncertainty increases [53]. They can, therefore, be aggre-
gated additively by the RSS (Equation (3)). Lognormal distributions are asymmetric; the
arithmetic mean will change with increasing or decreasing uncertainty. CVs represented by
the lognormal distribution, CVLn, are aggregated multiplicatively by Equation (4) [53]. To
combine these with symmetric distributions, a new arithmetic mean needs to be calculated
to account for the shifting uncertainty, given by Equation (5) [53]. The proposed approach
to aggregate compound uncertainty is discussed in Section 3.

CVLn =

√
n

∏
i=1

(
CV2

i + 1
)
− 1 (4)

µTCVT = µ
√

CV2
Sym + CV2

Logn (5)

2.3. Research Gaps

The GUM method is widely adopted for UQ. Along with the propagation of error
method, this provides highly confident depictions of purely quantitative uncertainty. How-
ever, methods of deriving qualitative uncertainty using the GUM have been found to lead
to inaccurate depictions [37,70]. Qualitative uncertainties are best accounted for through
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the pedigree approach, the criteria for which should be well established when designing
the analysis architecture [24,50,51]. The identification of the most-appropriate PDF to
represent each input is key to assess its uncertainty [51,71]. This can be achieved visually
by comparing fits against a plotted histogram of the data. The representation of uncer-
tainty through the respective CV, as described by Ciroth et al. [38] and Muller et al. [53],
enables the quantification and aggregation of compound uncertainties and can be applied
to a range of symmetric and asymmetric PDFs. While formulae to denote the inputs of
varying PDFs by their respective CVs are defined, a method to aggregate CVs from a mix
of symmetric and asymmetric PDFs in a compound manner is unclear. This is necessary
to establish compound uncertainty estimates represented by different PDFs with a high
degree of confidence.

This compound aggregation can then be used in GSA to calculate sensitivity indices.
Correlations should be considered where suitable to avoid underestimation or overesti-
mation in the estimate; however, the majority of applied studies assume input variables
to be independent. It is logical to assume there will be significant correlations between
quantitative, measured variables and the qualitative influence on how those variables are
recorded. Emerging techniques have been proposed to account for dependant variables in
SA, with varying success [66–68]. Incorporation with qualitative uncertainties also requires
further research at this stage [6,58,61,66]. The risks in ignoring correlation in uncertainty
propagation and SA were explored extensively by Groen [63,68]. The role of GSA is to
identify variables that have a significant impact on the system, which ties in closely with
correlation, though at different stages in the analysis. The consideration of correlation
through the sampling GSA approach allows for increased accuracy in the determination of
which variables have the most-significant impact on the overall uncertainty and is therefore
incorporated in this study [67,68]. The ability to consider PDFs other than normal will
further enhance this capability in the aggregation framework.

The research gaps are therefore summarised as:

1. Approaches to quantify and aggregate compound uncertainties represented by differ-
ent distributions, considering dependencies between them, applicable to increasingly
complex engineering systems.

2. Application of GSA to determine the impact of individual uncertainties on the aggre-
gated total, accounting for compound parameters and significant correlation.

3. Compound Uncertainty Quantification and Aggregation Framework

Every measurement or estimate is subject to a degree of error, which in turn contributes
a level of uncertainty. Quantifying this uncertainty enables a thorough assessment of the
scale of risk each component might inflict on the system [1,20]. The level of uncertainty
and associated risk can directly or indirectly influence system reliability for maintenance
planning, corresponding turnaround times, and system performance.

This paper contributes a holistic assessment of compound uncertainties in dynamic
data represented by different distributions with an integrated assessment of correlations
and sensitivity. This addresses the research gaps above and was achieved through a six-
step modelling approach developed in MATLAB (version 2022b), described below and
illustrated in Figure 1.
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Figure 1. CUQA framework overview.

The framework was designed as an extension and amalgamation of existing method-
ologies from the literature [1,20,33,70,72–74]. An initial version was presented in
Grenyer et al. [75]. Here, it is further developed and validated in two distinct case studies to
illustrate the framework’s flexibility in contextual application, considering key parameter
variables identified within a system. While maintenance practices are not discussed directly
in the case studies, the compound uncertainty consideration enables greater coherence in
system behaviour, reliability, and maintenance requirements. The framework steps were
developed from the traditional approach in the GUM, extended to consider compound
uncertainty and GSA—detailed as follows:

Step 1: Outline system setup and uncertainty sources. The inputs were grouped
according to their uncertainty type—quantitative or qualitative. This includes all mea-
sured data, assumptions made, and environmental predictions. Distribution types were
established by “goodness-of-fit” tests. Selected types were indexed for later calculation.
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Step 2: Calculate individual uncertainties. Statistical parameters were calculated
for each input according to their relative distribution via Monte Carlo simulation and
the pedigree matrix. These were grouped for each subsystem, for which the standard
uncertainties and correlations were determined separately before combining with the
whole system, elaborated as follows:

Step 2a: Quantitative, recorded data were concatenated in a cell array to allow inputs
with a varying number of data points to be considered. Any non-numeric values (including
gaps and non-formatted values) were removed. Monte Carlo simulations were run for the
relative indexed PDF over a user-defined number of points (default 10,000) or to the size
of the largest input parameter. This propagates the input data to a homogeneous array
size. It was assumed that individual non-numeric values will not have a significant impact
on the statistical parameters of the sub-arrays (such as outliers). In order to consider the
uncertainty in the measured values, each dataset (Xi) was split into sub-arrays over the
recorded time period. The number of rows for each sub-array (Si) can be selected by the
user or defined automatically. Possible values for Si are defined by the number of factors
(N f ) in the value of the length of the dataset (dim(Xi )). The automatic selection is given by
Equation (6). This aimed to select the middle factor, providing enough values to determine
the uncertainty at each point while allocating enough sub-arrays to determine the change in
uncertainty for the recorded period. Each dataset was then reshaped according to Equation
(7), where Si,j is the reshaped sub-array dimension.

