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Abstract: In mechanical cutting and machining, self-excited vibration known as “Chatter” often
occurs, adversely affecting a product’s quality and tool life. This article proposes a method to identify
chatter by applying a machine learning model to classify data, determining whether the machining
process is stable or vibrational. Previously, research studies have used detailed surface image data
and sound generated during the machining process. To increase the specificity of the research data,
we constructed a two-input model that enables the inclusion of both acoustic and visual data into
the model. Data for training, testing, and calibration were collected from machining flanges SS400
in the form of thin steel sheets, using electron microscopes for imaging and microphones for sound
recording. The study also compares the accuracy of the two-input model with popular models such
as a visual geometry group network (VGG16), residual network (Restnet50), dense convolutional
network (DenseNet), and Inception network (InceptionNet). The results show that the DenseNet
model has the highest accuracy of 98.8%, while the two-input model has a 98% higher accuracy than
other models; however, the two-input model is more appreciated due to the generality of the input
data of the model. Experimental results show that the recommended model has good results in
this work.

Keywords: cutting process; CNN; cutting sound; cutting image; machine learning

1. Introduction

The chatter in turning is the unwanted vibration of the turning tool, lathe, or part
being machined. Chatter usually occurs due to causes such as the variable stiffness of the
turning system, improper cutting conditions, or unbalanced turning tools. When cutting,
there is contact between the workpiece and the tool, causing the cutting force. This cutting
force constantly changes, affecting the workpiece, tool, and machine tool system, leading
to elastic deformation [1]. This deformation generates self-excited vibration, also known
as chatter, which leads to negative consequences, including unsatisfactory surface quality,
reduced tool life, and even tool breakage. To control this vibration phenomenon, the use of
a stability graph as an analysis method has been proposed. The stability graph includes
parameters relating to spindle speed (workpiece speed) and depth of cut [2]. During the
machining process, the engineer must determine the technical parameters related to cutting
speed and depth of cut within a stable range. Urbikain et al. have documented significant
endeavors in the scientific literature aimed at forecasting stability and minimizing chatter,
particularly in relation to turning systems [3]. However, this method is limited by an
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assumption regarding the dependence of the chatter on the cutting speed and depth of cut
and not on other factors. This graph cannot wholly model the complexity of the process.

Currently, with high demand for product quality and low cost, it is no longer appro-
priate to choose the cutting mode so that the machining process is completed in a stable
area. Therefore, methods for the detection and removal of chatter are constantly being
researched and developed. There are many different methods to eliminate chatter, such as
changing the spindle, changing the hardness of the tool holder, or changing the damping
parameter to avoid the vibrational area. Methods can be divided into two groups: active
methods and passive methods. Dynamic Vibration Control, or active vibration damping, is
a technical method used to reduce or eliminate the effects of vibration [3]. The working
principle of active vibration damping is based on using sensing, control, and counter-force
devices to minimize the impact of vibration [4–6]. Passive Vibration Control is a vibration
reduction method that actively uses passive devices and materials to absorb and disperse
vibrational energy. Unlike active vibration reduction, passive vibration reduction does not
need sensors, controls, and dynamic opposing force-generating devices [7–10].

When comparing two groups of methods, each method has its own respective advan-
tages and disadvantages; therefore, depending on each specific case, technology engineers
can choose the method that is more appropriate. Regardless of the method used, detecting
the occurrence of chatter is essential to introduce external influences to avoid chatter or to
stop the machining process to minimize the number of defective products. As the work-
piece hardness parameters change due to the non-uniformity of the material, tool wear and
the influence of random factors in the technology system can appear irregularly, resulting
in chatter appearing irregularly at any time. In addition, in industrial production, workers’
direct intervention and supervision in the machining process is increasingly limited. The
reason for this is that labor costs increase production costs. Therefore, the design and
manufacture of an automatic and accurate chatter detection system to limit the number
of defective products due to the timely automatic detection of the system is desirable.
Therefore, chatter detection is always improved and increasingly explored by researchers
and manufacturers. Moreover, it is very important to recognize, minimize, and eliminate
vibration because it directly affects the manufactured product’s surface quality and dimen-
sional accuracy. The chatter detection process can be divided into four stages. The first
stage is to collect experimental data from sensors such as dynamometers, accelerometers,
and microphones. The second stage involves signal processing using theoretical methods
such as time, frequency, and time–frequency domains. The third stage is to compute and
select different features representing the cutting state. The final step is to make a decision
based on either the threshold method or the intelligent recognition algorithm. When classi-
fying according to the data collected in the machining process, several research works are
relevant and therefore discussed below.

Chatter detection relies on sensor signals such as force sensors, position sensors, and
accelerometers to detect vibrations. Many methods have been proposed to determine
the existence of the chatter state in the collected signal [11]. G. Urbikain et al. created a
monitoring instrument using Labview code. This tool, constructed from the integration
of reconfigurable Input/Output (I/O) structures and Field Programmable Gate Arrays
(FPGAs), was implemented in practical sessions on the machine [12]. Wu et al. [13] used
analytical methods such as the phase plane method, Poincaré method, spectral analysis, and
a Lyapunov index. Dong et al. [14] used sophisticated displacement measurements to detect
chatter states based on the nonlinear characteristics of the vibration signal during milling.
Yamato et al. [15] used mechanical energy and power factors based on noise observation
theory to detect vibration. These methods do not require frequency domain analysis,
minimizing the algorithm’s complexity. Based on the Hilbert–Huang transform theory, the
vibration signal is decomposed into a series of intrinsic mode functions. The Hilbert spectral
analysis method was introduced to identify vibration by analyzing the mode function’s time
and frequency domain spectrum [16]. A vibration recognition technique using wavelet
transform and machine learning has been proposed. Moreover, studies have used the



Machines 2023, 11, 644 3 of 22

standard deviation of the wavelet transform and wavelet wave packet energy to generate
two-dimensional feature vectors for vibration detection. Then, a pattern classification
method using a support vector machine (SVM) was designed based on these feature
vectors [17]. In shear force signal processing, an improved moving average algorithm based
on local mean decay (LMD) resolves nonlinear forces and enhances vibration detection.

