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Abstract: This study offers a complete analysis of the use of deep learning or machine learning, as
well as precise recommendations on how these methods could be used in the creation of machine
components and nodes. The examples in this thesis are intended to identify areas in mechanical
design and optimization where this technique could be widely applied in the future, benefiting
society and advancing the current state of modern mechanical engineering. The review begins with a
discussion on the workings of artificial intelligence, machine learning, and deep learning. Different
techniques, classifications, and even comparisons of each method are described in detail. The most
common programming languages, frameworks, and software used in mechanical engineering for this
problem are gradually introduced. Input data formats and the most common datasets that are suitable
for the field of machine learning in mechanical design and optimization are also discussed. The
second half of the review describes the current use of machine learning in several areas of mechanical
design and optimization, using specific examples that have been investigated by researchers from
around the world. Further research directions on the use of machine learning and neural networks in
the fields of mechanical design and optimization are discussed.

Keywords: artificial intelligence; machine learning; deep learning; mechanical design; optimization

1. Introduction

Mechanical design is one of the most essential areas of mechanical engineering.
The building or design of different machines and equipment may be described as the
process by which resources or energy are transformed into usable mechanical shapes or
processes to produce useful output from machines, in accordance with human demands.
The design of a given machine might result in the production of an entirely new machine
or its enhancement (optimization). All of these ideas and optimization techniques are incor-
porated in a multitude of software solutions currently available on the market. The most
well-known are CAx systems, which can replicate the different phases of the life cycles of
individual components as well as full machines and equipment in the virtual environment.

However, it is the machine designer who transforms an idea into reality. It is their
responsibility to ensure that the device works properly, has the right features, and is as
cheap as possible. At present, however, technical problems are very sophisticated and
complex, especially when it comes to obtaining a suitable solution to the task. This is one of
the reasons why designers often make mistakes, i.e., they are pressed by time, small budgets,
or insufficient knowledge of the issue. This is one of the reasons why a modern designer
should not only rely on outdated catalogs, machine tables, and outdated procedures, but
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should strive for progress by adapting to modern methods that are available today thanks
to the rapid evolution of information technology.

However, to prevent errors and inconsistencies in the design process itself, automation,
artificial intelligence, and machine learning can be used in practice, which significantly
reduce development times, save costs, and, most importantly, minimize the error rate
throughout the design process; moreover, information can be processed by a specific
algorithm. Thus, information and knowledge no longer need to be collected and processed
by a human (the designer).

This study, therefore, presents a thorough overview of the use of deep learning or
machine learning and specific suggestions on how these techniques can be used in the
design of machine components and nodes. Machine learning is a fundamental component
of artificial intelligence. The examples in this thesis aim to look for opportunities in the field
of mechanical design and optimization, where this technique could be commonly applied in
the future, ultimately benefiting society and the modern world of mechanical engineering.

Machine learning, or deep learning, is already being used today in various areas of
everyday life. There is also continuous research on how to improve the outputs of such
applications and technologies. As an example, research was conducted on cluster-based
multidimensional approaches for detecting attacks on connected vehicles [1], where the
researchers presented two algorithms that implemented an anomaly detection system
based on neural network data. We can also cite a research paper conducted in the field of
coronavirus diseases [2], where researchers used deep learning to accelerate the develop-
ment of a cure for COVID-19 by developing new algorithms to detect different genomes
of SARS-CoV-2. Of course, we cannot overlook the area of diagnostics, where machine
learning and artificial intelligence are often applied. A good example is the 2020 general
overview titled “Applications of machine learning to machine fault diagnosis: A review
and roadmap” [3], where researchers proposed a comprehensive diagnostic procedure for
machine health detection.

2. Artificial Intelligence and Machine Learning

The field of artificial intelligence (AI) (see Figure 1) is gaining a lot of attention due to
its ability to effectively analyze and act on the vast amount of data collected. It has been a
subject of research since the 1950s. The rapid increase in interest is mainly attributed to
advances made in the machine learning (ML) sub-area, as well as supporting factors, such
as data storage and computing power.

Figure 1. Artificial intelligence, machine learning, and deep learning.
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The interest in this technology is great and various subjects present numbers that
inform about the high potential of artificial intelligence. The systems of this technology are
becoming powerful tools that can be used and can lead to faster, more rational decisions, as
well as more efficient work. Therefore, with the further spread of artificial intelligence and
machine learning at the organizational and societal levels, significant benefits are likely to
be achieved.

2.1. Artificial Intelligence

Artificial intelligence (see Figure 1) permeates our environment. It involves a range
of sub-fields, ranging from the abstract to the tangible, including self-driving vehicles,
chess games, theorem provers, music, art, etc. AI is one of the most exciting and diverse
disciplines of computer science, with a vast future reach. Artificial intelligence has the
tendency to make machines behave similar to humans [4].

Artificial intelligence (AI) is an area of computer science that may be used to develop
intelligent computers that can act, think, and make choices similar to humans. Artificial
intelligence is shown when a machine has human-like abilities, such as learning, thinking,
and problem solving [4].

2.1.1. Goals of Artificial Intelligence

• Solving knowledge-intensive tasks;
• Making the connection between perceptions and actions;
• Developing machines that can perform tasks that require human intelligence;
• Creating systems that can exhibit intelligent behavior, learn new things on their own,

and demonstrate, explain, and advise their users [4].

2.1.2. Benefits of Artificial Intelligence

The benefits of AI are vase; these are the main ones:

• Reducing the human error rate—in artificial intelligence, decisions are made from
pre-collected information using a set of algorithms. As a result, errors are reduced to a
minimum and the probability of achieving accuracy with a higher degree of accuracy
increases rapidly.

• Risk transfer from people to AI—this is one of the greatest advantages of artificial
intelligence. Many high-risk occupations can be overcome via the development of AI,
which minimizes the risk of death or injury to humans. For example, a robot with AI
can go to Mars, defuse a bomb, explore the deepest parts of the oceans, mine coal and
oil, and be used effectively in any natural disasters.

• Continuous operation—the average person works 4–6 h a day without breaks. How-
ever, with artificial intelligence, we can ensure that machines work 24 h a day, 7 days
a week, without any breaks; unlike humans, they do not even get bored.

• Automation of repetitive tasks—with the help of artificial intelligence, everyday tasks
can be productively automated, even “boring” tasks for people can be removed and
released so that they become more creative.

• Digital use—there are highly developed enterprises that engage with people through
digital assistants, effectively conserving human resources. Digital assistants are also
used on many websites, allowing users to talk with them about what they are looking
for or need. Some chatbots are designed in a way that makes it difficult to discern
whether the user is interacting with a chatbot or a human being.

• Faster decision-making—by using AI with other technologies, machines can make
decisions and execute actions faster than humans. When making a decision, one will
analyze many factors (both emotionally and factually), but a machine powered by
artificial intelligence works according to how it is programmed and delivers results
faster [5].
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2.1.3. Disadvantages of Artificial Intelligence

Due to the fact that every positive trait has a negative counterpart, artificial intelligence
also has significant drawbacks. Here are several examples:

• High creation costs—AI is upgraded daily; hardware and software must be up to
date to satisfy the most recent needs. Costly repairs and upkeep are required for ma-
chines and systems. Moreover, in general, the use of such technology is prohibitively
expensive due to the complexity of its components and systems.

• Creating human laziness—artificial intelligence encourages laziness since its appli-
cations automate the majority of labor. People have a tendency to rely on these
innovations, which might be problematic for future generations.

• Rising unemployment—as artificial intelligence is replacing the majority of repetitive
chores and other forms of employment, human interaction is dwindling, which poses a
significant concern for labor standards. Each firm aims to replace low-skilled workers
with AI robots that are capable of performing the same tasks more efficiently.

• Absence of emotions—when it comes to job efficiency, robots are superior to humans,
but they cannot replace the human relationships that comprise a team. Machines
are incapable of forming relationships with people, which is a crucial skill for team
management.

• Lack of thinking—the only jobs that machines and systems are capable of doing are
those for which they were created or programmed to do. Anything beyond their
designated functions may result in crashes or generate irrelevant outputs, which can
present significant hurdles [5].

2.2. Machine Learning

Machine learning (ML) (see Figure 1) is a field within artificial intelligence (AI) and
computer science that focuses on utilizing data and algorithms to imitate how humans
learn and steadily improve accuracy. Data science is an expanding discipline, and machine
learning is a crucial component of it. In data mining initiatives, classification and predic-
tion algorithms are trained using statistical approaches, providing crucial insights. This
information then facilitates decision-making inside applications and organizations, ideally
affecting key growth metrics. With the increasing volume of big data, there will be a greater
need for data scientists who can assist in identifying the most crucial business issues and
providing answers [6].

2.2.1. The Way Machine Learning Works

The machine learning algorithm-training system consists of three parts:

• Decision-making process: Machine learning techniques are often used for prediction
or categorization. Based on particular input data, which may or may not be tagged,
the algorithm estimates the data pattern.

• Error function: The error function is used to assess the model’s prediction. If ex-
amples are available, the error function may conduct a comparison to evaluate the
model’s correctness.

• Model optimization process: If the model can be better suited to the training set’s data
points, then the weights are modified to decrease the distance between the known
example and the model prediction. The algorithm will continue this assessment and
optimization process, updating the weights until a predetermined level of accuracy is
attained [6].

2.2.2. Types of Machine Learning

Machine learning is divided into the following types of learning, according to the type
of task it solves:

• Supervised learning—this is defined by the use of tagged datasets (see Figure 2) to
train algorithms to accurately classify data or predict results. As input data are entered
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into the model, the weights are adjusted until the model fits properly. This is done as
part of the cross-validation process to ensure that the model avoids over- or under-
adaptation. Supervised learning helps organizations address a variety of real-world
issues, such as classifying spam into separate inboxes. Methods used in this type of
learning include neural networks, naive Bayes, linear regression, logistic regression,
decision trees, and more.

Figure 2. Supervised machine learning.

• Unsupervised learning—analyzes and aggregates untagged datasets using machine
learning methods (see Figure 3). These algorithms discover hidden patterns or data
clusters without requiring human participation. Unsupervised learning is suitable for
exploratory data analysis, cross-selling techniques, consumer segmentation, and pic-
ture and pattern identification, as it can identify similarities and contrasts in informa-
tion. In unsupervised learning, other algorithms include neural networks, k-means
clustering, probabilistic clustering approaches, etc. For example, principal component
analysis (PCA) and singular value decomposition (SVD) are two commonly used
methods of unsupervised learning; they are used for dimensionality reduction and
feature extraction.

Figure 3. Unsupervised machine learning.

• Semi-supervised Learning—this represents the middle ground between learning with
and without a teacher. During training, it uses a smaller set of labeled data to guide the
classification and extraction of symptoms from a larger, unmarked dataset. Partially
supervised learning (see Figure 4) can solve the problem of the lack of tagged data (or
the inability to afford to tag enough data) to train a supervised learning algorithm [6].
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Figure 4. Semi-supervised machine learning.

• Reinforcement learning—this involves taking the proper steps to maximize compen-
sation in a given circumstance. It is used by software and robots to determine the
optimal behavior or course of action in a given circumstance. In supervised learning,
the training data include the solution key, so the model is trained with the right answer
alone, but in rewarded learning (see Figure 5), there is no response and no learning;
the system determines how to complete the job. In the absence of a training set, the
system is compelled to gain knowledge by experience [7].