Si =


[(N f

2

)
+ 1
]
, N f < 10[(N f

2

)]
, N f ≥ 10

, Si ≥ 1 (6)

Xi ∈ Rdim(Xi) → Xi ∈ RSi,j (7)

The arithmetic and geometric mean and deviation were calculated for each sub-array
and the full dataset, along with the maximum and minimum values of each input variable.
The standard deviation of each time unit was then calculated using the simulated data for
each distribution type. For lognormal variables, the mean and standard deviation are given
as geometric. Normal and uniform distribution variables are arithmetic [38]. To visualise
the data, boxplots for each sub-array were overlaid on the initial dataset. These plots give
more detailed information than standard error bars on the change in uncertainty over time
with dynamic datasets.

Step 2b: Qualitative factors are defined through pedigree criteria. Based on the exam-
ple implemented by Ciroth [38], the matrix defines uncertainty indicators based on expert
judgement. Criteria are defined for each score for each factor, which relates to predefined
case-dependent uncertainty measures. The ideal case has a pedigree score of 1, correspond-
ing to minimal uncertainty. Scores of 2-n have progressively higher uncertainties owing
to their representative criteria. While there is no limit to the number of scores, typically a
maximum of 5–7 was used. The scores for each factor correspond to an uncertainty indica-
tor, the GSD of which was obtained from one or multiple sources (interviews, surveys etc.).
These scores will not be fixed over time, and so were pseudo-randomly applied ±1 of the
defined score for each sub-array. If the uncertainty indicators were obtained from a single
source, the GSD is given as its square root. If they were obtained from multiple sources, the
GSD is given by Equation (1), modelled by the lognormal distribution [38,53,54]. The GSD
of less ideal indicators is given as the ratio of the calculated GSD and that of the ideal score
for each input, meaning that it is always equal to or greater than 1 [38].

Step 3: Determine significant correlations between input parameters. To best de-
termine correlation, the input parameters must be of equal length. For quantitative data,
initial recordings prior to Monte Carlo were sampled to the size of the largest parameter
length around their respective PDF type. Qualitative parameters were sampled using their
uncertainty score as the respective mean and GSD as the standard deviation under a lognor-
mal distribution to achieve a homogeneous sample size. Spearman’s correlation coefficient
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ρ (Equation (2)) was calculated between each pairwise input parameter, along with their
corresponding p-values. These were the result of the null hypothesis significance test that
determines whether what is observed in the data sample is likely to be true for a wider
population. A default significance level (α) of 0.05 determines that for p-values < α, there
is a 5% chance that a significant correlation does not exist between those parameters [6,39].
In addition, an ideal limit to define a significant coefficient magnitude is defined by the
user as ρlim and cut-off ρcuto f f . If there was not at least one pairwise coefficient for which
the absolute value |ρ| > ρlim, the ideal ρlim was reduced in increments of 0.01 via a “while”
loop until the condition was true or the defined ρcuto f f was reached. This enables the user
to define the degree of correlation to be included in the aggregation with the assurance that
the resulting coefficients are statistically significant. The corresponding input parameters
for which the final condition is true were plotted in a correlation matrix and stored for
use in Step 5. This matrix provides a visualisation of the correlation magnitude for each
parameter with a significantly correlated pair [76].

Step 4: Calculate the CV for each input. Uncertainties from different data types
represented by different PDFs must be considered on an equal scale in order to be aggre-
gated. This was achieved through the CV, explained in Section 2.2, the formulae for which
are given in Table 1 [53]. These were calculated within the framework by a sequential
algorithm according to the specified input and distribution type. Summary tables were
then generated for the compound inputs and correlation, as calculated in Steps 2–3.

Step 5: Aggregate respective CVs and correlated parameters. As discussed in Sec-
tion 2.2.3, symmetric distributions were aggregated additively by the RSS (Equation (3)).
Asymmetric distributions, given by lognormal distributions, CVLn, were aggregated multi-
plicatively by Equation (4) [53]. The framework splits the calculated CVs of quantitative
inputs according to the distribution type. The sum of symmetric attributes were added to
the product of the lognormal attributes. Comparing this with Equation (3), the aggregated
uncertainty is given by CVT in Equation (8):

CVT =

√√√√ n

∑
i=1

(CV2
sym) +

(
n

∏
i=1

(
CV2

Ln + 1
)
− 1

)
+ 2

n

∑
i=1

(
ρx,yCVxCVy

)
(8)

where (ρ x.yCVxCVy) is the Spearman correlation coefficient of two parameters x and y
multiplied by their respective CV.

Individual CVs were plotted as bars against the aggregated total, along with a colour
bar to visualise the acceptability of relative factors according to predefined scales. The
correlation coefficient standardizes the variables and is, therefore, unaffected by changes in
scale or units. The formulae allow the aggregated CV of quantitative and qualitative data
to be determined as a measure of total uncertainty. Given that CV is the ratio between the
standard deviation and the mean, the output follows a normal distribution. The uncertainty
can, therefore, be expressed back as the standard deviation via Equation (9).

σT =

√
n

∑
i=1

(σ i)
2 =

√
n

∑
i=1

(µ iCVi)
2 (9)

Steps 2–5 were repeated for each sub-array unit. Summary variables including the
individual and aggregated CV were stored and used to calculate the sensitivity indices in
Step 6.

Step 6: Conduct GSA and visualise results. The relative influence of individual
uncertainties on the aggregated total was calculated as the response vector over each
sub-array time unit. The sampling approach proposed by Groen [68], influenced by Xu
and Gertner [67], was applied to consider the effect of correlated parameters using an
adjusted regression model. Results were visualised by a 3D bar plot to show dependant
and independent effects against the total, with the same colour scale applied as for Step 5
to illustrate the severity. A feedback loop was then taken back to Step 2 where parameters
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with total effects below a defined threshold (default 5%) were discounted. The aggregated
uncertainty and sensitivity indices were updated to determine the parameters contributing
the greatest impact to the aggregated uncertainty, visualised in the same manner.