Acoustic signal-based chatter detection involves using acoustic data to monitor and
analyze the occurrence of chatter in mechanical machining processes. Vibration detection
based on acoustic signals involves the observation of a temporary decrease in the radiated
spectral power of the acoustic signals when the shear state transitions from a steady state
to a vibrational state [18]. In addition, there is a positive hysteresis feedback relationship
between the signals of the acoustic field and vibration [19]. Cao et al. [20] performed a
time–frequency analysis on the signals of the acoustic field, which were recorded using
microphones for vibration detection. Sallese et al. [21] studied the linearity of the signals
of the acoustic field and analyzed the machine vibration and the emitted audio signal to
develop a set of features for vibration detection during machining. Features extracted from
different process signals have been analyzed to classify and distinguish between vibration
and non-vibration.

One approach to determine chatter in the machining process is to rely on visual sig-
nals. Chatter detection using visual data requires a different approach than sound-based
methods. This method requires specialized equipment, such as a high-resolution camera
or machine vision system, to capture images of the machined surface. To obtain a clear
and accurate image, the camera must be positioned correctly, focused, and calibrated. The
distinction among studies within this group of methods often lies in the feature extraction
stage that is derived from the chatter’s feature image. This can be proceeded using various
image processing techniques, such as edge detection, texture analysis, or statistical measure-
ments. In recent years, deep learning algorithms such as convolutional neural networks
(CNNs) have been used to learn and extract related features automatically. Chaudhary
and other researchers have used convolutional neural networks to investigate difficulties
surrounding image motions. Nevertheless, they have not considered the impact of weights
and hyperparameters on classification performance [22,23]. D. Checa and G. Urbikain
have suggested a novel approach that integrates experimental trials, machine-learning
modeling, and virtual reality visualization to surpass these restrictions. Initially, tools
possessing distinct geometric aspects were evaluated. Following that, the experimental
data were processed using various machine-learning methodologies such as regression
trees, multilayer perceptrons, bagging, and random forest ensembles [24]. Liu et al. pro-
posed a k-means clustering method to initialize any experienced consequences, which
improved the accuracy of the recognition and accelerated the convergence during train-
ing [25]. Another alternative for weight initialization is to minimize the classification error
by applying a genetic algorithm; however, it may be stuck at a local optimal point and re-
quire improvements relating to the convergence. An automatic method of hyperparameter
selection has been developed, based on high-performance computation and spatial statistics
techniques, to accelerate model selection. Bayesian optimization has also been applied to
automatically determine the best hyperparameter configuration for deep convolutional
neural networks [26]; moreover, probabilistic models have been used to estimate the test
error function. Although the existing optimization algorithms have different characteristics
in terms of complexity, optimal efficiency, exploratory power, and evaluation cost, the
hyperparameter optimization still requires further study.

Most of the abovementioned studies have applied either visual, acoustic, or force and
acceleration data to identify vibration and stability phenomena in turning processes. These
data are usually collected separately in the laboratory or through a production process.
However, these data are often local to each machining case. The recognition and classifica-
tion model will not be accurate for other data sets. The problem is that a chatter recognition
model is needed based on different data sets: images, sounds, forces, accelerations, etc., are
simultaneously fed into the same model. To overcome these limitations, this research study
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proposes the use of a multi-input model to classify data. The main focus of this research
is to recognize chatter from image and audio signals in order to diversify the input data
and develop a more generalized chatter detection model compared to single-data models.
This means that, to determine whether a machining process is experiencing chatter, the
model needs to both “listen” to the sound of the process and incorporate the ability to
“observe” the surface quality of the product. This study does not use two sets of input
data, namely image and audio, simultaneously during the machining process. Instead, it
synchronizes the data after separately collecting them. The model, which collects multiple
input data simultaneously, can also be applied similarly in further analyses by the author
when high-speed image capturing devices are available. To compare the advantages of
the two-input model, the author compared the results with those obtained using currently
popular models such as VGG16, RestNet, DenseNet, and InceptionNet. Input data included
image, a sound–image combination, and sound. By combining visual and acoustic data,
the author used a method that stitches together the surface of the workpiece and the sound
frequency spectrum to enable the image to obtain more features related to the vibration
phenomenon during the turning process, allowing the detection model to produce more
comprehensive and accurate results.

2. Material and Method
2.1. Material

In the turning process, chatter often occurs when the rigidity of the machine, the
tool, and the part is not guaranteed, and when the machining mode is not appropriate.
Research becomes more difficult when the objective requires the collection of extensive
image data relating to the machined surface while simultaneously collecting the sound in
the machining of the corresponding surface area. To solve this problem, thin flanges and
turn top faces were processed for the following reasons. Firstly, thin sheet parts are very
common in machines and equipment. Figure 1 shows the shaft-bearing flange cover of the
gantry. Secondly, because a thin plate part has a unique way of turning, when turning in
the radial direction, the author chose to maintain a constant speed of the main spindle and
a constant feed rate so that the cutting speed would change continuously from the outer
diameter to the inner diameter. Moreover, the exit angle of the chip would also change,
resulting in an alteration of the cutting conditions and parameters. The thin plate part
was externally mounted on a three-pin spoke chuck, and the rigidity of the part changed
according to its proximity to the center. All these changes cause the top-face turning of the
part of the thin-plate flange to form alternating stable and vibrational areas (Figure 2).
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The material of the parts in the study was SS400 steel (according to Japanese standards)
with a density of 7.8 g·cm−3. The number of experimental pieces was 50, the diameter
of parts was 220 mm, the thickness of parts was 15 mm, and the sample was machined
using a Moriseiki SL_20 CNC lathe. The mounting option chosen was to use a three-jaw
chuck as a clamp from the outside. Fabrication was carried out using a tungsten carbide
lathe WNMG080404. The cutting mode parameters are as follows: cutting depth t = 2 mm,
cutting speed n = 800 rpm, and feed rate f = 0.2 mm/rev (Table 1). These parameters were
chosen due to the machine’s capabilities and the cutter manufacturer’s recommendations
for the respective workpiece material.