Figure 5. Reinforcement learning.

2.3. Deep Learning

Deep learning (DL) is a subset of machine learning (see Figure 1), which is a subset of
artificial intelligence. Artificial intelligence is an umbrella term for approaches that enable
computers to simulate human behavior. All of this is made possible by a collection of
algorithms educated on data using machine learning [8].

Deep learning is a sort of machine learning influenced by the structure of the human
brain. Deep learning algorithms attempt to reach comparable conclusions to those that
would be reached by continuously analyzing data with a predetermined logical framework.
To do this, deep learning employs multi-layered algorithmic structures known as neural
networks (see Section 2.3.4).

2.3.1. Neural Networks

The design of the neural network (see Section 2.3.4) is based on the structure of the
human brain. Neural networks may learn to recognize patterns and categorize data in the
same way that the human brain does. Individual layers of neural networks may also be
seen as filters that operate from coarse to fine, hence improving the likelihood of detecting
and outputting the right results. The human mind functions similarly. When a person
acquires new knowledge, the brain attempts to compare it to previously stored data. Deep
neural networks use the same principle.

Neural networks provide a variety of operations, including grouping, classification,
and regression. Using neural networks, it is possible to group or sort unlabeled data
based on the similarities between the samples. In the case of classification, the network
may be trained on a labeled dataset to categorize the samples within that dataset into
several categories.
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Neural networks can generally execute the same tasks as traditional machine learning
techniques. However, they do not work in reverse. Deep learning models may conduct
tasks that machine learning models are incapable of accomplishing due to the unique
characteristics of artificial neural networks [8].

2.3.2. Biological Neural Networks

The neurons present in the human brain serve as the inspiration for artificial neural
networks. In reality, artificial neural networks imitate some of the fundamental operations
of neural networks in the human brain, although in a highly simplified manner.

A biological neural network is made up of many neurons. A typical neuron consists
of a cell body, dendrites, and an axon (see Figure 6). Dendrites are thin, outgrowths of the
cell body. Axons are cellular extensions that emanate from the cellular body. The majority
of neurons receive signals through dendrites and transmit messages via axons.

Figure 6. Biological neuron model [9].

In the majority of synapses, impulses go from the axon of one neuron to the dendrite.
All neurons are electrically stimulated because their membranes maintain voltage gradi-
ents. If the voltage varies significantly and rapidly, the neuron creates an electrochemical
pulse known as the action potential. This potential quickly propagates through the axon,
activating synaptic connections as it reaches them [8].

2.3.3. Artificial Neural Networks

Typically, a neural network consists of a collection of linked units or nodes. We refer
to these nodes as neurons. These synthetic neurons faithfully simulate the organic neurons
of the human brain. A neuron is nothing more than a graphical representation of a number
(e.g., 1.2, 5.0, 42.0, 0.25, etc.). Any link between two artificial neurons is equivalent to an
axon in a biological brain. Scales, which are also nothing more than numerical values, are
used to establish connections between neurons.

As an artificial neural network learns, the weights and the strengths of the connections
between the neurons vary. The collection of weights for each job and dataset is unique.
We cannot forecast the values of these weights; thus, they must be learned by the neural
network. The process of learning is also known as training [8].

2.3.4. Architecture of Artificial Neural Networks

Neural networks are intricate structures consisting of artificial neurons that are capable
of receiving numerous inputs and producing a single output. The primary function of
a neural network is to convert input data into meaningful output data. Typically, a neu-
ral network consists of an input layer, an output layer, and one or more hidden layers
in between.

All neurons in a neural network communicate with one another; therefore, they are all
linked. The network is able to detect and observe every facet of a particular data collection,
as well as how the various data elements may or may not be connected. In this manner,
neural networks are able to identify exceedingly complicated patterns in massive datasets.

In a neural network, information flows in two directions:
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• Forward neural network—in this paradigm, signals flow in just one way, from the
input layer to the output layer. Power grids consist of an input layer, an output layer,
and zero or more concealed layers. They are used extensively in pattern recognition.

• Recurrent neural network—in this paradigm, recurrent networks process a succession
of inputs by using their internal states (memory). In these networks, signals may
propagate in both ways via network loops (hidden layer/hidden layers). Typically,
they are employed for time series and sequential activities [10].

2.3.5. Layer Interconnection in a Neural Network

As seen in (Figure 7), each connection between two neurons is represented by a unique
weight, denoted by the symbol W. These weights W each have their own indices. The first
value of the indices represents the number of neurons in the layer where the connection
begins, while the second value represents the number of neurons in the layer where the
connection terminates [8].

Figure 7. Connecting neuronal layers.

All weights between two layers of a neural network can be represented by a matrix
called a weight matrix:

W =

(
x11 x12 x13
x21 x22 x23

)
(1)

There are as many entries in the weight matrix as there are neuronal connections.
The size of the two layers that this weight matrix connects determines the dimensions of the
weight matrix. The number of rows represents the number of neurons in the layer where
the connections start, while the number of columns represents the number of neurons in
the layer where the connections terminate.

In this instance, the number of rows of the weight matrix correlates to the size of the
input layer, which is two, and the number of columns corresponds to the size of the output
layer, which is three [8].

2.3.6. The Process of Learning the Deep Neural Network

In actuality, the learning rule (or learning process) involves mathematical logic. It
applies this rule to the network and enhances the performance of an artificial neural
network. Consequently, learning rules change a network’s weights and distortion levels
as they simulate in a certain data environment. The process of applying a learning rule
is iterative. It improves the neural network’s performance by allowing it to learn from
existing situations.

The learning process can be divided into several types:
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• Hebb’s rule was the first rule of learning. In 1949, Donald Hebb developed it as
a learning algorithm for an uncontrolled neural network. Hebb’s rule of learning
assumes that if two neighboring neurons are activated and deactivated at the same
time, then the weight connecting those neurons should increase. In the case of neurons
operating in the opposite phase, the weight between them should be reduced. If there
is no signal correlation, the weight should not change. If the inputs of both nodes are
either positive or negative, then there is a strong positive weight between the nodes.
If the input of one node is positive and the other is negative, there is a strong negative
weight between the nodes. Initially, the values of all weights are set to zero. This
learning rule can be used for both soft and hard activation functions. Since the required
neuronal responses are not used in the learning process, this is the rule of uncontrolled
learning. Absolute weight values are usually proportional to the learning time, which
is undesirable. The mathematical notation of Hebb’s rule in neural network learning
is as follows:

Wij = xi ∗ xj (2)

• Perceptron learning rule—each connection in a neural network has an assigned weight
that changes during learning. According to the example of supervised learning,
the network begins its learning by assigning a random value to each weight. The out-
put value is calculated on the basis of a set of records for which the expected output
value can be known. This is a sample of learning that denotes the whole definition.
As a result, it is called a learning sample. The network then compares the calculated
output value with the expected value. It then calculates the error function, which
can be the sum of the squared errors occurring for each individual in the learning
sample [11]. The mathematical notation of perceptron learning rules in the neural
network is as follows:

∑
i

∑
j
(Eij − Oij)

2 (3)

Eij and Oij represent the predicted and actual values of the jth unit for the ith person,
respectively. The network then modifies the weights of the individual units and
determines whether the error function has risen or reduced at each iteration. Similar
to normal regression, this is a solution to the issue of least squares.

• Delta learning rule—this is one of the most prevalent learning principles. It requires
guided instruction. This rule states that the change in the sympathetic weight of a
node is proportional to a multiple of the mistake and input.
Mathematical notation of the Delta rule in a neural network [11]:

∆w = η(t − y)x (4)

The output vector that corresponds to the right answer for a particular input vector
is compared. If the difference is zero, there is no learning; otherwise, the algorithm
changes its weights to lower it. The Delta learning rule may be used for both a single
output unit and many output units. With this rule, one must presume that the mistake
can be directly measured. The objective of using the delta rule is to minimize the
error-causing disparity between the actual and predicted output [11].

• The correlation rule of learning is founded on a similar basis to Hebb’s rule. Hebb
hypothesizes that the weights between responding neurons should be more positive,
whilst the weights between neurons with the opposite response should be more
negative. The correlation rule, unlike Hebb’s rule, involves supervised learning.
In mathematical form, the correlation rule of learning is as follows:

∆wij = ηxidj (5)
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where dj is the desired value of the output signal. This training algorithm usually
starts with initializing the weights to zero [11].

• The Outstar learning rule is utilized when there is an assumption that nodes or neurons
in the network are organized in layers. In this case, the scales linked to a certain node
should correspond to the needed outputs for the neurons connected through these
scales. Outstar provides the necessary response for the n-node layer. In mathematical
form, Outstar learning is as follows [11]:

Wjk =

{
η(yk − wjk)

0
(6)

2.4. Machine Learning and Deep Learning

Deep learning (DL) and machine learning (ML) are currently the two most trendy
technologies in the world. However, these technologies are often confused. Although deep
learning is a subset of machine learning (see Figure 1), many people confuse these two
terminologies. There are several distinctions between machine learning and deep learning,
both in terms of resources and applications.

• Data consumption—DL requires a large number of labeled samples to be successful.
However, the amount of data alone is not enough; they must be of the right quality, i.e.,
properly labeled. Not all data collected are flagged, labeled correctly, or in a manner
appropriate for the DL. Such data are not always publicly available. In this case, data
labeling needs to be done, which is time-consuming and costly and often requires a
defined and rigorous set of procedures, quality control, and expertise. Unfortunately,
this fact and its impact on the usefulness of DL for real problems are often downplayed
in DL discussions.

• Specific hardware—the training phase of DL systems usually requires specialized
hardware, such as graphics processing units (GPUs), in order to reduce the execution
time to a manageable level, i.e., hours, days, or weeks, compared to years. These
systems, although they are becoming cheaper, are still expensive compared to the
needs of simpler ML kits.

• Specification extraction is the process of incorporating domain knowledge into the
creation of extractors of individual specifications in order to reduce data complexity
and make patterns for learning algorithms visible. This process is time-consuming
and expensive. Figure 8 presents an example of a specification extraction difference
between DL and ML.

Figure 8. DL and ML operations process.
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• Application—in terms of time, hardware, and data, DL is more costly. In conclusion,
it can be claimed that deep learning and machine learning are most effective when
employed in accordance with the conditions listed in Table 1 [12].

Table 1. Applications of ML and DL [13].

Criterion Machine Learning Deep Learning

Data volume Fewer data Large amounts of data

Computational costs Shorter time and cheaper hardware. Longer time and more expensive hardware.

Adaptability

To construct high-performance models, domain-
and application-specific approaches, as well as

specialized engineering, are required. Therefore,
the resulting models are less flexible, even in

comparable domains.

It is easier to adapt to different areas
and applications.

Engineering tools
Complex specific engineering is often required,
which is time-consuming as well as economical,

due to the lack of experts in the field.

It may decrease or even remove the requirement
for a detailed specification, considerably

decreasing the time and expenses associated with
this stage. However, it may incur greater hardware

and time-related costs associated with deep
learning procedures.

Interpretability

Due to specialized engineering and a simplified
design, systems are often easy to comprehend. It is

simpler to comprehend how and why the ML
algorithm reaches its conclusion. This may be very
helpful and necessary for updating and repairing a

system that delivers inaccurate results under
unforeseen conditions.