4. Stepped Implementation and Results of CUQA Framework
4.1. Case Study 1: Heat Exchanger Test Rig

The framework was first applied to a bespoke heat exchanger test rig, developed from
an initial design by Addepalli et al. [12] with the installation of a motorised pump and
digital sensors. The combination of digital and analogue recording, along with qualitative
factors discussed below, manifests compound uncertainty in heat exchanger performance.
These uncertainties need to be quantified and aggregated to assess their impact on the
system, assessed via the heat transfer coefficient [25,48,77]. This was calculated with the
resulting uncertainty, derived alongside the CUQA framework as follows:

Step 1: Outline system setup and uncertainty sources. The system comprised a
hot closed-loop system and a cold open-loop system, illustrated in Figure 2 Component
specifications are described in Table 2. Notation relating to Figure 2 is defined in Table 3.
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Figure 2. Heat exchanger test rig: system design [12].

Table 2. Heat exchanger test rig: component specifications of the initial design.

Component Specification

Oil Aero shell turbine 500
Pump Vivoil X2P4702EBBA motorised pump

Heater 3 connected units controlled by 3 switches, temp.
indicated by probe

Heat exchanger Jaguar oil cooler, plate-fin type
Temperature sensors Barksdale BTS38GVM0050M1
Pressure sensor Barksdale BPS38GVM0010B
IO-Link master Pepperl + Fuchs ICE2-8IOL-G65L-V1D
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Table 3. Heat exchanger test rig: uncertainty sources—measured parameters.

Parameter Reading Type PDF Reading Interval Reading Error

T1, sensor, hot fluid
temp. into HEx (◦C) Digital Lognormal 0.1 ◦C ±0.1 ◦C

T2, sensor, hot fluid
temp. out of HEx (◦C) Digital Lognormal 0.1 ◦C ±0.1 ◦C

T3, dial, hot fluid temp.
out of HEx (◦C) Analogue Normal 5 ◦C ±2 ◦C

T4, dial, cold fluid
temp. (air blower) (◦C) Analogue Uniform 2 ◦C ±0.5 ◦C

P1, sensor, hot fluid
pressure pre-HEx (bar) Digital Lognormal 0.01 bar ±0.01 bar

P2, dial, hot fluid
pressure post-HEx (bar) Analogue Uniform 0.5 bar ±0.3 bar
.

V, volumetric flow rate
of hot fluid (L/min)

Analogue Uniform 5 L/min ±2 L/min

The experimental setup comprised seven quantitative parameters, summarised in
Table 3, along with their corresponding reading interval and error and five qualitative
factors: (1) reliability of data, (2) basis of estimate, (3) reading accuracy, (4) environmental
conditions, and (5) sample size—each modelled by the lognormal distribution. Oil tempera-
ture at the inlet (T1) and outlet (T2) was measured by dual-temperature sensors. A constant
flow rate was maintained by a motorised pump. Oil pressure (P1) was regulated by a
pressure relief valve, recorded by a dual pressure sensor at the pump outlet. The sensors
fed real-time data to the PC controller via IO-Link, logged to a CSV file in 1 s intervals
along with a timestamp.

The heat transfer coefficient is given by the heat load Q of the hot (h) and cold (c) fluid
(Equation (10)):

Qh =
.

mh·cph·(ThIn − ThOut)
Qc =

.
mc·cpc·(TcOut − TcIn)

(10)

where
.

m = mass flow rate, given by the product of the volumetric flow rate
.

V and density
ρ; cp = specific heat capacity; (T In − TOut) is the fluid temperature differential in and out
of the heat exchanger.

The heat balance error and composite heat load considering associated uncertainty
(U2

Q) are given by Equations (11) and (12), respectively, as derived by Tatara and Lupia [48].
Contributing measurement uncertainties and additional qualitative bias in the system were
calculated separately using the propagation of error method [39].

While |HBE| < |UHBE| (Equation (13)), the overall heat transfer coefficient can be
found and the associated measurement uncertainties were considered valid [48].

HBE =
Qh −Qc

Qh
·100% (11)

Q =
QcU2

Qh
+ QhU2

Qc

U2
Qh

+ U2
Qc

(12)

UHBE = 100%·Qh
Qc

√(
Umh

mh

)2

+

(
UT hIn

ThIn − ThOut

)2

+

( −UThOut

ThIn − ThOut

)2

+

(
Umc

mc

)2

+

(
UT cIn

TcIn − TcOut

)2

+

( −UTcOut

TcIn − TcOut

)2

(13)

where: Ux = uncertainty in relative parameter
The focus of this study was on the uncertainty in the measured values over time, not

the uncertainty of the overall recording period.
The heating system was set to switch off at 80 ◦C to prevent overheating. However,

due to its design, the heater was not able to sustain the temperature at 0.02 ◦C/min for
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10 min, as recommended by Tatara and Lupia [48] to determine the steady-state. While
this is unsuitable for thorough thermodynamic assessment of heat transfer efficiency from
the heat exchanger, it contributed further qualitative uncertainty to the system, which was
reflected in the application of the CUQA framework.

The steady-state region was, therefore, defined by the time of the first and last peak
temperature readings at T1. Two cycles were completed, with a total of 85 min recorded; a
total of 5590 data points for the three digital parameters. The temperature recorded at T1
had an overall range of 6.8 ◦C and 1.2 ◦C at T2 over the recorded period. The pressure, P1
was set at 1.8 bar, following a lognormal distribution with a range of 0.32 bar.

Aside from these readings, all variable measurements were recorded via in-line ana-
logue dials. Many of these dials gave readings on different interval scales and varying
measurement accuracy and, therefore, resulted in an increased uncertainty. Additional
attributes such as parallax error and ambient temperature further increased the uncertainty
in the measurement.

The volumetric flowrate
.