Table 1. The workpiece, tool, and cutting parameters.

Parameters Values

Workpiece
Material
Diameter
Thickness

SS_400
220 mm
15 mm

Tool

Material
Rake angle
Relief angle

Cutting edge radius
Tool holder length

Carbide
5◦

10◦

0.2 mm
50 mm

Cutting
Velocity spindle

Feed rate
Depth of cut (DOC)

800 rev/min
0.1 mm/rev

2 mm

2.2. Signal Acquisition and Processing Devices

To the collect surface images of the finished parts at many different locations, the study
used a Dino-Lite AM3113 digital microscope with 50 magnification that was connected
to a computer. At the same time, the turning sound was recorded using an external
Woaichang BM900 microphone near the lathe chuck to collect the sound during the turning
process. As a result, the team obtained complete and accurate images and sound data with
which to analyze and evaluate the stability or vibration on the surface of the fabricated
parts (Figure 3).
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Figure 3. (Left): the microphone for collecting sounds. (Right): the electronic microscope for
collecting images.

To determine and classify the machining surface and distinguish which processing
stage is stable and which is vibrating, thereby also associating the obtained audio clip with
either the stable or vibration machining process, the authors used the surface roughness
criterion Ra. This criterion is measured using the Mitutoyo SJ_301 surface roughness
measuring device. Classifications were made based on occurring chatter when Ra > 2 µm
and stability when Ra < 2 µm. Marking the areas of stability and vibration on the surface of
the parts provided a surface image of the components (Figure 4).
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2.3. Classification Models

Convolutional neural networks (CNNs) are a popular type of neural network for
image classification tasks. Compared to traditional neural networks, CNNs can integrate
spatial information of input data, resulting in better image processing performance. The
basic building block of a CNN is the convolutional layer, which applies a learned set of
filters to the input data, producing a set of activation maps corresponding to different
input features. These activation maps are then fed into a pooling layer, which reduces the
dimensionality of the data by selecting the maximum or average value in a small window of
the activation map. The output of the pooling layer is then fed into a fully connected layer,
producing the final classification output. The fully connected layer is similar to the output
layer in traditional neural networks, except that it retrieves its input from the outcome of the
convolutional and pooling layers instead of directly from the input data. One advantage of
CNNs is their ability to learn features directly from data instead of relying on handcrafted
features. This result is achieved through backpropagation, adjusting the learned parameters
of the convolutional filters during training to maximize the classification accuracy of the
output. This study used machine learning methods to identify and classify images to detect
vibration processes. In particular, the authors used the five most currently popular models,
which are VGG16, Restnet50, DenseNet, InceptionNet, and two-input CNN.
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VGG16 is based on a series of convolutional and pooling layers, followed by three fully
connected layers for classification. The VGG16 model comprises 16 layers, including 13 con-
volutional layers, 5 max-pooling layers, and 3 fully combined layers. The convolutional
layers have a fixed filter size of 3 × 3 and a stride of 1, and the max pooling layers have a
fixed pool size of 2 × 2 with a stride of 2. The architecture also includes batch normalization,
and Rectified Linear Unit (ReLU) activation functions after each convolutional layer, which
improves the training speed and stability. The final three fully connected layers have 4096,
4096, and 1000 neurons, respectively. The last fully connected layer has a softmax activation
function for classification into one of 1000 classes [27].

The architecture of DenseNet is based on the idea of densely connecting each layer to
every other layer in a feed-forward fashion. The DenseNet model consists of multiple dense
blocks, each containing numerous layers. Each layer receives the feature maps from all
preceding layers as input within each dense block. The output feature maps from each layer
are concatenated together before being fed into the next layer in the thick block. In addition
to the dense blocks, the DenseNet architecture also includes transition layers, which reduce
the spatial size of the feature maps between the dense blocks. The transition layers consist
of a batch normalization layer, a 1 × 1 convolutional layer, and a 2 × 2 average pooling
layer. The final layer of the DenseNet model is a global intermediate pooling layer, followed
by a fully connected layer with a softmax activation function for classification [28].

ResNet50 is based on residual blocks, which allow for the training of profound neural
networks by mitigating the vanishing gradient problem. The residual blocks contain skip
connections that bypass one or more layers, allowing gradients to propagate more easily
during backpropagation. The ResNet50 model consists of 50 layers and includes four
blocks of convolutional layers, each with a different number of filters and a global average
pooling layer followed by a fully connected layer for classification. The first convolutional
layer uses a large filter size of 7 × 7 with a stride of 2, which helps reduce the input image’s
spatial size dimension. After each block of convolutional layers, a downsampling layer
is included to reduce the spatial size of the feature maps. The downsampling is achieved
using a convolutional layer with a stride of 2, which reduces the width and height of the
feature maps by a factor of 2. The architecture also includes batch normalization, and ReLU
activation functions after each convolutional layer, which improves the training speed and
stability [29].

InceptionNet uses multiple filters with different sizes within a single convolutional
layer, rather than a single convolutional layer with a fixed filter size. The InceptionNet
model includes multiple inception modules, each of which contains parallel convolutional
layers of different filter sizes (1 × 1, 3 × 3, and 5 × 5) and a pooling layer. The output of
each of these parallel branches is concatenated before being fed into the next inception
module. InceptionNet also includes auxiliary classifiers, which combat the vanishing
gradient problem by providing intermediate supervision during training. These classifiers
are added after some of the inception modules and include a global average pooling layer
followed by a fully connected layer and a softmax activation function. The InceptionNet
architecture also includes batch normalization, and ReLU activation functions after each
convolutional layer, which improves the training speed and stability [30].