Less capable of interpretation. It is sometimes
regarded as a “black box” system, where

researchers attempt to explain how and why it
produces a certain outcome. Nonetheless, major
advancements continue to be made in this field,

which exposes a black box, so that this difference
may fade with time.

3. Libraries and Software for Machine Learning

Modern artificial intelligence systems and machine learning algorithms have rev-
olutionized the approaches to scientific and technological challenges in various fields.
Remarkable improvements in the quality of state-of-the-art computer vision, human lan-
guage processing, speech recognition, and much more, can be observed. Although machine
learning algorithms, deep learning algorithms, and individual architectural components
can initially be expressed in mathematical notation, they must eventually be transcribed
into a computer program for use in the real world. For this purpose, there are a number
of software libraries (see Figure 9) and open-source machine learning programs, as well
as commercial ones. MLC++ and OpenCV were the first libraries designed mainly for ma-
chine learning. In 2002, the Torch Library, which was intended for deep learning, appeared
for the first time, i.e., in the field of deep learning [14].

Figure 9. Publication of machine learning libraries on a timeline.
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3.1. Programming Languages for Machine Learning

The most difficult aspect of mastering machine learning for beginners is deciding
where to begin. Moreover, one of the most essential factors is selecting the proper pro-
gramming language. Given that there are more than 700 commonly used programming
languages, each with its own advantages and disadvantages, determining the best lan-
guage for machine learning is a difficult endeavor. Table 2 displays the distribution of
the most popular libraries (frameworks) and engineering software by the most popular
programming languages that are suitable for machine learning and deep learning.

Table 2. Software libraries for AI sorted by programming language.

Python C++ Java R Lua Scala Own Language

Torch/PyTorch • * •

TensorFlow • •

Keras •

Caffe • •

Deeplearning4j •

scikit-learn •

Apache Spark MLlib • • •

Apache Mahout • •

Apache SINGA •

Shogun • • •

KNIME •

GNU Octave •

MATLAB and Simulink •

Maple •

Wolfram Mathematica •

* Label of programming languages for the given framework.

3.1.1. Python

Python is an object-oriented, high-level programming language with dynamic se-
mantics; it is known for its interpretability. Its high-level built-in data structures, coupled
with dynamic typing and dynamic binding, make it highly desirable for rapid application
development, as well as for use as a scripting or linking language to connect existing com-
ponents. Python’s easy-to-learn syntax emphasizes intelligibility, thereby reducing the cost
of program maintenance. Python supports numerous modules and packages, promoting
the modularity and reusability of programs. The Python interpreter and comprehensive
standard library are freely available in source or binary form for all main platforms and
may be redistributed without restriction [15].

The Python code is known for its readability and simplicity as it is similar to the
English language. This feature makes it easy to write and comprehend, reducing the time
spent writing complex code for developers. Moreover, Python offers an extensive range
of libraries and frameworks tailored to the needs of AI and machine learning (ML), such
as computing capabilities, statistical computing, scientific computing, and more. This
flexibility provides developers the opportunity to choose either OOPS or script-based
programming. Python for machine learning provides a quick and easy display of results
without the need for a complete recompilation of the code. Additionally, new developers
who join the project midway can quickly understand the project’s scope, minimizing
the likelihood of errors and conflicting paradigms, leading to faster development of the
machine learning program.
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Data are crucial aspects of machine learning, artificial intelligence, and deep learning
algorithms. They require intensive visualization to understand all of the variables and
factors involved in the data analysis. Python offers developers with the opportunity to
create histograms, charts, and graphs, providing a better understanding of how data
interact and work together. Moreover, APIs facilitate the visualization process by enabling
the generation of clear data reports.

There are four different styles of Python software that the user can choose from:
imperative, object-oriented, functional, and procedural. These styles reduce the possibility
of mistakes based on the artificial intelligence project [16].

3.1.2. C++

C++ is a widely recognized programming language extensively used by over four
million programmers worldwide. It was first introduced in 1985 as an extension of the C
programming language and has evolved into a distinct language with unique features and
characteristics. It is an object-oriented and procedural language that provides discrete and
direct memory management capabilities, making it ideal for large and scalable applications.
C++ is considered a high-level programming language that is used in machine learning
and deep learning applications.

As an object-oriented language, C++ enables developers to write powerful and efficient
code that can run on a broad range of platforms, from small embedded systems to large
supercomputers. At the machine level, C++ code is compiled into machine code that can
be executed directly by the computer’s processor, allowing for optimization of computing
resources. In the context of machine learning, C++ is commonly used to implement low-
level algorithms, such as matrix operations and optimization algorithms, which require
high-performance computation. C++ is also utilized to interface with specialized hardware,
such as GPUs, to accelerate computations.

In summary, C++ is a versatile and powerful programming language that can be
applied to various applications, including machine and deep learning. Its low-level access
to hardware and optimization for specific architectures makes it an appealing option for
computationally intensive tasks [17].

3.1.3. R

R is a programming language that has been specifically designed for statistical com-
puting and data analysis. It offers an array of libraries and tools for data manipulation,
modeling, and visualization, making it a top choice for tasks related to machine learning.
The language is widely known for its comprehensive collection of packages that cater to
machine learning applications. For instance, the “caret” package provides an all-inclusive
set of tools for building and assessing machine learning models, while the “randomForest”
package offers implementation of the random forest algorithm. R is also celebrated for
its interactive data visualization capabilities, which simplify the exploration and compre-
hension of intricate datasets. Developers commonly use the “ggplot2” package to create
high-quality, personalized visualizations. The language boasts of an active community of
users and developers who regularly contribute to the development of packages and share
their knowledge through various online forums and resources, making it easy for beginners
to get started with machine learning in R. R supports popular machine learning algorithms,
such as linear regression, logistic regression, decision trees, random forests, support vector
machines, and neural networks, which can be used for a variety of applications, including
classification, regression, clustering, and dimensionality reduction. In summary, R is a
robust and adaptable programming language that is well-suited for machine learning tasks,
thanks to its broad range of packages, interactive visualization capabilities, and active
community [18].
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3.1.4. Java

Java is a commonly used programming language that is widely used in both industry
and academia to create a variety of applications, including those related to machine learning.
Its popularity stems from its simplicity, portability, and security, making it a sought-after
option for developing sturdy and scalable applications.

In the field of machine learning, Java is frequently employed to create and implement
large-scale applications, such as fraud detection systems, recommender systems, and natu-
ral language processing tools. It is equipped with numerous libraries and frameworks for
machine learning, including Weka, Deeplearning4j, and Apache Mahout. Among these,
Weka is a popular open-source machine learning library in Java that includes an extensive
set of algorithms for data mining, classification, and feature selection. Additionally, it offers
tools for preprocessing, visualizing, and evaluating data, making it straightforward to
create and assess machine learning models. Deeplearning4j, another well-known deep
learning framework written in Java, can run on distributed systems, such as Hadoop and
Spark, providing a variety of neural network architectures and optimization algorithms,
including convolutional neural networks, recurrent neural networks, and gradient descent.
This makes it an excellent option for a wide range of deep learning tasks. Lastly, Apache
Mahout, a popular machine learning library in Java, contains various algorithms for clus-
tering, classification, and collaborative filtering; it is designed for scalability and is capable
of operating on distributed systems such as Hadoop and Spark, making it a good choice
for processing and analyzing vast amounts of data.

Overall, Java is a versatile and potent programming language that can be utilized for a
broad range of machine learning applications. Its simplicity, portability, and security make
it a popular option for developing and deploying robust and scalable applications in both
industry and academia. [19]

3.2. Libraries (Frameworks) for Machine Learning

A machine learning framework is an interface, library, or tool that enables developers
to generate machine learning models with less effort and in less time by abstracting away the
intricacies of fundamental methods. The library offers a straightforward and quick method
for defining machine learning models by utilizing a collection of pre-built, optimized
components. Some of the key features of a good machine learning framework are:

• It is optimized for high performance;
• It is developer-friendly, i.e., the library uses traditional modeling methods;
• It is easy to understand and code;
• It is not completely a black box;
• It provides parallelization to the computational process distribution.

An effective machine learning library simplifies the process, making it accessible to a
greater number of developers [20]. Table 2 presents the distribution of software libraries
across different programming languages. Some of these programs have multiple language
APIs, so users can choose the one that best fits their needs.

3.2.1. Torch/PyTorch

Torch is a platform for scientific computing that provides comprehensive support
for machine learning methods. It is built for deep Lua-based learning and is extensively
used by Facebook, Twitter, and Google. It employs CUDA code for processing together
with C/C++ libraries and was designed to expand the production and general flexibility
of constructing models. PyTorch, unlike Torch, runs on Python, allowing anybody with a
basic understanding of Python to begin building their own deep learning models. PyTorch
is essentially a port of the Torch deep learning library, which is used to build deep neural
networks and perform sophisticated tensor computations [21].



Machines 2023, 11, 577 15 of 40

3.2.2. TensorFlow

Unquestionably, TensorFlow is one of the most popular deep learning frameworks. It
was developed by the Google Brain team and supports languages such as Python, C++,
and R, in addition to packaging libraries for the creation of deep learning models. It
is accessible on both desktop and mobile platforms. Google Translate, in combination
with features such as natural language processing, text categorization, summarization,
audio/image/font recognition, prediction, and labeling, is the most well-known use of
TensorFlow. TensorBoard consists of a set of visualization tools for TensorFlow, which allow
for efficient viewing of network modeling and performance data. Another TensorFlow
utility, TensorFlow Serving, is used to rapidly deliver new algorithms/experiments while
preserving the same server architecture and API. It also offers integration with other Tensor-
Flow models, extending beyond standard methods, and can be modified to accommodate
additional models and data formats. TensorFlow is one of the most popular deep-learning
frameworks due to the fact that it is based on the Python programming language, is
maintained by Google, and offers user-friendly documentation and instructions [21].

3.2.3. Keras

The Keras Library was designed with quick experimentation in mind. It was developed
in Python and enables running convolutional and recurrent networks on TensorFlow or
Theano. The Keras deep learning framework was created to provide a simpler interface
for quick prototyping by generating active neural networks that are compatible with
TensorFlow since the TensorFlow interface is sophisticated and may be difficult for novice
users. In summary, Keras is lightweight, user-friendly, and minimalist. These are the
reasons why Keras is included in the TensorFlow basic API. The primary applications
of Keras include text categorization, generation, summarization, labeling, translation,
and voice recognition, among others [21].

3.2.4. Caffe

Caffe is renowned for its laser-like velocity. It is a deep learning framework that
supports interfaces, such as C, C++, Python, MATLAB, and the command line. In recent
years, it has gained popularity due to its usefulness in convolutional neural network (CNN)
modeling and its speed. Having access to the “Caffe Model Zoo” deep network repository
is a major benefit of utilizing the Caffe library in C++. Caffe Model Zoo provides nets that
are already trained and ready for use. This library must be designed for CNN modeling
and image processing problem-solving. The greatest benefit of Caffe is its quickness. Using
a single Nvidia K40 graphics processor, it can process over sixty million photos each day.
Caffe is also a popular network for visual recognition. However, it does not support
network layers with precise granularity, such as TensorFlow or CNTK. Due to the design,
support for recurrent networks and language modeling is rather minimal, and complicated
layer types must be created using a low-level language [21].