Vh of the oil (hot fluid) was held at 5 L/min (0.83 × 10−3 m3/s)
with a uniform distribution. A reading error of±2 L/min was assigned owing to the scale of
the flowmeter. At a maximum temperature of 80 ◦C, ρ ≈ 0.95 kg/L (950 kg/m3). Therefore,
.

mh for the hot fluid = 0.08 kg/s. cph was given as 1800 J/kg.C. For the air (cold fluid),
.

mc
was given as 1.12 kg/s and cpc as 1005 J/kg.C. Further thermodynamic analysis involving
parameters such as oil viscosity and temperature loss through connecting pipes were out of
the scope of the framework application. The uncertainty contributed by these factors was
factored into the pedigree matrix.

Step 2a: Calculate quantitative uncertainties. A summary of the seven quantitative
parameters is given in Table 5. Summary statistics from the logged data for T1, T2, and P1
are given by the boxplots in Figure 3. The outliers were values greater than q3 +w(q3–q1) or
less than q1–w(q3–q1), where w is the maximum whisker length, 1.5 times the interquartile
range, and q1 and q3 are the 25th and 75th quartiles of the respective dataset [78].
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Figure 3. Heat exchanger test rig: boxplots for T1, T2, and P1.

The three digitally recorded parameters were split into 65 homogeneous sub-arrays
over the 5590 data points. The overlaid boxplots are shown in Figure 4 (coloured as for
Figure 3), plotted over the time series of the logged data. Owing to the multimodal shape
of the data, the sub-array standard deviation for T1 was low to negligible at the peaks and
troughs and high for temperature increases or decreases. The temperature at T2 was more
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constant with respect to T1, showing a step change over time owing to the heat transfer
coefficient of the heat exchanger.
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The greater the sub-array size (Si), the greater the uncertainty in the measurement.
This is illustrated in Appendix A (Figure A1) for all possible factors (a), with a focus on Si
values of 0–130 and the automatically selected value, 86, highlighted (b). This procedure
enables a mean uncertainty estimate to be obtained where the recorded data are not able
to meet the criterion for steady-state readings. As Si increased, the number of sub-arrays
decreased, resulting in greater uncertainty. This was considered by the basis of estimate
factor in the pedigree matrix.

The four remaining quantitative parameters were acquired by analogue dials with
varying reading intervals (Table 3). These were taken every 30 min over the recording
period, resulting in limited data in comparison to the automated recording. Using Monte
Carlo simulation, the readings were propagated to match the array size of the three dig-
ital parameters according to their statistical range and rounded to their corresponding
reading intervals.

Step 2b: Calculate qualitative uncertainties. The five qualitative factors were scored
by the defined pedigree criteria detailed in Table 4. These were based on adjusted examples
from the literature to apply to the case study [7,24,52]. Uncertainty indicators for each factor
for increasing pedigree scores corresponding to the criteria are illustrated in Figure 5. For
this case study, the uncertainty indicators were obtained from a single source (the authors
opinion), applied to the full dataset. Their GSDs are, therefore, given as the square root of



Machines 2023, 11, 560 14 of 29

the uncertainty indicator. These scores will not remain fixed over time and were, therefore,
pseudo-randomly applied ±1 of the defined score circled in Figure 5 for each sub-array.

Table 4. Heat exchanger test rig: pedigree criteria.

Score 1 2 3 4 5

Reliability of data

Data are <2 months old
and/or recorded by
fully calibrated sensor
or fully qualified person

Data are <6 months old
and/or recorded by
fully qualified person,
but sensor requires
recalibration

Data are <12 months
old and/or recorded by
experienced person, but
sensor requires
recalibration

Data are >12 months
old and/or recorded by
experienced person,
sensor accuracy
unknown

Age or source of data
unknown or >12
months old

Basis of estimate

Best-possible data, use
of historical field data,
validated tools, and
independently verified
data, given by fully
qualified person

Smaller sample of
historic data, parametric
estimates, internally
verified data, some
experience in the area

Limited available data,
unverified,
inexperienced opinions

Incomplete data, small
sample, educated
guesses, indirect
approximate rule of
thumb estimate

No experience in
the data

Reading accuracy

Measurements taken
using fully calibrated
and accurate equipment:
±0.01 ◦C, ±0.1 bar

Measurements taken
using recently
calibrated, but less
accurate equipment:
±0.1 ◦C, ±0.5 bar

Measurements taken
using recently
calibrated, but less
accurate equipment:
>±1 ◦C, >±2 bar

Measurements taken
using accurate
equipment that may
need recalibrating

Measurements taken
using un-calibrated and
inaccurate equipment

Environmental
conditions

Data recorded under
specific consistent
conditions or a specified
range of conditions
from area under study

Data recorded in
generally consistent
conditions with
fluctuations specified

Data recorded in
generally consistent
conditions, changes not
specified

Data recorded in a
range of unspecified
conditions

Data from unknown or
distinctly different areas

Mean sample size >1000 >100 >50 <50 Unknown
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The resulting CV calculated in Step 4 was significantly greater than that of the log-
normal recorded data. This was most likely due to the small number of data points in
the sub-arrays. To give a closer comparison of the uncertainty, the pedigree factors were
rescaled by Equation (14). The following results up to Step 6 illustrate an example for the
first sub-array time unit.

Ui_scaled =
(Ui − 1)

10
+ 1 (14)

where Ui = uncertainty indicator.
Step 3: Assess correlations between parameters. The ideal limit of ρ was set to 0.5,

with a cut-off at 0.2. Naturally, significant positive correlation was identified between T1
and T2, highlighted in red (Figure 6). The negative correlation to P1 reflects the pressure
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drop due to oil viscosity with increasing temperature. This shows the effectiveness of
selecting the desired ρ limit to remove minor correlations from the analysis.
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Step 4: Calculate respective CVs. The summary tables with the calculated CV for each
input are given in Tables 5 and 6 for the quantitative and qualitative factors, respectively.
Uniformly distributed parameters had a negligible deviation and, therefore, a CV of zero
and did not contribute to the aggregated uncertainty total.

Table 5. Heat exchanger test rig: recorded data and calculated parameters.