A multi-input CNN is a convolutional neural network (CNN) architecture in which
many independent inputs are fed into the network. It allows simultaneous processing and
learning from various input data sources, such as images, text, or time series data. These
inputs are then combined in the typical layers of the network to learn and generate an
ordinary prediction. Multi-input CNNs are often used in applications where combining
information from multiple input data sources can improve model accuracy. In this study,
visual and acoustic data were used simultaneously to improve the recognition ability of the
model compared to models that only use a single type of input data. The study combined
two sets of input data; specifically, in one machining area, two data sets were collected
simultaneously, and visual data and acoustic data of the workpiece surface were generated
during the cutting process. The data were then processed using two methods. Method 1:
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an image file was created by merging 2 image files, namely, an image of the workpiece
surface and a frequency spectrum image file of the sound file. Then put this image file into
the CNN model for classification. Method 2: two models were performed for two separate
image files and the combined in the CNN model (Figure 5).
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Figure 5. The architecture of the 2_input model.

For each input, three convolutional layers were used to extract the feature. These
layers were composed of the following components (Table 2): The first hidden layer is
called Convolution2D, which is a convolutional layer. With 32 filters, a 3 × 3 kernel and
a LeakyReLU activation function (a leaky version of the Rectified Linear Unit—ReLU)
allow for a slight gradient when the unit is inactive. This layer serves as the input layer.
Next, a pooling layer with a method to obtain the maximum value, called MaxPooling2D,
is used. This layer is set to a pooled size of 2 × 2, which halves the input size in both
spatial dimensions. The next layer is an adjustment layer that uses a dropout method called
dropout. It is set to randomly remove 25% of the neurons in the layer to prevent overfitting.
The layers mentioned above were duplicated twice, increasing the filter size to 64 and
128 (to accommodate more complex features) and adjusting the dropout ratio to 25% and
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40% (to avoid overfitting). The output of the convolutional layers for both inputs passes
through the concatenation layer, and the result is then converted by the Flatten layer from
a 2D matrix to a vector. This process allows the completely standard connection layers
to process the output. Next, a fully connected layer consisting of 512 neurons, using the
leaky rectifier activation function, is used. This layer is combined with a dropout layer
that randomly removes 50% of the neurons and processes the input from the Flatten layer.
Finally, the output layer has 2 neurons corresponding to 2 states and uses the softmax
activation function to make probabilistically similar predictions for each layer.

Table 2. The specifications of a two-input model’s architecture.

Layer (Type) Output Shape Param # Connected to

input_2 (InputLayer) [(None, 640, 480, 1 0)] []

input_3 (InputLayer) [(None, 640, 480, 1 0)] []

conv2d (Conv2D) (None, 640, 480, 32 320) [‘input_2[0][0]’]

conv2d_3 (Conv2D) (None, 640, 480, 32 320) [‘input_3[0][0]’]

leaky_re_lu (LeakyReLU) (None, 640, 480, 32 0) [‘conv2d [0][0]’]

leaky_re_lu_3 (LeakyReLU) (None, 640, 480, 32 0) [‘conv2d_3[0][0]’]

max_pooling2d (MaxPooling2D) (None, 320, 240, 32 0) [‘leaky_re_lu[0][0]’]

max_pooling2d_3 (MaxPooling2D) (None, 320, 240, 32 0) [‘leaky_re_lu_3[0][0]’]

dropout (Dropout) (None, 320, 240, 32 0) [‘max_pooling2d[0][0]’]

dropout_3 (Dropout) (None, 320, 240, 32 0) [‘max_pooling2d_3[0][0]’]

conv2d_1 (Conv2D) (None, 320, 240, 64 18496) [‘dropout[0][0]’]

conv2d_4 (Conv2D) (None, 320, 240, 64 18496) [‘dropout_3[0][0]’]

leaky_re_lu_1 (LeakyReLU) (None, 320, 240, 64 0) [‘conv2d_1[0][0]’]

leaky_re_lu_4 (LeakyReLU) (None, 320, 240, 64 0) [‘conv2d_4[0][0]’]

max_pooling2d_1 (MaxPooling2D) (None, 160, 120, 64 0) [‘leaky_re_lu_1[0][0]’]

max_pooling2d_4 (MaxPooling2D) (None, 160, 120, 64 0) [‘leaky_re_lu_4[0][0]’]

dropout_1 (Dropout) (None, 160, 120, 64 0) [‘max_pooling2d_1[0][0]’]

dropout_4 (Dropout) (None, 160, 120, 64 0) [‘max_pooling2d_4[0][0]’]

conv2d_2 (Conv2D) (None, 160, 120, 12 738568) [‘dropout_1[0][0]’]

conv2d_5 (Conv2D) (None, 160, 120, 12 738568) [‘dropout_4[0][0]’]

leaky_re_lu_2 (LeakyReLU) (None, 160, 120, 12 08) [‘conv2d_2[0][0]’]

leaky_re_lu_5 (LeakyReLU) (None, 160, 120, 12 08) [‘conv2d_5[0][0]’]

max_pooling2d_2 (MaxPooling2D) (None, 80, 60, 128) 0 [‘leaky_re_lu_2[0][0]’]

max_pooling2d_5 (MaxPooling2D) (None, 80, 60, 128) 0 [‘leaky_re_lu_5[0][0]’]

dropout_2 (Dropout) (None, 80, 60, 128) 0 [‘max_pooling2d_2[0][0]’]

dropout_5 (Dropout) (None, 80, 60, 128) 0 [‘max_pooling2d_5[0][0]’]

concatenate (Concatenate) (None, 80, 60, 256) 0 [‘dropout_2[0][0]’,

flatten (Flatten) (None, 1228800) 0 [‘concatenate[0][0]’]

dense (Dense) (None,512)62914612 [‘flatten[0][0]’]

leaky_re_lu_6 (LeakyReLU) (None, 512) 0 [‘dense[0][0]’]

dropout_6 (Dropout) (None, 512) 0 [‘leaky_re_lu_6[0][0]’]

dense_1 (Dense) (None, 2) 1026 [‘dropout_6[0][0]’]
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Table 2. Cont.