3.2.5. Deeplearning4j (DL4J)

The letter j in Deeplearning4j stands for Java. It is a deep learning library for the
Java Virtual Machine (JVM). It is written in Java and supports Scala, Clojure, and Kotlin,
among other JVM languages. Important aspects of the Eclipse Deeplearning4j deep learn-
ing framework include parallel training through iterative reductions, adaption of the
microservice architecture in combination with distributed CPUs and GPUs, and microser-
vice architecture adaptability. Widely recognized as a commercial, industry-oriented, and
distributed deep learning platform, DL4J provides extensive support for deep networks
including RBM, DBN, CNN, RNN, RNTN, and long-term short-term memory (LSTM).
Because this framework for deep learning is developed in Java, it is far more effective than
Python. DL4J is just as fast as the Caffe framework for multi-GPU image recognition appli-
cations. The picture identification, fraud detection, text mining, audio tagging, and natural
language processing capabilities of this library are unrivaled [21].
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3.2.6. scikit-learn

scikit-learn is a machine learning package for Python. Specifically, it consists of a
collection of simple and useful tools for data mining and analysis, as stated by the creators.
The framework is composed of numerous well-known Python programs, including NumPy,
SciPy, and matplotlib. This library’s primary benefit is the BSD license under which it is
provided. This license enables the user to select whether or not to stream their modifications
without limiting commercial usage. The primary benefits of this solution are its accessibility
and simplicity; moreover, it is simple to use, even for novices, and is an excellent option
for straightforward data analysis jobs. On the other hand, scikit-learn is not the greatest
option for deep learning [22].

3.2.7. Apache Spark MLlib

MLlib is an Apache Spark-integrated machine learning library. It is a tool used for
processing massive volumes of data and is sometimes referred to as an open-source cluster
computing platform. It operates on numerous platforms, including EC2, Hadoop YARN,
Mesos, and Kubernetes, and is completely compatible with the NumPy library and the R
programming language. MLlib is capable of accessing data from HDFS, Apache Cassan-
dra, Apache HBase, Apache Hive, and many more data sources. In terms of its benefits
and drawbacks, its advantages include highly rapid processing, dynamism, reusability,
and fault tolerance. However, weaknesses, such as resource needs, excessive latency,
the necessity for manual optimization, and inadequate file management might degrade
the user experience of MLlib. It is most useful for fraud detection and e-commerce data
management applications [22].

3.2.8. Apache Mahout

Apache Mahout is a scalable machine learning (ML) toolkit in distributed data flow
systems that implements classification methods, clustering, dimension reduction, and rec-
ommendations in a variety of ways. In 2008, when it began to concentrate on MapReduce,
which was the leading abstraction for scalable computing at the time, Mahout was a pioneer
in large-scale machine learning. Mahout is extensively used by industry-leading online
organizations and is included in a number of commercial cloud services. In recent years,
Mahout has transitioned to a framework that permits a mix of data flow programming and
linear algebraic computations using backends such as Apache Spark and Apache Flink.
This approach enables users to conduct model preprocessing and training in a single unified
dataflow system, as opposed to requiring the integration of many specialized systems.
Mahout is an open-source project maintained by the Apache Software Foundation [23].

3.2.9. Apache SINGA

By partitioning the model and parallelizing the training process, Apache SINGA fo-
cuses largely on distributed deep learning. It offers a simple and dependable programming
approach that is capable of operating on a cluster of nodes. Principal applications are in
image recognition and natural language processing (NLP). SINGA was designed with an
easy programming approach based on layer abstraction and supports several deep learning
models. Based on a highly adaptable architecture, it is capable of running synchronous,
asynchronous, and hybrid training techniques. Three essential components comprise the
SINGA technological stack: IC, model, and core. The IO component comprises classes
used for network and disc read/write operations. The kernel component is responsible for
tensor operations and memory management. The model component comprises machine
learning model-specific algorithms and data structures [24].

3.2.10. Shogun

Shogun is one of the oldest and most esteemed machine learning libraries; it was
founded in 1999 and built in C++, although it is not confined to that language. Shogun
may be used transparently in languages and settings, such as Java, Python, C#, Ruby, R,



Machines 2023, 11, 577 17 of 40

Lua, Octave, and MATLAB thanks to the SWIG library. Shogun is intended for unified,
complete learning across a broad variety of learning criteria and environments, including
classification, regression, and exploratory data analysis [25].

3.3. Commercial Software for Machine and Deep Learning in Mechanical Engineering

Currently, computers learn or discover without explicit programming how to accom-
plish things. However, all algorithms need the requisite software to function effectively.
This enables individuals to teach computers to execute tasks using huge volumes of data,
where the computers learn to identify patterns, characteristics, and trends that enable them
to make judgments and predictions. Today, machine learning software learns from the large
quantity of accessible web data. In addition to collecting data, the finest machine learning
technologies can contextually analyze and categorize the content, sentiments, and other
subtleties of datasets [26].

3.3.1. GNU Octave

Octave is a high-level programming language designed for numerical calculations. It
can quickly solve linear and nonlinear numerical problems and perform other experiments
numerically. The Octave language is quite similar and mostly compatible with MATLAB.
If the code runs in MATLAB without using functions that Octave does not have, it will also
work in Octave. It even has several language functions and syntax diversity that MATLAB
lacks. Unlike MATLAB, it is public and completely free. Although Octave was originally
designed for scientific computing, many organizations use it for basic data processing and
graphing. It can also be used for machine learning, data analysis, and the creation of ML
algorithms [27].

3.3.2. MATLAB and Simulink

MathWorks’ MATLAB is a high-performance programming language used for tech-
nical computations. It combines computations, visualizations, and programming in a
user-friendly environment, where problems and answers are stated in a familiar mathemat-
ical language.

MATLAB is an interactive system; its fundamental data element is a dimensionless
array. This enables one to solve many complex computing issues in a fraction of the time it
would take to build a program in a scalar non-interactive language, such as C or Fortran.

The application-specific solutions in MATLAB are known as toolboxes. For the ma-
jority of MATLAB users, toolboxes that enable the study and application of specialist
technologies are crucial. Toolboxes are exhaustive sets of MATLAB functions (M-files) that
enhance the capabilities of the MATLAB environment to address certain types of problems.
Toolboxes are provided for a variety of disciplines, including signal processing, control
systems, neural networks, fuzzy logic, wavelets, and simulation. Moreover, one of the
greatest benefits of this application is that it has an online version, which means it can
operate in any web browser [28].

3.3.3. Maple

Maple is a symbolic and numeric computing environment as well as a multi-paradigm
programming language. It includes symbolic mathematics, numerical analysis, data pro-
cessing, and visualization, among other fields. The MapleSim toolkit includes multi-domain
physical modeling and code-generating capabilities. Maple’s symbolic computation capa-
bilities are comparable to those of a universal computer algebra system. For instance, it is
able to manipulate mathematical expressions and develop symbolic solutions to specific
problems, including those derived from ordinary and partial differential equations. It can
also use the toolkit for deep learning. Maple is developed commercially by Maplesoft,
a Canadian software firm [29].



Machines 2023, 11, 577 18 of 40

3.3.4. Wolfram Mathematica

Wolfram Mathematica is a software system with built-in libraries for several areas of
technical calculations, allowing users to perform symbolic calculations, manipulate matri-
ces, plot functions and different data types, implement algorithms, create user interfaces,
and establish connections with programs written in other programming languages.

Wolfram Language provides cutting-edge designs, training, and deployment capa-
bilities for neural network machine learning systems. There are several common kinds
of layers that are combined symbolically into a network, which can then be trained and
deployed instantly on available CPUs and GPUs. The Wolfram Mathematica online version,
which can operate in any web browser, is one of the program’s greatest features [30].

3.3.5. Other Commercial Software

In addition to the commercial software mentioned in Section 3.3, there are many others
on the market. Table 3 lists the most well-known companies that have products in their
portfolios that can be commonly used in mechanical engineering for mechanical design and
optimization. However, in order to be competitive, all brands are attempting to implement
tools to work with machine learning and artificial intelligence in their software.

Table 3. Software companies that offer products that use artificial intelligence.

Software Company Software Company

ANSYS [31] ESI [32]
Altair [33] Materialise [34]

HEXAGON [35] NUMECA [36]
Dassault Systèmes [37] Rhino [38]

PTC [39] COMSOL [40]
Autodesk [41] IDEA StatiCa [42]
Siemens [43] Noesis [44]
AVEVA [45] BETA-CAE Systems [46]

4. Method of Representing Input Data for AI

This section covers the prevalent techniques used to represent designs in design
graphical models for engineering. It contains an explanation of each approach, a broad
overview, and the advantages and disadvantages associated with each method.

Input data are important components in machine learning. They denote the observa-
tions or measurements that can be used to train a machine learning model. The quality
and quantity of data available for training and testing play important roles in determining
the performance of a machine learning model. Data can take different forms, such as
numerical, categorical, or time series, and can come from a variety of sources, such as
databases, spreadsheets, or APIs. Machine learning algorithms use data to learn patterns
and relationships between input variables and target outputs, which can then be used for
prediction or classification tasks.

4.1. Images

Design information can be in the form of images, such as microstructure scans or
topology optimization. An image is a rectangular grid of pixels, with each pixel having a
color parameter represented by a third-order tensor with the height, width, and channels.
Common color schemes include black-and-white, grayscale, and color. The advantages
of using images are that they are information-rich and can capture many design details,
and deep learning filters can generate both high- and low-level features, as well as up-
sampling and downsampling. However, representing designs using pixels can result in
generating images that are impractical for downstream tasks, and fabricating designs accu-
rately from images can be difficult. Even performance evaluations using simulation tools
may require an intermediate conversion from the image to the 3D model. Artifacts are also
common in image-based designs, especially when training on small datasets. Images may
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lack domain knowledge and physical realization information, leading to a gap between the
generated images and the actual designs they represent in design graphical models.

4.2. Voxelization

To represent 3D designs, voxels are often used, which are the 3D counterparts of pixels.
Voxelizations have similar features to images but are typically represented as Boolean
values (space vs. object) instead of color parameters. This makes them third-order tensors
with dimensions consisting of height, width, and depth. The advantages of voxelizations
are that they support 3D convolution and can learn both high-level and low-level features
in 3D. However, the curse of dimensionality is more pronounced with voxelizations than
with images, with the number of parameters increasing with the cube of spatial resolution.
Similar to images, voxelizations are limited in their usability in downstream tasks and
suffer from prevalent artifacts. They are often used as surrogate representations of CAD
models or 3D shapes and require conversion before they can be used in downstream
tasks. For example, they are typically converted to boundary representations or polygonal
representations, which serve as the native parameterizations used in rendering, graphics
software, finite element analysis, and computational fluid dynamics simulation.

4.3. Point Clouds

Point clouds are sets of points in 3D space that define the shape of an object. They
have several advantages, including the ability to represent complex geometry with a finite
number of points, and they are easy to create using 3D scanning software. However,
point clouds also have some drawbacks, including the need to convert them to other
representations, such as meshes for downstream tasks, which can be challenging [47,48].