Parameter Reading
Interval Reading Error Distribution Mean Standard

Deviation Min Max CV

T1 (◦C) 0.1 ◦C ± 0.1 ◦C Lognormal 80.8654 1.0209 77.9628 84.6012 0.0207
T2 (◦C) 0.1 ◦C ± 0.1 ◦C Normal 27.3305 0.3351 26.7 27.8581 0.0123
T3 (◦C) 5.0 ◦C ±2.0 ◦C Lognormal 24.6 2.881 20 28 0.1171
T4 (◦C) 2.0 ◦C ±0.5 ◦C Uniform 21.6 0.8944 20 22 0
P1 (bar) 0.5 bar ±1.0 bar Normal 1.8436 0.0088 1.8252 1.8612 0.0048
P2 (bar) 0.5 bar ±0.3 bar Uniform 0.9 0.2236 0.5 1 0

Flow (L/min) 5 L/min ±2 L/min Uniform 4.9575 0.0253 4.9343 4.9865 0

Table 6. Heat exchanger test rig: pedigree factors with relating GSD and CV.

Factor Distribution Pedigree Score Uncertainty Indicator GSD CV

Meas. Relbl. Lognormal 2 1.1 1.0488 0.0477
Basis of Est. Lognormal 2 1.2 1.0954 0.0914

Read Accuracy Lognormal 1 1 1 0
Envir. Cond. Lognormal 2 1.1 1.0488 0.0477
Sample Size Lognormal 3 1.4 1.1832 0.1694

Step 5: Combine CVs. The combined CV of each PDF was calculated by Equation (8)
and summarised in Table 7, aggregated for symmetric and asymmetric distributions and
total CV with correlation between T1 and T2—given in the table as 2

(
ρT1,T2 ·CVT1 ·CVT2

)
.
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Table 7. Heat exchanger test rig: CV aggregation results.

PDF CV Comb. CV Agg. Corr. CVT

Ln recorded 0.0207 0.2256 0.0001 0.2593
Ln pedigree 0.2050 0.0011

Norm. recorded 0.1179 0.1179
Uni. Recorded 0

The visualisation in Figure 7 illustrates the relative CV of each quantitative (blue),
qualitative (orange), and correlated (purple) input against the aggregated total (cream) for
1 of the 86 sub-array time units. When calculated for only the quantitative parameters, the
aggregated CV fell to 0.1293, a percentage decrease of 50.1%. This illustrates the significance
of accounting for qualitative factors alongside quantitative parameters—providing a holistic
view of factors that manifest uncertainty in the system. While the depiction of these
factors is subjective, the compound consideration reduced the risk of underestimating the
aggregated uncertainty, which can occur if only accounting for quantitative parameters [38].
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Individual uncertainties were then expressed as variances by the square of Equation
(9) to feed into Step 6. The change in individual and aggregated CV over all time units for
Si = 65 (86 sub-arrays) is given in Figure 8a and compared with Si = 215 (26 sub-arrays) in
Figure 8b. This demonstrates the effect of sub-array size on the resulting uncertainty estimate.

Calculating the heat load parameters from Equations (10)–(13) gave [48]: Qh = 366.2 MW,
UQh = 16.31 MW, Qc = 4.52 kW, UQc = 97.56 W, and a resulting Q = 4.52 kW. The heat balance
error (HBE) = 99.98%, and the composite load uncertainty UHBE = 311%. This passed the
validity test given by as |HBE| < |UHBE|, indicating that the measurements were valid.
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for Si = 65 (a) and Si = 215 (b).

Step 6: GSA and visualisation. The relative influence of individual uncertainties on the
aggregated total is plotted in Figure 9a. The uncertainty in T3, the oil temperature after being
cooled by the heat exchanger, had an overwhelmingly greater effect (76%) on the aggregated
uncertainty than any other parameter. This was due to the large error margin of ±2 ◦C
given by the reading interval on the dial. If T3 was discounted, along with parameters with
an impact below 5% (uniformly distributed), the basis of the estimate was deemed to have
the greatest effect at 56% (Figure 9b). The influence of T1 and T2 was minimal due to the
comparatively equal deviation for each sub-array time unit. The qualitative factors saw greater
variability owning to the pseudorandom score allocation (Figure 5).
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Figure 9. Heat exchanger test rig: GSA results of individual to aggregated uncertainty for all factors
(a) and most-influential parameters (b) for test example.

Altering about the pedigree score allocation of the qualitative factors impacted the
degree of uncertainty each factor would contribute to the aggregated total, according
to the defined uncertainty indicators in Figure 5. Applying higher pedigree scores will
apply a higher representative level of uncertainty. The difference between one uncertainty
indicator to another will influence the respective factor’s sensitivity index owing to the
pseudorandom score allocation. Increasing the degree of allocation (e.g., from ±1 to ±2)
will also influence the respective sensitivity indices, though this was not deemed necessary
in this study for the score range of 1–5. While the uncertainty indicator scores were
subjective, they were expected to increase linearly or exponentially. Therefore, lower scores
would have less influence on the aggregated total.
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4.2. Case Study 2: Turbofan Engine Degradation

The framework was applied to a turbofan engine degradation dataset from the Com-
mercial Modular Aero-Propulsion System Simulation (C-MAPSS) tool, developed by
NASA [79,80]. This publicly available dataset has been widely applied in Prognostics
and Health Management (PHM) [80–82]. The C-MAPSS data consist of four datasets sim-
ulated under different operating conditions. The FD001 training dataset, simulating the
degradation of the High-Pressure Compressor (HPC), was applied to the CUQA framework
to analyse the aggregated uncertainty in the measurements over time:

Step 1: Outline system setup and uncertainty sources. The FD001 dataset consisted
of 21 sensors measuring temperature, pressure, and speed for 100 engine units, each with a
random start time and normal operating level, running to failure. For this study, one engine
unit was selected with 192 cycles to failure. The system design is illustrated in Figure 10.
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Figure 10. C-MAPSS turbofan engine: system design as simulated in C-MAPSS [79].