Layer (Type) Output Shape Param # Connected to

Total params: 629,332,482

Trainable params: 629,332,482

This research paper focuses on adjusting the hyperparameters of the model, with
particular attention given to the batch size, optimizer, loss function, and normalization
operation. Table 3 presents the most favorable outcomes of the comparisons made in
this study.

Table 3. Optimal hyperparameter values.

Hyperparameter Value

Batch size 32

Optimizer Adam

learning rate ReduceLROnPlateau

Loss categorical_crossentropy

Epochs 50

This study collected data sets consisting of image files obtained during turning. After
processing, the image files are divided into several parts and again divided into training,
calibration, and testing sets at a ratio of 80:10:10. To speed up training and reduce the
model optimization time, a Python program was installed on a Dell server with 16 physical
cores, using TensorFlow and Keras libraries. The model was trained using a GTX GPU
1080 Ti graphics card.

There are many methods used to evaluate the effectiveness of a classification model,
including an examination of accuracy, accuracy and coverage, error, F1 score, confusion
matrix, time, and memory. Accuracy is calculated as the ratio of the number of individuals
correctly classified into a given layer to the total number of individuals classified into that
layer. On the other hand, coverage is the ratio of individuals correctly classified into a layer
to the total number of individuals of that layer. The F1 score is an index that combines
the accuracy and coverage of the model and is defined as the harmonic mean of two of
these indexes. By using an F1 score, one can better understand the model’s performance
compared to using precision or coverage only. This study evaluates the proposed model
using accuracy, F1 score, and confusion matrix tests.

3. Results and Discussion
3.1. Data Collection and Processing

This study collected data by machining 50 parts of flanges. During the machining
process, the authors collected sounds during the turning process. For each flange part, a
sound file with a length of 82.5 s and a machined surface was obtained. Then, using a
radial length, the surface was divided into 33 equal segments. Each segment corresponds
to a machining area, and each machining area corresponds to an acoustic clip during the
machining of the corresponding location. That is, the surface of the workpiece is divided
into 33 regions according to the acreage of a square with dimensions of 3.3 mm × 3.3 mm.
The soundtrack obtained during machining is divided into 33 segments, each being 2.5 s in
length. As a result, 33 image files named Pik and 33 corresponding sound files named Sik
were obtained. Therefore, using the files Sik and Pik.
where:

i: the index for the ith part of the flange (i =1 ÷ 50)
k: the index of the machining area on the flange k (k = 1 ÷ 33)
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After 50 flange parts were machined during turning, stability and vibration groups
were distinguished using a roughness meter. The surface is classified as a stability group if
Ra < 2 µm. When Ra > 2 µm, the machined surface was classified as a chatter (Figure 6). The
part used a three-pin spoke chuck and a cutting mode of n = 800 rpm as a constant when
machining the thin flange; therefore, the cutting speed varied in different diameter positions.
The phenomenon of vibration and stability appears and disappears at various locations.
Because of this, the research collects many visual and acoustic data areas corresponding to
different vibrational and stable states. Through this approach, the cost of the experiment is
reduced, and stable and vibrational acoustic and visual data are obtained across various
cutting modes and conditions.
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Figure 6. The machined surface after measuring roughness and marking stable and chatter zones.

After determining the stable and vibrational areas, an electron microscope was used
to capture the images of the surface parts of the finished product in the marked areas. The
regions are labeled as either chatter or stable (Figure 7). Overall, 1650 image files along with
1650 sound files were obtained after using the roughness meter to partition the stability
and vibration data. Moreover, 987 image and sound files were collected in a steady state
and 663 image and sound files were in a vibrational state.
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The results of the audio waves were collected using a recording device and recording
software. Audio files were cut into audio segments of the same length of time. Then,
the audio files were converted to a frequency domain using the Fourier transform. As a
result, the transformed image files of the audio segments were obtained. At that time, the
study used the convolutional neural network algorithm to classify images. To help neural
networks process data more easily, preprocessing techniques including audio sample data
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were used to separate this complex audio wave into parts, separating the low tones, the
upper tones, and the higher tones. Then, the total energy in the frequency bands (from low
to high) was calculated and reconnected to create a fingerprint—a unique identification
for each audio segment. The technique is possible because of the Fourier transform, which
was used to break down complex audio waves into single audio waves. After this, the
total energy of each monophonic audio was calculated. The result is a table of numbers
representing the energy levels of each frequency range. After the fast Fourier transformation
of 1650 sound files, a set of 1650 image files was obtained (Figure 8).
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To create a visual data set that captures both the surface characteristics of the workpiece
during turning and the acoustic characteristics of the turning, the image processing tech-
nology was used to combine two surface images of the part and sound spectrograms. The
study has created 1650 image files that are typical of the chatter turning process (Figure 9)
and stable turning process (Figure 10). The distribution of different types of data in the
data set is shown in Table 4.
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Table 4. Distribution of different types of data in the data set.