4.4. Meshes

Meshes are frequently used to represent objects in 3D spaces; triangular meshes are the
most commonly used forms. They are the native representations used in many computer
graphics algorithms and software, as well as finite element analysis (FEA) and computa-
tional fluid dynamics (CFD) tools. Meshes can be easily visualized and simulated in many
FEA or CFD tools, which makes it easy to evaluate their performance using numerical
methods. Meshes can be considered specialized types of graphs and can use graph convo-
lutional operators. However, generating meshes directly using machine learning methods
is more challenging compared to other representations, such as voxelizations and point
clouds, despite recent advances in algorithms that can directly generate meshes [49–51].

4.5. Signed Distance Function

The signed distance function/field (SDF) is a technique used for parameterization,
which involves a map from a coordinate point to an SDF value, usually in 3D. This value
represents the distance from the point to the closest surface of the object and indicates
whether the point is inside or outside the object. SDFs can be represented in different ways,
such as rasterized representations, where each voxel contains a continuous numerical value,
indicating the SDF value at that point. SDFs are useful as intermediate parameterizations for
many learning tasks. However, similar to point clouds and voxels, SDFs require conversion
to BRep or polygonal representations before they can be used in downstream tasks.

4.6. Parametric

In simple terms, “parametric” data refer to design representations that consist of
design parameters without any known spatial or temporal significance. These parameters
can be organized in a tabular format where each row represents a design and each column
describes a design parameter. The advantages and disadvantages of using parametric data
may vary depending on the specific case.

Pros: Parametric data are usually very information-dense, which means that they can
encode more geometric details using fewer parameters. This can make the optimization
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of parametrically represented designs much easier. Parametric data can also support
downstream tasks, especially if the design parameters are human-interpretable. This
can allow generated designs to be directly fabricated using conventional manufacturing
techniques. Additionally, linking design parameters with latent variables can allow for
more effective optimization or inverse designs using generative methods.

Cons: Learning parametric data can be difficult since it commonly involves mixed
data types and inherits the training challenges of its components. Multimodal distributions,
skewed categories, non-Gaussian distributions, data sparsity, and poor data scaling can
make the application of DGMs and training very challenging. Since methods that are
robust to all of these challenges are hard to come by, successfully applying existing methods
to the parametric data domain can be challenging. Finally, since parametric data may
be nontrivial to convert to 3D models, generated parametric designs may be difficult to
evaluate using numerical simulations or through qualitative visualization [52,53].

4.7. Grammar

Grammar is a type of design representation that includes variables, terminal sym-
bols, non-terminal symbols, and a set of rules that define how non-terminal symbols can
be expanded into other symbols. Graph and spatial grammar are the most commonly
used types of grammar in engineering design and have been applied in a wide range
of applications, such as satellite and electromechanical system design. Grammar can be
useful for controlling the assembly hierarchy of design components to ensure feasibility.
The main advantage of using grammar is that it can explicitly constrain design spaces
based on domain knowledge. However, a major disadvantage is that grammar can be
difficult to learn implicitly and may need to be manually defined. Additionally, in some
cases, grammar may restrict the exploration of the entire design space [54,55].

4.8. Graphs

In design, graphs are flexible representation methods composed of nodes and edges
that can be directed or undirected. They have been successful in various design aspects and
offer efficient ways to describe complex systems. The benefits of using graphs include their
adaptability and capability in representing different kinds of designs and processes; they
model complex interactions in systems and allow for the automation of system designs or
inter-part dependency modeling. Graph neural networks (GNNs) are excellent tools for
machine learning on graphs. On the other hand, despite the success of GNNs in molecular
graph generation, there is less usage of graph-based design graphical models in designs,
possibly because of the limited availability of graph-based design datasets [56,57].

5. Datasets

Datasets are some of the key components of machine learning, as they provide the raw
data that machine learning algorithms use to learn patterns and make predictions. A dataset
consists of a collection of data points that share some common characteristics, and machine
learning algorithms use these datasets to learn patterns and make predictions. Datasets
can come in many different forms and can be used for a wide variety of applications.
Some datasets are generated from sensors or other data collection devices, while others
may be scraped from websites or compiled from other sources. The quality of a dataset is
important to the accuracy of the predictions made by machine learning algorithms; as such,
data cleaning and pre-processing are essential steps in the data analysis process. Machine
learning algorithms can be supervised or unsupervised, depending on whether the dataset
includes labeled or unlabeled data. In supervised learning, the dataset includes labeled
data, where each data point has a known outcome or label, and the algorithm learns to
predict the outcome based on the input data. In unsupervised learning, the dataset includes
unlabeled data, and the algorithm learns to identify patterns and relationships in the data
without any known outcomes or labels. It is important to choose the right dataset for the
specific machine learning task at hand. The dataset should be representative of the problem
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being solved and should be large enough to provide enough data for the algorithm to learn
from. In addition, the dataset should be diverse enough to cover a wide range of scenarios
and situations, to ensure that the algorithm can generalize to new situations. Finally, it is
important to properly evaluate the performance of a machine learning algorithm when
using the chosen dataset. This involves splitting the dataset into training and testing
sets, and using the training set to train the algorithm and the testing set to evaluate its
performance. The evaluation metrics used will depend on the specific problem being
solved, but commonly used metrics include accuracy, precision, recall, and F1 score [58–60].

5.1. Images and Videos Datasets

Video and image datasets are collections of visual data that are used for training
machine learning models. These datasets can come in various sizes and formats, and they
can be used for a wide range of applications, from object recognition and tracking to facial
recognition and emotion detection.

One of the most well-known video and image datasets is ImageNet [61], which
contains millions of images labeled with over 20,000 categories. ImageNet has been used to
train a variety of deep learning models, including convolutional neural networks (CNNs)
for image recognition tasks.

Other popular video and image datasets include COCO (Common Objects in Con-
text) [62], which contains images labeled with object categories and segmentation masks,
and Open Images, which contains millions of images with annotations for object detection
and segmentation.

In addition to these general-purpose datasets, there are also many specialized datasets
for specific applications. For example, the Labeled Faces in the Wild (LFW) dataset consists
of face images that have been widely used for facial recognition research, and the Kinetics
dataset is a large-scale video dataset designed for action recognition.

Another image and video datasets:

• CIFAR-10 and CIFAR-100 [63]: These are datasets consisting of small images with
10 and 100 classes, respectively, and they are often used as benchmarks for image
classification models.

• MNIST [64]: A dataset of hand-written digits used to benchmark image classification
models.

• Pascal VOC [65]: A dataset of images with 20 object classes and segmentation masks;
it is used for object detection and segmentation.

• Kinetics [66]: A large-scale dataset of human action videos with labeled action classes.
It is used to train models for action recognition and detection.

• UCF101 [67]: A dataset of human action videos with 101 action classes; it is used for
action recognition and detection.

5.2. CAD and CAD-Based Datasets

Computer-aided design-based datasets are collections of data that include CAD mod-
els, CAD files, and other design-related data used in computer-aided design applications.
These datasets are used for a wide range of applications, including 3D modeling, product
design, architecture, and engineering.

CAD datasets can come in different formats, such as AutoCAD, SolidWorks, or CATIA,
and can be used to create models for different purposes. For instance, CAD data can be
used for creating digital prototypes, virtual testing, and simulations. CAD-based datasets
are particularly useful for machine learning applications, such as generative design, shape
optimization, and design automation.

Some of the popular CAD-based datasets include:

• ShapeNet [68]: ShapeNet is a large-scale dataset of 3D models that covers a wide range
of object categories, including furniture, vehicles, and animals. The dataset contains
over 55,000 3D models, which can be downloaded in various formats, including OBJ,
PLY, and OFF.
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• ModelNet [69]: It contains over 127,000 3D CAD models from 662 object categories,
which are uniformly aligned and normalized to a unit sphere. The dataset is split into
training and testing sets, and the models are annotated with class labels for supervised
learning.

• CAD-60 and CAD-120 datasets [70]: The CAD-60 and CAD-120 datasets contain 60
and 120 CAD models, respectively, which cover a wide range of object categories,
including furniture, vehicles, and household items. The models can be downloaded in
various formats, including SolidWorks and AutoCAD.

• McMaster-Carr [71]: McMaster-Carr is a platform that provides free 3D CAD models
of mechanical components, such as bearings, screws, and gears. The platform has
a large collection of models that can be downloaded in various formats, including
SolidWorks, AutoCAD, and Inventor.

• TraceParts [72]: TraceParts is a platform that provides free 3D CAD models of in-
dustrial components, such as pumps, motors, and valves. The platform has a vast
collection of models that can be downloaded in various formats, including SolidWorks,
AutoCAD, and CATIA.

• GrabCAD [73]: GrabCAD is a community-driven platform that provides free 3D CAD
models and designs that one can download and use for projects. The platform has
a large collection of CAD files in various formats, including SolidWorks, AutoCAD,
and CATIA.

• 3D ContentCentral [74]: 3D ContentCentral is a platform that provides free 3D CAD
models of industrial components, such as gears, bearings, and motors. The platform
has a large collection of models that can be downloaded in various formats, including
SolidWorks, AutoCAD, and Inventor.

• PARTcommunity [75]: PARTcommunity is a platform that provides free 3D CAD
models of industrial components, such as pumps, valves, and cylinders. The platform
has a vast collection of models that can be downloaded in various formats, including
SolidWorks, AutoCAD, and CATIA.

• Thingi10K [76]: This is a dataset comprising 10,000 3D-printing models. These models
are sourced from the featured “things” on thingiverse.com, and suitable for testing
3D-printing techniques, such as structural analysis, shape optimization, and solid
geometry operations.

• ABC [77]: This is a big CAD model dataset for geometric deep learning. It is a dataset
used for geometric deep learning, consisting of over 1 million individual (and high
quality) geometric models, each associated with accurate ground truth information,
including the decomposition into patches, explicit sharp feature annotations, and ana-
lytic differential properties.

• Fusion 360 Gallery Dataset [78]: The Fusion 360 Gallery Dataset contains rich 2D
and 3D geometry data derived from parametric CAD models. The reconstruction
dataset provides sequential construction sequence information from a subset of simple
’sketch and extrude’ designs. The segmentation dataset provides a segmentation of
3D models based on the CAD modeling operation, including B-Rep format, mesh,
and point clouds.

5.3. Tables and Text Datasets

• Gas turbine CO and NOx emission dataset [79]: This dataset contains 36,733 instances
of 11 sensor measures aggregated from over one hour (by means of the average or
sum) from a gas turbine located in Turkey’s northwestern region, for the purpose of
studying flue gas emissions, namely CO and NOx (NO + NO2).

• Turbofan jet engine dataset [80]: This dataset is the Kaggle version of the very well-
known public dataset for asset degradation modeling from NASA. It includes run-to-
failure simulated data from turbofan jet engines.

• Bearing dataset [81]: This dataset consists of data from an experiment that involved
a shaft with four bearings. Vibration data were collected. The dataset contains three
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test-to-failure experiments, and each dataset consists of multiple files containing
one-second vibration signal snapshots taken at specific intervals.