Previous work using this dataset focused on Remaining Useful Life (RUL) predic-
tion [81,82]. In these studies, sensor data were divided into three categories according to
the data trend; ascending, descending, and irregular/constant. Data that did not exhibit
an ascending or descending trend over time (uniform) are not viable for RUL prediction
and were, therefore, discounted from the dataset. The previous case study showed that
constant, uniform parameters did not contribute to the uncertainty. Therefore, the same
approach was applied here. A description of the 14 included sensors is given in Table 8.

Table 8. C-MAPSS turbofan engine: detailed description of sensors [79].

Sensor Number Notation Description Unit

2 T24 Total temperature at LPC inlet ◦R (Rankine scale)
3 T30 Total temperature at HPC inlet ◦R
4 T50 Total temperature at LPT inlet ◦R

7 P30 Total pressure at HPC outlet psi abs. (pounds per square inch,
absolute)

8 Nf Physical fan speed rpm (revolutions per minute)
9 Nc Physical core speed rpm
11 Ps30 Static pressure at HPC outlet psi abs.
12 Phi Ratio of fuel flow to Ps30 psi
13 NRf Corrected fan speed rpm
14 NRc Corrected core speed rpm
15 BPR Bypass ratio –
17 htBleed Bleed enthalpy –
20 W31 HPT coolant bleed lbm/s (pound mass per second)
21 W32 LPT coolant bleed lbm/s

Step 2a: Calculate quantitative uncertainties. The sensor data were indexed and
divided into 16 sub-arrays consisting of 12 rows by Equation (6). The mean and deviation
of each array were calculated up to the point of failure. This is illustrated for 4 of the
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14 inputs in Figure A2. A comparison of the sub-array size to the mean deviation is given in
Figure A3. Other than for the derivation of pedigree factors in Step 2b, the illustrated results
up to Step 6 give an example for the first sub-array unit. A summary of the quantitative
sensor data for this example is given in Table 10.

Step 2b: Calculate qualitative uncertainties. Random noise models of mixed distri-
butions were used in the composition of the C-MAPSS dataset to propagate associated
qualitative factors with a mix of distributions to give realistic results [79,81]. This was given
as a combination of three core factors applied to all sensors: manufacturing and assembly
variations (resulting in varying degrees of initial wear), process noise (factors not taken
into account in modelling), and measurement noise. More in-depth factors concerning
maintenance between flights and environmental operating conditions could be considered
in practice. For this study, they were incorporated in the three core factors for the simulated
data, scored against the pedigree criteria detailed in Table 9 [79]. Uncertainty indicators for
each factor are illustrated in Figure 11, with the GSD given as the square root of the uncertainty
indicator. As for the previous study, the scores were pseudo-randomly applied ±1 of the
defined score circled in Figure 11 for each sub-array, scaled by Equation (14).

Table 9. C-MAPSS turbofan engine: pedigree criteria.

Score 1 2 3 4 5

Manufacturing and
assembly variations

Negligible range of
initial wear on
components, not
contributing to
engine efficiency

Minimal range in initial
wear on engine
components

Notable range in initial
wear on engine
components, occasional
reduction in
engine efficiency

Notable range in initial
wear on engine
components, regular
reduction in
engine efficiency

High range in initial
wear on engine
components, high
variance in
engine efficiency

Process noise
Negligible trend in
degradation trajectory,
no noise

Minor trend in
degradation trajectory,
minimal noise

Minor trend in
degradation trajectory,
manageable noise

Significant trend in
degradation trajectory,
variable noise

Highly contaminated
degradation trajectory

Measurement noise Negligible sensor noise,
no impact

Minimal sensor noise,
minor impact,
predictable trend

Notable random
complex sensor noise,
measurable impact

Significant random
complex sensor noise,
inaccurate impact
measurement

High random complex
sensor noise, tangible
point estimate
unobtainable
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Step 3: Assess correlations between parameters. Each sub-array consisted of 12 data
points. The ideal limit of ρ, therefore, needed to be set to a high level of 0.8, with a cut-off at 0.6.
No significant correlations were present above 0.8, so the value was reduced incrementally to
0.78, for which a significant correlation was detected between the pressure at the HPC outlet
and turbine core speed (Figure 12a). While it is logical to expect a positive relationship between
these parameters, notable in the plot, it was not maintained through the other 15 sub-arrays.
This does not mean the relationship was not present, but that other dependencies were more
prevalent below the limit of 0.8. When run for all data points, a positive trend was identified
between the physical and corrected core speed of the engine (Figure 12b).
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Figure 12. C-MAPSS turbofan engine: significant correlations for which |ρ| ≥ 0.6 for HPC outlet only
(a) and all data points (b).

Step 4: Calculate respective CVs. Summary tables with the calculated CV for each
input are given in Tables 10 and 11 for the quantitative and qualitative factors, respectively.
The majority of factors here were lognormally distributed by the goodness-of-fit tests.

Table 10. C-MAPSS turbofan engine: recorded data and calculated parameters.

Parameter Distribution Mean Deviation Min Max CV

S2 (T24) Lognormal 642.20 1.0004 641.71 642.56 0.0004
S3 (T30) Lognormal 1586.85 1.0026 1581.75 1592.32 0.0026
S4 (T50) Lognormal 1400.76 1.0021 1394.80 1406.22 0.0021
S7 (P30) Lognormal 554.17 1.0007 553.59 554.67 0.0007
S8 (Nf) Lognormal 2388.05 1.0000 2388.00 2388.11 0.0000
S9 (Nc) Normal 9049.55 4.9243 9040.80 9059.13 0.0005

S11 (Ps30) Lognormal 47.25 1.0029 47.03 47.49 0.0029
S12 (Phi) Lognormal 522.05 1.0008 521.40 522.86 0.0008
S13 (NRf) Lognormal 2388.04 1.0000 2388.01 2388.08 0.0000
S14 (NRc) Lognormal 8133.09 1.0005 8125.69 8140.58 0.0005
S15 (BPR) Lognormal 8.41 1.0027 8.37 8.43 0.0027

S17 (htBleed) Lognormal 391.75 1.0022 390.00 393.00 0.0022
S20 (W31) Lognormal 38.99 1.0018 38.88 39.10 0.0018
S21 (W32) Lognormal 23.40 1.0021 23.31 23.48 0.0021

Table 11. C-MAPSS turbofan engine: pedigree factors with related GSD and CV.