Data Train (80%) Valid
(10%) Test (10%) Total

(100%) Labels

Images
464 99 100 663 chatter

690 148 149 987 stable

Sounds
464 99 100 663 chatter

690 148 149 987 stable

Combine image_sound
464 99 100 663 chatter

690 148 149 987 stable

3.2. The Results of Applying CNN Models to Detect Chatter Using Surface Images of Parts
during Turning

This section presents the results obtained from the recommended method and other
models. The accuracy of the models is compared based on the criteria shown in Figure 11.
The results show that the DenseNet model has the best results, with 98.8%. Next is
InceptionNet, with an accuracy of 98.29%. The ResNet model achieved a result below
87.55% and the VGG16 model achieved 59.84%.
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When analyzing the curve graph depicting the accuracy and loss of the visual data set
during a training process of 50 epochs for the DenseNet model (Figure 12), the following
observations were made: The stability of the training process can be observed from the
20th epoch. The result shows that the model works well because the loss of data decreases
during training and testing until it reaches a stable point with a minimal error. However,
there is an abnormal appearance of moving points in the loss and accuracy data due to the
insufficiently large input data set. Despite this volatility, the model still achieved relatively
good results, as shown by the evaluation indicators in Table 5.
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Table 5. Image input DenseNet accuracy values with image input.

Chatter (Class 0) Stable (Class 1) Accuracy Macro Avg Weighted Avg

precision 0.989899 0.986667 0.987952 0.988283 0.987965

recall 0.980000 0.993289 0.987952 0.986644 0.987952

f1-score 0.984925 0.989967 0.987952 0.987446 0.987942

support 100 149 0.987952 249 249

To illustrate the predictive power of the deep learning model, the confusion matrix
analysis method was applied. Figure 13 shows the calculation made using the confusion
matrix for the testing data set. Each matrix column has one layer that is predicted by the
model and one even layer. Typically, the matrix consists of four categories: True Positive
(T.P.), which means that the prediction and the real value are both positive; True Negative
(T.N.), meaning that the forecast and the actual value are both negative; False Positive (F.P.),
meaning the prediction is positive while the real value is negative; False Negative (F.N.),
meaning the forecast is negative while the actual value is positive. Of the 249 test data
samples, there are 100 chatter samples and 149 stable samples. However, the prediction
model provided 98 chatter samples and 2 stable samples; therefore, there were two cases in
which model made a wrong prediction. From the 149 images of the stable machining group,
one datum was assigned to the chatter group, and the remaining 148 images were correctly
classified. After evaluating the wrong data, the model had a prediction error of 1.21%.
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3.3. Results of Applying CNN Models to Detect Chatter by Acoustic Data during Turning

In this section, the results obtained from both the recommended method and other
models will be presented. The accuracy of the models is compared based on the established
criteria, as shown in Figure 14. The results show that the DenseNet model achieved the
best results with an accuracy of 93.57%. Next, the ResNet model achieved an accuracy of
75.84%. InceptionNet and VGG16 achieved 62.91% and 59.79%, respectively. This result
shows that the DenseNet model remained the most accurate compared to other models.
However, the accuracy of the DenseNet model for the sound data set (93.57%) is lower than
that of the DenseNet model that achieved 98.8%.
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Table 6 shows the evaluation metrics of the DenseNet model, which used turning
sounds as the input data for the 249 data samples tested, including 100 samples of chatter
and 149 samples of stability. However, the model predicted 89 samples as chatter and
11 samples as stability, indicating a prediction error in 11 samples. Of the 149 sound
samples, there are 5 error samples (Figure 15). After evaluating the wrong cases, the
model’s accuracy on the test set was 93.5%. This is less accurate than the model that used
image data as its input, which achieved 98.8%. This is possibly due to noise factors in
data acquisition, possibly during processing, and the abnormal noise of other mechanical
mechanisms influencing the prediction results.

Table 6. Image input DenseNet accuracy values.

Chatter (Class 0) Stable (Class 1) Accuracy Macro Avg Weighted Avg

precision 0.946809 0.929032 0.935743 0.937920 0.936171

recall 0.890000 0.966443 0.935743 0.928221 0.935743

f1-score 0.917526 0.947368 0.935743 0.932447 0.935383

support 100 149 0.935743 249 249
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3.4. Model Results for Image Files Combined between Image and Sound Files

In this section, the results obtained from the recommended method and different
models are presented. Based on the accuracy criteria of the models, the results are shown
in Figure 16. The results show that the DenseNet model provided the best results with
96.38%, followed by ResNet, with a model accuracy score of 85.84%. InceptionNet and
VGG16 achieved relatively low results (82.91% and 58%, respectively). Compared with
the acoustic input data set, the discriminant DenseNet model in this composite data set is
more accurate; however, it is still less accurate than when the image data set is used. This
issue substantiates the combination of both acoustic and visual elements and enhances the
comprehensiveness of the data.
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In total, 249 data samples were tested using the DenseNet model, which used combina-
tions of sound and image data from machined surface as input data, including 100 samples
of chatter and 149 samples of stability (Figure 17). However, the model predicted 95 sam-
ples as chatter and 5 samples as stability, indicating a predicting error in five samples. Of
the 149 images in the stable machining group, 4 were assigned to the chatter group, and
the remaining 145 images were correctly classified. After evaluating the false cases, the
model’s accuracy on the testing set was 96.3%. This is less accurate than the model that
used only images as input data (98.8%) but higher than the DenseNet model’s score when
using the acoustic data set (93.57%). There is a remarkable improvement in the accuracy of
chatter detection with this image-merge data set. Information regarding the accuracy of
this case is presented in Table 7.
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Table 7. Image and sound input DenseNet accuracy values.