6. Machine Learning in Mechanical Design and Optimization

Machine learning, by definition, refers to the development of knowledge by computers
using input data. Mechanical engineering is a strong area for this technology. Older
machine builders have gained significant knowledge through several case studies and
efficient workflows. This creates the opportunity to approach new projects, to be able
to either use their technical knowledge with familiar elements that have already been
discovered or use their experience to learn and adapt to new challenges. Newcomers to
the field learn in this way and gather their effectiveness and knowledge; when it comes to
learning, engineering is one of the areas where much of the learning takes place at work.
How well it pays depends on the ability to collect and process information.

6.1. Product Design

Machine learning can improve the way machines and equipment are designed in
many ways, e.g., by combining different parallel analyses of physics, solid mechanics, fluid
mechanics, and so on. Using neural networks, it is possible to force a computer to learn
to distinguish between parts and different assemblies and tools, which can be used in the
future for designing a wide range of components and for data entry purposes in the mass
production of various products. The following subchapters provide more detailed research
projects from around the world, which deal with integration, respectively, using artificial
intelligence and machine learning in the process of mechanical construction and design.

6.1.1. Platform for Integrated Aircraft Design

Efforts to shorten aircraft design times have stimulated the development of collabora-
tive frameworks that facilitate the design of aircraft and their systems in a more integrated
manner. The objective of the project was to create an integrated modeling and simulation
framework that combines a filtering process to reduce the number of feasible architec-
tures, a modeling platform that simulates an aircraft’s power system, and a machine
learning-based clustering and optimization module. This framework enables the designer
to prioritize several designs and provides traceability for the best choices. In addition, it
allows the integration of models at several degrees of realism, depending on the size of
the design area and the desired precision. It exhibits the use of different electrical control
technologies to electrify the main flight control system (PFCS) and the landing gear braking
system. Key performance indicators are used to assess the performance of various archi-
tectures (fuel consumption, weight, performance). The optimization procedure employs a
data-driven localization stage to recognize files with comparable structures. The framework
displays the capacity to optimize across numerous system architectures in a manner that is
efficient and scalable for bigger design spaces and problems of greater sizes [82].

6.1.2. Investigate Models for Efficient Decoding of 3D Point Clouds

This study focuses on surrogate modeling strategies to learn the approximation of
computationally demanding 3D model function assessments. In the past, 3D point clouds
were considered too large as data formats for surrogate modeling. However, employing
neural network advancements to automatically encode 3D objects, these point clouds may
now be translated to one-dimensional latent spaces [83]. This gives rise to a fundamental
research question: what alternative modeling approach is best for discovering the links
between the 3D geometric attributes of objects represented in a coded latent vector and
the physical events collected in the assessment software? Unintuitively, it has been shown
that decoding latent representations of 3D objects into performance predictions is far
more successful than using a neural network decoder. Surrogate models without neural
networks obtain equivalent accuracy to neural network models in test instances, including
3D model airplane datasets and watercraft datasets (see Figure 10). A test case confirmed



Machines 2023, 11, 577 24 of 40

the equivalent accuracy of the modeling methodologies, but it was also discovered that the
distribution of data performance values, particularly the existence of numerous outliers,
had a considerable negative influence on accuracy. These findings challenge the commonly
held belief that neural networks provide an effective “universal” solution for learning
black functions and imply that even in systems that use several neural networks, possibly
more efficient solutions for each network should be examined. Depending on the needed
application accuracy, this surrogate modeling technique might be used to simulate costly
simulation software, or if the error tolerance is low, it can be used as a first step to restrict
the number of conceptual designs for further examination [84,85].

Figure 10. Demonstration of networks and corresponding point cloud models from aircraft (top) and
vessel (bottom) datasets [85].

6.1.3. Machine Learning of Object Shapes through 3D Generative-Adversarial Modeling

In this study, a novel framework, the 3D generative inverse network (3D-GAN), which
creates 3D objects (see Figure 11) from probability space utilizing recent breakthroughs in
volume convolutional networks and generative reverse networks, was suggested. The pro-
posed model has three advantages: first, the use of an inverse criterion instead of traditional
heuristic criteria enables the generator to implicitly capture the structure of the object and
enables the synthesis of high-quality 3D objects; second, the generator creates mappings
from low-dimensional probability space to 3D object space, making it possible to sam-
ple objects without a reference image or CAD model and examine the diversity of 3D
objects; and third, the proposed model is applicable to a wide range of applications. Experi-
ments demonstrate that the suggested technique creates high-quality 3D models, and that
the learned attributes (unsupervised machine learning) achieve excellent performance in
identifying 3D objects, equivalent to the performance of supervised learning methods [86].
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Figure 11. The 3D reconstruction of images on a dataset from IKEA [86].

6.1.4. Design of a Spatial Recurrent Neural Network for Design Form Optimization

In this study, a novel strategy for optimizing the structure and behavior of complex sys-
tems was devised. The method employs spatial grammar contained in character-recurrent
neural networks (RNNs) to define the system, including the number of actuators and
degrees of freedom, reinforcement learning to optimize actuator behavior, and physical
simulation systems to assess performance and provide data for RNN (re)training. Gram-
mar and RNN allow for a more complicated, combinatorically limitless design space as
compared to the parametric optimization of a design with a fixed number of inputs. In the
suggested technique, the RNN is first taught the spatial language defining the assembly
arrangement, component geometry, material attributes, arbitrary numbers, and actuator
degrees of freedom. The produced designs are further assessed in a physics-based environ-
ment, with the internal optimization loop using improved learning to identify the optimal
actuator control strategy [87]. An RNN equipped with high-performance grammar can
generate a design that is optimized in terms of both shape and behavior. Two assessment
case studies based on the design of a modular sailing vessel (see Figure 12) are provided.
The first case study optimizes the design without control surfaces, enabling RNN to com-
prehend the rationale behind high-performance solutions. The second case study expands
the first to include controllable actuators, necessitating improvement of the inner loop’s
behavior [55].

Figure 12. A grammatical string representing a feasible sailboat design [55].

6.1.5. Use of Construction Space for the Design of Additive Production

Through logical and integrated product designs, materials, and production methods,
this project’s additive manufacturing design maximizes product performance. It is difficult
to find design solutions in such a complex design area. It is notable that no current design
assistance solution is both quick and tailored to the design process. In this research, a holistic
strategy for designing and optimizing the design across the various phases of the design
process is provided. In particular, a two-step design process based on different models
for the execution and detailed design stages is offered. The Bayesian network classifier is
utilized as the reasoning framework for investigating the design space during the design
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phase, whilst the Gaussian process regression model is employed as the evaluation function
for the optimization approach to utilize the design (construction) space during the detailed
design. On the basis of a single dataset generated by the Latin hypercube sampling
technique, and improved using the Monte Carlo Markov chain sampling method, these
models were developed [88]. This cost-effective data-based method is exemplified in the
design of a customizable ankle brace that has mechanical characteristics that can be tuned
utilizing a high-expansion design concept with bespoke stiffnesses [89].

6.1.6. Generative Design and Verification of 3D Conceptual Wheel Models

This investigation focuses on an engineering design that combines artificial intelligence
(AI) with computer-aided design (CAD) and computer-aided engineering (CAE). In this
research, a CAD/CAE framework based on deep learning was developed for the conceptual
design phase, which automatically creates 3D CAD drawings and analyzes their technical
performances. The following steps comprise the proposed framework: 2D generative
design, dimensionality reduction, latent space experiment design, automated production
of 3D CAD models, automatic modeling of CAE findings, transfer learning, visualization,
and analysis. On the basis of a case study involving the design of a road wheel (see
Figure 13), the suggested framework demonstrates that AI may be realistically included
into a final product design project [90]. Using this framework, engineers and industrial
designers may review a large number of 3D CAD models together with the findings of
technical performance (CAE analysis) predicted by AI to determine the ideal conceptual
design variations for the future phase of detailed designs [91].

Figure 13. Automatic generation of 2D wheel disk images [92].
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6.1.7. Machine Learning-Assisted Propeller Design

In Maritime and subsonic aircraft, propellers are some of the most common propulsion
mechanisms utilized to create thrust from the rotating motion of the engine. Due to their
simplicity, durability, and great efficiency, propellers have been the most popular design
options used in the last century [93]. Nonetheless, it remains difficult to identify the best
application-specific shape. This study addresses the use of contemporary and quickly
advancing machine learning (ML) methods in the production of new designs. It leverages a
massive collection of previously existing parametric design patterns and includes technical
knowledge, with extremely realistic simulation models; thus, the design process was
approached as a supervised learning problem.

The objective was to create and test machine learning models for parametric pro-
peller designs (see Figure 14) using application-specific restrictions. The outcome was the
discovery of an unorthodox propeller geometry with extremely high efficiency. The excep-
tionally high accuracy of validation data is exemplary, and these results suggest that further
progress in this direction can help examine new, unrecognized, effective designs and save
designers a great deal of time; further progress can also help to alleviate the challenges of
validating these designs beyond accuracy [94].

Figure 14. Ship propellers designed using machine learning [94].

6.1.8. Evaluation of Steel Structures Using Machine Learning

In this study, a novel design method based on an iterative machine learning algorithm
was presented to expedite the topological investigation of shell structures (see Figure 15)
with planar surface compression, while taking structural performances and design restric-
tions into consideration. Neural networking enables the training of a surrogate model to
expedite the assessment of the structural performance of a variety of potential structural
forms without the need for a substantially slower process of locating geometric shapes [95].
As the principal tool of structural designs, methods of identifying geometric shapes of 3D
graphic statics are utilized to produce a single-layer shell by compressing flat surfaces. Un-
der identical boundary conditions, the partitioning of the force diagram and its polyhedral
cells using different rules results in topologically distinct structures that possess varying
carrying capabilities. The solution space for all potential forms with pure compression
under a given boundary condition is enormous, making it very hard to iterate over all
forms in order to locate optimal solutions. After training with iterative active sampling,
the surrogate model can analyze input data, including distribution rules, and forecast the
structural performance and design restrictions of planar surfaces in milliseconds. Conse-
quently, it is feasible to analyze the nonlinear interactions between all distribution rules
and the chosen structural performance metrics, and then display the full solution space.
As a consequence, a number of design solutions with specific assessment criteria have
been discovered, demonstrating the effectiveness of this form-finding technique. Moreover,
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given the overall training time of the neural network model, the suggested framework is
still quicker than a conventional optimization technique, such as a genetic algorithm that
can only discover optimum values. This procedure yields interactive sampling approaches
in which machine learning models aid the designer in picking and controlling various
design strategies by giving real-time feedback on the impacts of chosen parameters on
design results [96].

Figure 15. Examples of asymmetric structural shapes [96].

6.1.9. Visual Search Application for Machine Components

This study examined a comprehensive, annotated benchmark of mechanical compo-
nents for classification and retrieval operations. It is a comprehensive data collection of
3D mechanical component objects (see Figure 16). This dataset enables the data-driven
study of mechanical component symptoms. Examining the form descriptor of mechanical
components is vital for computer vision and industrial applications. However, developing
annotated datasets on mechanical components has not received much attention. Obtaining
3D models is difficult because annotating mechanical components requires technical ex-
pertise. The primary contributions of this study are the establishment of a large reference
collection of annotated mechanical components, the definition of a hierarchical taxonomy
for mechanical components, and a comparison of the performances of deep learning classi-
fiers for shape analysis applied to mechanical components. Seven cutting-edge techniques
for categorizing deep learning into three categories, namely cloud points, volume repre-
sentation in voxel grids, and representation-based representation, were examined using
an annotated dataset. Autodesk, the developer of Design Graph software, is conducting
similar research [97,98].