Factor Distribution Pedigree Score Uncertainty Indicator GSD CV

ManufVariations Lognormal 2 1.01 1.0488 0.0477
ProcssNoise Lognormal 3 1.06 1.0954 0.0914

MeasurmntNoise Lognormal 4 1.05 1.3038 0.2701
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Step 5: Combine CVs. The combined CV is summarised in Table 12, aggregated for
symmetric and asymmetric distributions and the total CV with correlation. The visualisa-
tion in Figure 13 illustrates the relative CV of each input against the aggregated total for
the example time unit.

Table 12. C-MAPSS turbofan engine: CV aggregation results.

PDF CV Comb. CV Agg. Corr. CVT

Ln recorded 0.00639 0.29049 2.7168 × 10−7 0.2905
Ln pedigree 0.29042

Norm. recorded 0.000544 0.000544
Uni. recorded 0
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Figure 13. C-MAPSS turbofan engine: aggregated total CV against individual factors for one
time unit.

For the example time unit, the measured data had minimal uncertainty compared to
the qualitative factors. Discounting the qualitative factors here resulted in a 97.8% decrease
in the aggregated CV from 0.2905 to 0.0065. The minimal quantitative uncertainty was
due to the spread of the 12 data points in the sub-array. Increasing the number of data
points increased the mean uncertainty depending on the variability in the dataset, but
reduced the number of sub-arrays (Figure A3). The change in individual and aggregated
CV over all time units for Si = 12 (16 sub-arrays) is given in Figure 14a and compared with
Si = 3 (64 sub-arrays) in Figure 14b.
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Step 6: GSA and visualisation. The relative influence of individual uncertainties
on the aggregated total is plotted in Figure 15a and resulted after discounting the less
influential parameters factors in Figure 15b. The quantitative parameters had a greater
influence than the qualitative factors, despite them having a lower CV for all sub-array
units. The most-influential parameter uncertainty was T50 (temperature at LPT inlet) at
37%. Discounting parameters with an impact <5% resulted in Nc (turbine core speed)
having a dominating influence, while T50 dropped to 9%. This was again due to the
variation in the data points of each sub-array. As for Case Study 1, the difference between
one uncertainty indicator to another, defined in Figure 11, will influence the respective
factor’s sensitivity index owing to the pseudorandom score allocation.
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5. Discussion and Conclusions

The CUQA framework presented in this paper was designed to enhance system re-
liability measurement in a manner applicable to complex and non-complex engineering
systems through quantification and aggregation of compound uncertainties. These develop
as a result of the recording methods and assumptions made about the system and were
modelled by different distribution types. The framework builds on existing literature to
aggregate compound uncertainty considering dependant variables in the analysis, as well
as the identification of the greatest contributing factors through the GSA. The benefits
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of this framework include enhancements to performance assessment and corresponding
maintenance planning for complex and non-complex engineering systems and respec-
tive subsystems.

The framework was first applied to a bespoke heat exchanger test rig, which con-
tributed a range of uncertainties that impacted measurement quality and accuracy. Three
distributions were considered: lognormal, normal, and uniform. All qualitative factors
were lognormal [38]. The measured parameters were deemed valid, though the true
steady-state was not obtainable owing to the heating system [48]. The second case study
implemented a simulated engine degradation dataset [79]. The majority of the selected
sensors exhibited a lognormal distribution up to failure. The following paragraphs critique
the effectiveness of the framework through the results of the two case studies, concluding
with a summary of the contributions and recommendations for future work.

The CUQA framework is capable of assessing uncertainty for nonhomogeneous input
data. The user can view and select the best-suited distribution for each input via “goodness-
of-fit” tests. While effective for a small number of inputs, an automated method would
prove more efficient for more complex systems. Monte Carlo simulation was used in Step
2a to give a homogeneous array size, enabling level consideration of each input. Monte
Carlo was selected due to its flexibility with multiple distributions [6]. The inherently
random nature of the simulation, though within the respective distribution parameters,
caused different results each time the experiment was run, which may impact the accuracy
of the parameter values. Other techniques such as Latin Hypercube Sampling (LHS) and
Taylor series expansion may provide samples tighter to the respective mean, but do not
show the same flexibility as Monte Carlo for multiple distribution types.

Splitting the input data into sub-arrays enabled uncertainty in the measured values
to be determined over time. The greater the number of rows in each sub-array, the fewer
arrays were allocated over the time series. The more arrays allocated, the more loops
were performed between Steps 2 and 5, increasing the execution time. It is, therefore,
necessary to find a balance with optimum values in each sub-array, which was the purpose
of the automatic selection by Equation (6) (comparisons of mean deviation with increasing
sub-array size are illustrated in Appendices A and B respectively for the two case studies).
The input parameters that did not maintain a positive or negative trend required more
sub-arrays to account for their variation. The framework allocated the same number of sub-
arrays to each input to maintain equal consideration throughout the analysis. Flexible size
allocation by individual input trend or average variance rather than sample size warrants
further investigation.

Step 2b defined uncertainty indicators associated with qualitative inputs. These are
ideally defined by multiple sources such as surveys, interviews, and historical trends. The
mean indicator is taken to calculate the Geometric Standard Deviation (GSD). Naturally,
high uncertainty reflects low confidence in the measured parameter. While the use of the
GSD overcame scale dependency in the measured data, the resulting coefficient of variation
(CV) was found to be considerably lower than that of normally distributed data and the
qualitative factors attributed by the pedigree matrix. This was due to the number of data
points in the sub-array unit. Uncertainty indicators for the qualitative factors were initially
assigned on a scale between 1 and 2 and the square root calculated to give the GSD [38].
These were rescaled by Equation (14) to give a more equal comparison to the quantitative
data. This would, however, artificially reduce the aggregated total and saw normally
distributed parameters such as T3 in Case Study 1 attributing the greatest influence on the
aggregated total.