Chatter (Class 0) Stable (Class 1) Accuracy Macro Avg Weighted Avg

precision 0.959596 0.966667 0.963855 0.963131 0.963827

recall 0.950000 0.973154 0.963855 0.961577 0.963855

f1-score 0.954774 0.969900 0.963855 0.962337 0.963825

support 100 149 0.963855 249 249

3.5. Model Results with Input Data of the Two-Input Model

In this section, the results obtained from the proposed method are presented. The
following graphs illustrate the data set’s accuracy and loss curves, whose features were
extracted using the 2_input model. Transfer learning techniques extracted parts from the
data set, and the models were trained in 50 epochs. The stability of the training can be
observed from the 16th epoch through the curves in Figure 18.
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After 50 epochs, the two-input model achieved an accuracy of 98.7% when generating
surface images of the workpiece combined with the corresponding sound captured during
the machining process. The model evaluation results are shown in Table 8. To illustrate
the predictive power of the deep learning model, we compared the accuracy of its results
using the confusion matrix. Out of 249 test data samples, there were 100 machining group
chatter samples with vibration; the model predicted two pieces of data incorrectly. Of the
149 images of the vibration-free machining group, two pieces of data were assigned to the
chatter group, and the remaining 147 samples were correctly classified. After evaluating
the misleading data, the model achieved a prediction accuracy of 98.7%. As observed in
Figure 19, the wrong samples are distributed in both data sets.

Table 8. Two-input model accuracy values.

Chatter (Class 0) Stable (Class 1) Accuracy Macro Avg Weighted Avg

Precision 0.98 0.986577 0.983936 0.983289 0.983936

Recall 0.98 0.986577 0.983936 0.983289 0.983936

f1-score 0.98 0.986577 0.983936 0.983289 0.983936

Support 100 149 0.983936 249 249
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When comparing the model performance criteria for the different input data sets
(Table 9), the F1_score metric shows that the DenseNet model performed the best on the
image data set, with an accuracy of 98%. The second best performing model was the
DenseNet model that was trained on a data set consisting of combined audio and image
inputs, with an accuracy of 95%. The worst performing model was trained on an audio-only
data set, with an accuracy of 92%. This demonstrates that a combination of image and
audio inputs results in higher accuracy than when classifying audio files alone. When
comparing the accuracy of the two-input model to the other three models, it ranked second,
with an accuracy of 97%. This indicates that the two-input model learned better features
than the combined image or audio inputs. Although the accuracy of the two-input model
was lower than that of the image data set model, the overall quality of the input data set
was better, and the data were more diverse.

Table 9. Comparison of models.

Input Model Precision Recall F1_Score

Image DenseNet 0.99 0.98 0.98

Sound DenseNet 0.95 0.89 0.92

Combine image and sound DenseNet 0.96 0.95 0.95

Image, Sound Two inputs model 0.98 0.96 0.97

3.6. Discussion

Academically, this research has achieved good results related to building a vibra-
tion detection model based on the concept of designing and manufacturing machining
equipment, specifically a CNC lathe that can hear and see to detect abnormal problems.
Chatter detection during machining is performed when detecting and checking the product
after machining a part. At this point, the spindle stops, and the device takes pictures to
determine which areas are stable and which are chattered (Figure 20). This means that the
device will check the quality of the entire product surface before deciding to process the
next part. Then, the shutter speed and image noise factors will be removed. It is essential
to eliminate mass product failures.
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Net models to detect chatter through an acoustic signal. The sound is converted into an 
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Figure 20. Applying the vibrational surface detection model.

However, for the results of this study to apply to the actual production model in the
case of both processing and testing (Figure 21), the confounding factors must be minimized.
Regarding image acquisition, a high-speed camera is required for continuous shooting
so that the image is not blurred. As well as in the machining process, it is necessary to
arrange the camera in a position less affected by chips and cooling water. Similarly, acoustic
noise factors should also be limited when collecting sound data for training or testing,
such as spindle motor sounds, tool change sounds, etc. However, these difficulties will be
eliminated when there is specialized equipment and optimal noise filtering algorithms in
the future.
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Figure 21. Detection of chatter in online turning.

The recent application of CNN for vibration detection during close turning is very
popular. Zhu et al. studied vibration detection in thin material turning based on DCNN.
Tran et al. used a dynamometer as a sensor, which achieved a vibration detection accuracy
of up to 92.12%. Rahimi et al. applied a neural network and physics-based model to
detect vibration during turning. The data collected during machining is converted into a
short-term travel frequency spectrum through STFT transformation. Features are mapped
to five machining states, such as idle; tool enter cut workpiece, knife out of the workpiece,
stable cutting, and vibration cutting. Sener et al. collected spindle rotation speed data
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in steady state machining and chatter to detect chatter. Kounta et al. used VGG16 and
RestNet models to detect chatter through an acoustic signal. The sound is converted into an
image through the FFT transformation and has an accuracy of 99.88%. The above studies
often achieve high accuracy because the authors usually collect a limited amount of the
data in the model training, and the collected signals are often processed under laboratory
conditions with little error caused by external confounding factors. When evaluating a
model, if the size of the training data is small, the recorded accuracy of the testing set
does not represent the model’s advantages. Overcoming these limitations, this study used
acoustic and visual data for training.

In our study, in addition to comparing the accuracy of currently popular CNN models
to determine the optimal model for vibration detection through input data as images or
sounds, our system combined visual and acoustic data, which were then used for training.
This approach was carried out in various ways to enhance the generality of the model,
achieving a higher level of generality compared to previous studies and thereby improving
its applicability. Table 10 highlights our contribution compared to previous achievements
in the literature. Although the accuracy is lower, the generality of the system data is better.

Table 10. Comparison with previous studies.