Figure 16. Machine parts database [99].

6.2. Optimization of Strength Designs

Computational optimization methods have matured in recent years due to extensive
research conducted by applied mathematicians and engineers. These practices apply to
many of the day-to-day applications we use as humans. Even in this context, the utilization
and principles of artificial intelligence, specifically machine learning, are prevalent.

The following subchapters present studies and research that address the issue of
optimization in the design of various mechanical systems.
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6.2.1. Machine Learning as a Substitute for the Finite Element Method

Current maintenance intervals for mechanical systems in transportation are based on
system life, which results in expensive maintenance planning and often puts passengers
at risk. In the future, the actual usage of the vehicle will be utilized to anticipate the
stresses in its design, therefore enabling the development of a particular maintenance
plan. Machine learning (ML) methods may be used to transfer a subset of real-time design
measurements to a finite element analysis-based, high-fidelity model of the same system
(FEM). Consequently, the ML technique based on finite elements directly calculates the
stress distribution across the system during operation, hence enhancing the capacity to
create safe and effective maintenance procedures [100]. In this research, an alternative
finite element method based on machine learning methods was presented for estimating
the time-varying response of a one-dimensional beam. Several regression models, such as
decision trees and artificial neural networks, were created; their effectiveness in estimating
the stress distribution in the beam structure was evaluated. Substitute finite element models
based on ML algorithms may predict the beam response correctly; however, artificial neural
networks have produced more precise results [101].

6.2.2. Application of Machine Learning for the Calculation of Pressure Equipment

The use of finite element analysis (FEA) is widely prevalent in the design of pressure
equipment. While the finite element approach offers stress distribution in the geometry of
pressure equipment, the analyst must manually specify specific parameters and boundary
conditions in order to conduct the analysis. The purpose of this research was to enhance or
replace manual analytical processes using machine learning. Two distinct models have been
created to replace two similar manual pressure equipment analysis processes. The models
were trained using 605 distinct datasets derived from the stress study from a common
region of discontinuities in pressure equipment. In order to detect discontinuities and
anticipate linearized stresses, machine learning models were created, thereby accelerating
the analytical process. The findings indicate that the trained models are sufficiently accurate
at greatly augmenting the analytical procedure [102].

6.2.3. Optimization of Mechanical Micro-Mixer Design Using Machine Learning

Due to the expenses involved with producing and testing multiple prototypes, it is
often challenging to establish an ideal multipurpose design in practical engineering appli-
cations. Therefore, it is advised to use calculation tools. In this study, machine learning
approaches (solved as design optimization with machine learning help) were utilized to
build a mechanical mixing device consisting of a microchannel-enclosed rectangular col-
umn. The random forest classifier was trained to predict which geometries might result in
vortex scattering. Next, a multi-objective optimization issue was explored, which consisted
of decreasing the needed pumping power and optimizing the mixing efficiency within
the restrictions of a given design. If additional trained data were necessary for alternative
configurations, the random forest classifier could have been used to predict whether or
not it was worthwhile to simulate a new configuration, thereby preventing the simulation
of unnecessary computationally intensive cases and accelerating the data-driven process.
The performance of the optimum designs derived from the application of the genetic al-
gorithm on surrogate samples was simulated and shown. Even under very unfavorable
mixing circumstances and a somewhat low Reynolds number, optimal geometric arrange-
ments give optimal mixing efficiencies at very low short-channel pumping costs, exceeding
conventional technology. By using form parameterization methodologies, the MLADO
framework that guides this research may be expanded and automated for other comparable
engineering design processes of any size [103].

6.2.4. Use of Machine Learning for the Prediction and Optimization of Mechanical Systems

This study examined the precision of predictions made by multiparametric models
obtained from numerical data. There were three distinct mechanical test scenarios utilized
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to produce the data. Models were constructed from the data to predict changes in attributes
in response to arbitrary changes in input parameters. Various modeling methodologies
were assessed based on the accuracy of their predictions. By providing machine learning
toolboxes, polynomial matrix equations were contrasted with regression models and neu-
ral network models. Model similarities and differences were discussed. A matrix-based
exponential model was developed to improve the precision of certain applications. The
effects and causes of the model prediction accuracies were evaluated. This defines the
basic conditions for developing useful models. This resulted in a comparison of modeling
methodologies in terms of their physical plausibility and efficacy. There is a correlation
between data production and the training process and efficiency. For one of the example
situations (see Figure 17), a prediction model was used to show its application and capa-
bilities. Using the model equation, the value of the sanction function in an optimization
job with various inputs and outputs was calculated. By updating the material parameters,
the outcome of the optimization involved the adjustment of the four natural frequencies to
the observed values. In every other instance, sensitivity analyses were conducted, including
the validation of numerical findings [104].

Figure 17. Sample brake disc geometry [104].

6.2.5. Topology Optimization

Recent advancements in design optimization have the potential to significantly en-
hance the performances of mechanical components and systems. In combination with
additive manufacturing, topology optimization is one of the numerical approaches used to
algorithmically build optimized designs that influence the mechanical design of existing
hardware. Sadly, many of these algorithms may require substantial human configuration
and control, particularly the debugging parameters that govern the algorithm’s perfor-
mance and convergence. This research proposes a machine learning-based framework to
recommend tuning parameters to users, therefore avoiding the expensive trial-and-error
process of human tuning. The program collects the debugging parameters from the reposi-
tory of past comparable issues, which are assessed using different parameters, depending
on the problem information, and refines them using the Bayesian optimization technique
for the present problem. The technique is illustrated on a basic topological optimization
problem with the objective of achieving a decent topological optimization solution and then
determining the appropriate “compromise” between the solution quality and necessary
computing time. The objective is to decrease the number of “unnecessary” debugging starts
needed for manual debugging alone. With more improvement, this system may eventually
be applicable to enterprise-level analysis and optimization problems. Topology optimiza-
tion is one example, but the framework may also be used for other optimization issues,
such as form and dimensioning in highly accurate physics-based analytical models [105].

6.2.6. Design of Hollow Section Columns Using Machine Learning Methods

Many current techniques for designing the load-bearing capacity of round, hollow,
stainless-steel columns have been established for a particular class, taking the global deflec-
tion failure approach into consideration. However, various grades of stainless steel have
significantly varying material characteristics, and hollow section columns are susceptible to
local deflection, global deflection, and both global and local interactive deflections. In this
research, a framework based on machine learning was employed to build a standard de-
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sign process applicable to various grades of stainless steel and failure mechanisms. First,
39 experiments on cold-formed hollow section columns were conducted (see Figure 18).
Material characteristics, flaws, load and deformation curves, and failure mechanisms were
described in detail [106]. Then, test data for these stainless-steel columns were gathered,
and a database of 280 columns was generated. Then, two machine learning methods,
random forest and extreme gradient boosting, were used to forecast column load capacities
based on four different kinds of input characteristics. Using all design inputs, the random
forest algorithm had maximum prediction accuracy. The inclusion of the yield strength
to Young’s modulus ratio as an input parameter considerably enhanced the accuracy of
the random forest technique when based on complicated factors (i.e., the dimensionless
cross-sectional area and bar slenderness) [107].

Figure 18. Measurement of imperfections on columns [107].

6.2.7. Prediction of Load-Bearing Capacity of Double-Cut Screw Joints

This research involves the ground-breaking use of machine learning to forecast the
load-bearing capabilities of double-cut structural steel bolted joints. A database containing
443 experimental datasets with input characteristics, such as standardized end distances,
edge distances, bolt spacing, transverse to load directions, sheet steel strength ratios, load
cell rows, joint configuration, and standard load capacity, was compiled for the first time.
For this application, eleven machine learning approaches were studied. The investigation
of the significance of the factors revealed that the normalized distances between the ends
and edges had the largest influence on the final strength. Using different statistical indica-
tors, the performances of the models were assessed and compared to current formulations
and requirements of the proposed legislation. The model with the greatest coefficient of
determination, the lowest mean absolute error, and the lowest mean square error was the
random forest model. In contrast to previous models, which are particular to individual
steel grades and give separate equations for various failure modes, machine learning mod-
els have achieved accurate, integrated, and generic approaches to prediction. Intriguingly,
these models demonstrate that the ratio of steel tensile strength to compressive strength
and the number of screw rows, which are presently disregarded in the design recommen-
dations, considerably influence bearing strength (by about 10%). A user-friendly interface
comprising all of the planned machine learning algorithms was created, which helped the
design of double-cut screw joints and acted as a teaching and research resource [108].

6.2.8. Design and Optimization of Pneumatic Gear Drive

Electro-pneumatic drives play a vital role in a variety of sectors, including in the
construction of large vehicles. This study investigates the topic of operating an automated
manual gearbox whose actuator is a double-acting cylinder with a floating piston and a
reserved internal position. When constructing the control of electro-pneumatic cylinders, it
is important to execute control with a fixed value on a nonlinear system when the airflow is
provided by disproportionate valves, as is the case here. Due to the fact that both the system
model and the qualitative management objectives may be expressed as partly observable
Markov decision-making processes, machine learning frameworks are obvious options for
addressing such management issues. This research analyzes six distinct options for this
purpose. In a simulated environment, the performances and strategic choices of these six
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approaches were compared. To illustrate the applicability of the idea, validation tests were
conducted on an actual transmission system and implemented on the vehicle’s control unit.
In this instance, the policy gradient agent was chosen based on implementation limitations
and computing capability. The findings indicate that the given approaches are appropriate
for the control of floating piston cylinders and may be applied to other mechanical fluid
drives and nonlinear control problems with fixed values [109].

6.3. Getting Human Preferences and Design Strategies

Recent advances in artificial intelligence offer the perfect opportunity to integrate this
technology (including machine learning) into the human design and construction teams.
To date, machine learning approaches have not paid enough attention to the consideration
of human aspects, which play an important role in the design process. These subchapters
present research and studies in the field of obtaining human preferences and strategies,
which can be used in decision-making in the design and development of various products.

6.3.1. Data-Driven Methodology for Creating Customer Selection Sets Using Online Data
and Customer Reviews

Recent innovations in technological design include a selection model that takes client
preferences into account. When constructing a choice model that enables one to gain an
accurate estimate of the parameters associated with product features, a solid collection
of options is crucial. However, the selected file information is often unavailable [110].
This research offers a mechanism for constructing customer samples using web data and
customer evaluations in the absence of real samples or sociodemographic consumer data.
The approach consists of three primary components, i.e., categorizing items according to
their qualities, grouping customers according to their evaluations, and building sample
files based on a selection probability scenario based on product and customer groups. The
normalized scenario describes the suggested scenario, which multiplies the proportions
of product clusters and consumers to generate a probabilistic distribution of choice. A
linear combination of product qualities alone and a feature that incorporates the interplay
of product attributes and customer reviews are provided as utility functions. The approach
was applied to a collection of laptop data. Predicting the test file data, the normalized
scenario obtains much better outcomes than the baseline (random) scenario. In addition,
the addition of customer evaluations to the utility function considerably improves the
model’s predictive ability. Using product attribute data and customer evaluations to pro-
duce samples yields sample models with more predictive ability than randomly generated
samples, according to research [111].