Significant correlations between input variables are defined via Spearman’s rank
coefficient in Step 3. The ability to define the ideal coefficient limit allows the user to
define the desired level of detail of the dependant variables. This can have a significant
impact on the resulting estimate. The dependencies identified between the parameter
values did not impact the aggregated total of the two case studies in Step 5. However, the
influence attributed by individual CVs to the aggregated total in Step 6 was shown to exhibit
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dependencies that warrant further investigation. Stronger dependencies between parameter
values will have a greater influence on emergent behaviour in more complex systems.

The CV was adopted as the uncertainty measure in Step 4 to allow the inputs of vary-
ing distribution types to be represented on an equal scale, enabling effective uncertainty
quantification. Representing uncertainty by the CV proved effective to aggregate uncer-
tainties represented by different distributions in Step 5, but further research is required
into the scaling of geometric against arithmetic standard deviations. Acceptable levels of
uncertainty are user-defined according to the application and visualised by the colour scale.
Conversion of further distribution types such as Weibull and non-parametric derivations
will allow for the consideration of more complex datasets. Aggregating the individual CVs
by a combination of the propagation of error method for symmetric CVs and the product
of asymmetric CVs allowed an aggregated total estimate to be obtained. This can be used
to determine how the aggregated uncertainty changes over time, which is converted back
to the standard deviation and used as the response vector in Step 6.

Global Sensitivity Analysis (GSA) was employed to identify which individual uncer-
tainties contribute the greatest influence to the aggregated total. The sampling method
was applied by Groen [68] using matrix-based LCA. It was applied in this study using the
individual uncertainties of each sub-array as the inputs and the aggregated uncertainty
at each point as the response. It was deemed the best-suited GSA method for the CUQA
framework because it can be implemented with relatively small datasets and illustrates the
influence of correlated and uncorrelated uncertainties against the total effects. While the
sub-array derivation in Step 2a was more accurate with a greater number of rows in each
sub-array, the number of sub-arrays affected the quality of the GSA over each unit. The
removal of factors that do not contribute to the aggregated total (uniformly distributed or
negligible for each iteration) allowed for a focused analysis on influential parameters in a
second pass through the feedback loop. The risks formed as a result of these uncertainties
can then be mitigated. More in-depth GSA at each time using methods such as Sobol’
indices would require the derivation of model process equations for the system application,
which is out of the scope of this study.

Compared to complex engineering systems used in operational environments, Case
Study 1 represented a relatively simple laboratory system setup, but served to prove the
functionality of the CUQA framework as it exhibited uncertainties akin to those faced in
such environments and presented comparable challenges to UQ. While the coefficients of
the correlated parameters fell between negligible error margins with minimal risk, they
may have a significant impact in real-world environments where operating conditions such
as atmospheric temperatures or wind speeds will impact the accuracy of recorded data or
subjective opinion.

The applications for complex engineering systems will feature a great deal more
parameters than those exhibited in the two case studies. While the CUQA framework is
able to account for additional parameters in the computation, it will take more time to
produce actionable results. In addition, the visualisations resulting from Steps 2–5 would
be more cumbersome to decipher with a large number of variables. This was already
overcome in Step 3 by the function to only display significant correlations. The illustration
of aggregated CV against individual factors for one time unit produced in Step 5 would
become cumbersome with many additional parameters; however, this was only used as an
example result. The use of GSA in Step 6 was even more beneficial in high-dimensional
cases, where individual uncertainties that contribute the greatest influence to the aggregated
total were identified.

The core contributions of the CUQA framework are:

1. Use of the CV to enable effective quantification and aggregation of compound uncer-
tainties represented by different distribution types;

2. Assessment of the correlation between compound parameters;
3. GSA for dependant compound parameters;
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4. Intuitive visualisation of results showing the most-significant parameters and domi-
nant sensitivity indices.

The authors have drawn four key conclusions as a result of this work:

1. Deriving the uncertainty measure as the CV proved effective for the aggregation of
uncertainties represented by different PDFs, but further research into the scaling of
geometric against arithmetic standard deviations is required. Aggregating individual
CVs by a combination of the propagation of error method for symmetric CVs and the
product of asymmetric CVs allowed an aggregated total estimate to be obtained. This
can be used to determine how the aggregated uncertainty changes over time.

2. Dependencies between compound parameters were not found to impact the aggre-
gated total for the two case studies. However, the influence attributed by individual
CVs to the aggregated total was shown to exhibit dependencies that warrant further
investigation. Such dependencies may have a significant impact in real-world en-
vironments where operating conditions such as atmospheric temperatures or wind
speeds impact the accuracy of recorded data or subjective opinion.

3. The case studies served to prove the functionality of the CUQA framework, exhibiting
uncertainties akin to those faced in operational environments and comparable chal-
lenges to UQ. User-defined ideal limits to identify significant correlations between
compound parameters enabled the definition of the desired levels of detail for the
dependant variables. Stronger dependencies between parameter values will have a
greater influence on emergent behaviour in more complex systems.

4. The GSA method applied by Groen [68] was deemed the best-suited approach for
the CUQA framework because it can be implemented with relatively small datasets
and illustrated the influence of dependant and independent uncertainties against the
aggregated total. Intuitive visualisation of the results at each stage further boosted
the framework’s useability and enabled rapid identification of uncertainties outside
of acceptable levels and where mitigation may be required.

The authors propose future work to derive uncertainty from non-parametric and
stochastic distributions through clustering techniques. Further assessment of aggregated
compound uncertainty is necessary, incorporating additional distribution types and im-
proving the rigour of the GSA approach in variance decomposition for each sub-array time
unit. The emergent behaviour of uncertainties should be forecast through the in-service life
to determine when and where further mitigation may be required.
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