REF. Author Pretreatment Input Data Classification Precision

This paper FFT, Size Reduction Images and sounds Binary 98%

[31] (W. Zhu et al., 2020) Size reduction Images Binary 98.26%

[32] (Tran et al., 2020) CWT Images Multilabel 99.67%

[33] (Rahimi et al., 2021) STFT Images Multilabel 98.90%

[34] (Sener et al., 2021) CWT Images—cutting parameters Multilabel 99.8%

[35] (C. Kounta et al., 2023) FFT Sound cutting Multilabel 99.71%

4. Conclusions

This study designed a turning experimental model based on a thin flange to collect
visual and acoustic data while turning. The data set has 987 pairs of visual data of surface
parts, acoustic data of stable machining, and 663 pairs of data related to the vibrational state.
The research classified data using different machine learning models (VGG16, RestNet,
DenseNet, and InceptionNet) and individual visual and acoustic data. Using data from
the surface images of machined parts, the Dense-Net model achieved a 98.8% accuracy,
followed by InceptionNet (98.29%), RestNet (87.55%), and VGG16 (59.84%). Moreover,
when classifying using the acoustic data set, the DenseNet model still had the highest
accuracy (93.57%), followed by the ResNet model (75.84%), InceptionNet (62.91%), and
VGG16 (59.79%). Similarly, when combining the two data types of images and sounds by
merging two images and then performing recognition, the models achieved the following
accuracy scores: DenseNet 96.38%, ResNet 85.84%, InceptionNet 82.91%, and VGG16 58%.
In conclusion, with the image and sound data set collected in this study, the DenseNet
model consistently achieved better accuracy than the other models.

The investigation also built a two-input model to classify data, and the resulting model
accuracy was 98.7%. Although the accuracy is lower than that of the single-data model, the
data combination model and the two-input data model are more appreciated because they
are process-specific.

The analysis also opens a new direction for the monitoring of the machining process
by using machine learning tools, which the authors will explore using multi-input data,
such as cutting force, acceleration, sound, and image, etc. All these data will be transformed
into frequency spectrum images and fed into the CNN model. Then, the data model will be
more specific, and the model will make more accurate decisions.
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2. Altintaş, Y.; Budak, E. Analytical Prediction of Stability Lobes in Milling. CIRP Ann. 1995, 44, 357–362. [CrossRef]
3. Urbikain, G.; Olvera, D.; López de Lacalle, L.N.; Beranoagirre, A.; Elías-Zuñiga, A. Prediction Methods and Experimental

Techniques for Chatter Avoidance in Turning Systems: A Review. Appl. Sci. 2019, 9, 4718. [CrossRef]
4. Dumanli, A.; Sencer, B. Active control of high frequency chatter with machine tool feed drives in turning. CIRP Ann. 2021, 70,

309–312. [CrossRef]
5. Wan, S.; Li, X.; Su, W.; Yuan, J.; Hong, J.; Jin, X. Active damping of milling chatter vibration via a novel spindle system with an

integrated electromagnetic actuator. Precis. Eng. 2019, 57, 203–210. [CrossRef]
6. Fernández-Lucio, P.; Del Val, A.G.; Plaza, S.; Pereira, O.; Fernández-Valdivielso, A.; de Lacalle, L.N.L. Threading holder based on

axial metal cylinder pins to reduce tap risk during reversion instant. Alex. Eng. J. 2023, 66, 845–859. [CrossRef]
7. Rubio, L.; Loya, J.A.; Miguélez, M.H.; Fernández-Sáez, J. Optimization of passive vibration absorbers to reduce chatter in boring.

Mech. Syst. Signal. Process. 2013, 41, 691–704. [CrossRef]
8. Miguélez, M.H.; Rubio, L.; Loya, J.A.; Fernández-Sáez, J. Improvement of chatter stability in boring operations with passive

vibration absorbers. Int. J. Mech. Sci. 2010, 52, 1376–1384. [CrossRef]
9. Pelayo, G.U.; Trejo, D.O. Model-based phase shift optimization of serrated end mills: Minimizing forces and surface location

error. Mech. Syst. Signal. Process. 2020, 144, 106860. [CrossRef]
10. Urbikain, G.; Olvera, D.; de Lacalle, L.N.L.; Elías-Zúñiga, A. Spindle speed variation technique in turning operations: Modeling

and real implementation. J. Sound. Vib. 2016, 383, 384–396. [CrossRef]
11. Pelayo, G.U.; Olvera-Trejo, D.; Budak, E.; Wan, M. Special Issue on Machining systems and signal processing: Advancing

machining processes through algorithms, sensors and devices. Mech. Syst. Signal. Process. 2023, 182, 109575. [CrossRef]
12. Urbikain, G.; de Lacalle, L.N.L. MoniThor: A complete monitoring tool for machining data acquisition based on FPGA program-

ming. SoftwareX 2020, 11, 100387. [CrossRef]
13. Wu, S.; Li, R.; Liu, X.; Yang, L.; Zhu, M. Experimental study of thin wall milling chatter stability nonlinear criterion. Procedia CIRP

2016, 56, 422–427. [CrossRef]
14. Dong, X.; Zhang, W. Chatter identification in milling of the thin-walled part based on complexity index. Int. J. Adv. Manuf.

Technol. Technol. 2017, 91, 3327–3337. [CrossRef]
15. Yamato, S.; Hirano, T.; Yamada, Y.; Koike, R.; Kakinuma, Y. Sensor-less online chatter detection in turning process based on phase

monitoring using power factor theory. Precis. Eng. 2018, 51, 103–116. [CrossRef]
16. Peng, C.; Wang, L.; Liao, T.W. A new method for the prediction of chatter stability lobes based on dynamic cutting force simulation

model and support vector machine. J. Sound. Vib. 2015, 354, 118–131. [CrossRef]
17. Grossi, N.; Sallese, L.; Scippa, A.; Campatelli, G. Chatter stability prediction in milling using speed-varying cutting force

coefficients. Procedia CIRP 2014, 14, 170–175. [CrossRef]
18. Filippov, A.V.; Nikonov, A.Y.; Rubtsov, V.E.; Dmitriev, A.I.; Tarasov, S.Y. Vibration and acoustic emission monitoring the stability

of peakless tool turning: Experiment and modeling. J. Mater. Process. Technol. 2017, 246, 224–234. [CrossRef]
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