6.3.2. Obtaining Customer Insights on Product Sustainability from Online Reviews

For a product to be successful on the market, its designers must produce items that are
not only real but also sustainable in terms of consumer perceptions-; both the reality and
perceptions of competition may vary significantly. This study details the design technique
used for determining the perception of sustainable features via the gathering of online re-
views, their human annotations via crowdsourcing, and the processing of review fragments
annotated by a natural language machine learning algorithm. As indicated by the observed
discrepancy between the perception of sustainability and the actuality of sustainable design,
the research demonstrates that a number of critical environmental sustainability problems,
such as energy and water use, did not have a substantial influence on consumer sentiment.
Based on these outcomes, internet reviews may help designers acquire competitive traits for
future design studies and produce products that are compatible with sustainable consumer
values [112].

6.3.3. A Data-Driven Approach to Identify the Context of Product Use from Online
Customer Reviews

This study presents a data-driven technique for identifying product use scenarios auto-
matically from online customer evaluations. The environment of product usage influences
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product design, user behavior, and consumer happiness. Prior research identified use set-
tings through a survey-based technique or by subjective means. In contrast, the suggested
technique employs natural language machine learning and processing methods to discover
and aggregate use contexts from a large number of customer evaluations. In addition,
aspect analysis is utilized to extract sentiment within a specific phrase context. The outcome
demonstrates that the approach is capable of capturing important product usage contexts
and clustering bigrams associated with comparable use contexts. Aspect sentiment analysis
enables the observation of a product’s position relative to its rivals in a certain context of
usage. This insight may highlight to the product creator a need to enhance the product.
It may also signal a possible marketing opportunity in an application scenario where the
majority of existing items are adversely evaluated by consumers. Due to a minor linear
connection for the majority of use contexts in the case study, it suggests that the overall
evaluation may not be a significant predictor of the customer’s mood in regard to a specific
use scenario [113].

6.3.4. Mining and Representing the Conceptual Space of Existing Ideas for the Purpose of
Targeted Idea Generation

Frequently, design innovation initiatives produce a great number of design ideas
from designers, consumers, and, increasingly, regular internet users. Such data are often
utilized for selection and execution, but they may also serve as sources of inspiration for
the generation of further ideas. Specifically, the basic concepts underlying the original
ideas may be recombined to form new concepts. Obtaining concepts from raw lists of
ideas and data sources in order to inspire or develop new ideas is not a simple operation.
The fact that data on concepts is often presented in unstructured natural languages is a key
issue. In this study, a methodology is developed that employs natural language processing
to extract keywords as elementary concepts embedded in massive descriptions of ideas
and represents the space of elementary concepts in a core-periphery structure to facilitate
the recombination of elementary concepts into new ideas. The methodology is applied
to the extraction and representation of the conceptual space that underlies the massive
ideas gained from crowdsourcing and is used to generate new ideas for future transport
system designs in a real project funded by the public sector through the use of people
and automated computer programs. The investigation into the processes and outcomes
of human and machine recombination provides information on the future directions of
artificial intelligence research in the domain of design concepts [114].

6.3.5. Transferring Design Strategies from Human to Computer

Solving every design issue requires planning and developing techniques that identify
and prioritize subprocesses. It is a talent that designers acquire through time and then
use to tackle comparable situations. This transfer of design techniques has not, however,
been successfully modeled or implemented inside computational agents. This paper
proposes a probabilistic model-based method for representing design methods. The model
offers a method for generating new designs based on specific design strategies as the
configuration design challenge is gradually addressed. This experiment also demonstrates
that this probabilistic representation may be used to transmit human designer techniques
to computer design agents in a generic and effective manner. This transfer-based method
enables the identification of high-performance designer behavior and its application to
the management of computational design agents. Lastly, the agents exemplify the core
behavior of transfer learning since the transfer of design techniques across challenges has
resulted in enhanced agent performance. This research employs the CISAT (cognitively
inspired simulated annealing teams) framework, an agent-based model that replicates
human problem-solving in configuration design challenges [115].
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6.3.6. Mimicking Human Designers Through Deep Learning

People, as designers, have rather diverse problem-solving techniques. Computer
agents, on the other hand, have access to substantial computational resources for solving
specific design issues. Consequently, if agents can learn from human behavior, a synergistic
team may be established to handle challenges involving humans and artificial intelligence.
This study proposes a method for extracting human design strategies and implicit norms
from historical human data and using them to create designs. This involves the creation and
implementation of a two-tiered framework that mimics human design techniques via ob-
servational learning. This system uses deep learning components to build designs without
explicit goals and performance parameter information. The framework is meant to engage
with the issue using a visual interface, similar to how individuals solve the challenge. It is
taught to imitate a group of human designers by monitoring the sequences of their design
states, without introducing a problem-specific modeling interest or extra issue knowledge.
In addition, a final agent is constructed that employs this deep learning architecture as its
foundation, together with image processing techniques to map pixel motions to the design
as a method for design development. Finally, the designs created by the calculation teams
of these agents are compared with real human data for the teams tasked with addressing
roof truss designs. (see Figure 19) The findings demonstrate that these agents are capable
of independently designing viable and effective roof truss structures, indicating that this
technique enables agents to acquire useful design methodologies [116].

Figure 19. Display of the truss design software interface with parameters and possible opera-
tions [116].

7. Discussion

Neural networks have been widely used in mechanical engineering and product de-
signs for various purposes such as simulation, optimization, prediction, control, and design
strength optimization of various structures such as bridges, buildings, and vehicles. They
also have been used in engineering design to obtain human preferences and design strate-
gies by analyzing large datasets of design choices, user feedback, and expert knowledge.
Here are some common types of neural networks used in mechanical engineering:

7.1. Convolutional Neural Networks (CNNs)

CNNs are commonly used in mechanical engineering for image recognition, analysis,
and classification. In product designs, they can be used for visual inspections, quality
control, and defect detection in manufacturing processes. Convolutional neural networks
can be used for the image-based design optimization of structural components, such as
beams, columns, and trusses. They can analyze the 2D or 3D images of components to
identify design features and optimize the strength and weight of the component. CNNs
are also used for image analysis and recognition. In designs, they can be used to analyze
images of existing products, user interfaces, or design features, and identify key design
features that are preferred by users. These preferences can then be used to guide the design
of new products.
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7.2. Recurrent Neural Networks (RNNs)

RNNs are used in mechanical engineering for time-series data analysis, prediction,
and control. In product designs, they can be used for predictive maintenance, anomaly
detection, and optimization of manufacturing processes. Recurrent neural networks can be
used to optimize the strength designs of time-varying structures, such as wind turbines,
offshore platforms, and bridges. They can analyze the time-series data of loads and stresses
and predict the optimal design for a given set of inputs. RNNs can be also used for natural
language processing and sequence modeling. In designs, they can be applied to analyze
user feedback, reviews, or comments, to identify key preferences and design strategies.
They can also be used to generate natural language descriptions of design features and use
these descriptions to guide the design process.

7.3. Multilayer Perceptrons (MLPs)

MLPs are used in mechanical engineering for pattern recognition, classification, and re-
gression analysis. In product designs, they can be used for material selection, design
optimization, and performance prediction. MLPs are commonly used for optimizing
strength designs in mechanical engineering. They can be trained on a dataset of material
properties, geometries, and loads, and used to predict the optimal design for a given set
of inputs. MLPs can also be used for multi-objective optimization, where multiple design
objectives, such as weight, cost, and strength, are optimized simultaneously.

7.4. Autoencoders

Autoencoders are used in mechanical engineering for dimensionality reduction, fea-
ture extraction, and anomaly detection. In product design, they can be used for design
space exploration, optimization, and fault detection. Autoencoders can be used to optimize
strength designs by reducing the dimensionality of the input data. They can extract key
features from a large dataset of designs and use those features to optimize new designs.
Autoencoders can also be used for generative designs, where new designs are generated
based on the learned features. Autoencoders can be used for feature extraction and the
dimensionality reduction of design data. They can be used to identify the most important
design features and relationships between them. This can help designers in understanding
which design features are preferred by users and which features are less important.

7.5. Deep Belief Networks (DBNs)

DBNs are used in mechanical engineering for feature extraction, classification, and pre-
diction. In product design, they can be used for performance prediction, design optimiza-
tion, and fault diagnosis.

7.6. Generative Adversarial Networks (GANs)

GANs are used in mechanical engineering for tasks such as generating new design
concepts, simulations, and optimizations. In product designs, they can be used for design
space exploration, optimization, and generating new product designs. GANs can be used
for generating new design concepts and exploring design spaces. They can be trained on
large datasets of design features, preferences, and user feedback to generate new design
concepts that meet user preferences. GANs can also be used to create variations of existing
designs and explore new design possibilities.

7.7. Deep Reinforcement Learning (DRL)

DRL can be used to optimize strength designs by learning from trial and error. It
involves training a neural network to take actions that maximize a reward signal in each
environment. In strength design, DRL can be used to explore the design space and find
the optimal design for a given set of objectives. It is also possible to use DRL for learning
design strategies and decision-making processes. It involves training a neural network to
take actions that maximize a reward signal in a given environment. In designs, DRL can be
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used to learn from user feedback and expert knowledge to develop design strategies that
optimize user preferences.

Overall, the use of neural networks in mechanical engineering and product designs
is growing rapidly, and their potential applications are vast. Artificial neural networks
are still an expanding area of research. However, the selection of a particular type of
neural network depends on the specific problem being addressed and the data available
for analysis.

8. Conclusions

Modern machine learning (ML) and deep learning (DL) approaches are revolutionizing
industries, ranging from transportation to healthcare. These approaches identify patterns
in data, develop autonomous systems that exhibit human-like skills, and assist in human
decision-making. Deep neural networks, and other current ML methods, are enabling
significant advances in AI. ML approaches are being increasingly used by researchers in
mechanical design and optimization to help solve tasks ranging from preference modeling
to uncertainty quantification in high-dimensional design optimization problems. This
survey lists important advances in these areas. In particular, the overall goal of these
applications and practices is to rapidly reduce the development times for companies and
firms so their designers and engineers could focus on other areas of development and
mechanical design.

First, we analyzed artificial intelligence, its distribution, advantages, disadvantages,
and applications. We discussed machine learning and then deep learning. We presented
their procedures, the most common methods, and their distributions. We also compared
machine learning and deep learning. In this study, we described how neural networks
work and what they are used for. In the next part of the review, we comprehensively
discussed the uses and functions of the most commonly used programming languages,
frameworks, and software that are used in the field, mostly just in mechanical engineering.
We also presented a breakdown of different types of commercial software according to
their programming languages. Then, in the following chapters, we described the different
data formats that represent inputs to neural networks in the field of mechanical design
and optimization. We also presented the most commonly used datasets of these input
data. In the second half of the review, we discussed the use of machine learning and deep
learning in machine design and optimization. We presented individual examples that were
studied in recent years by researchers from all over the world. We have divided this section
into several areas: product design, strength optimization, and finally, the area of human
preference elicitation and strategies in engineering design.

In the discussion section, we presented opportunities for further research and advance-
ment of machine learning and deep learning in mechanical design and optimization using
various types of neural networks.

As artificial intelligence continues to expand in today’s world, it is expected that future
mechanical designers will encounter machine learning in their daily lives. This means that
educational activities will have to adapt to this trend.
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