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Abstract: This paper presents an adaptive Fuzzy Sliding Mode Control approach for an Assist-as-
Needed (AAN) strategy to achieve effective human–exoskeleton synergy. The proposed strategy
employs an adaptive instance-based learning algorithm to estimate muscle effort, based on surface
Electromyography (sEMG) signals. To determine and control the inverse dynamics of a highly
nonlinear 4-degrees-of-freedom exoskeleton designed for upper-limb therapeutic exercises, a modi-
fied Recursive Newton-Euler Algorithm (RNEA) with Sliding Mode Control (SMC) was used. The
exoskeleton position error and raw sEMG signal from the bicep’s brachii muscle were used as inputs
for a fuzzy inference system to produce an output to adjust the sliding mode control law parameters.
The proposed robust control law was simulated using MATLAB-Simulink, and the results showed
that it could instantly adjust the necessary support, based on the combined motion of the human–
exoskeleton system’s muscle engagement, while keeping the state trajectory errors and input torque
bounded within ±5× 10−2 rads and ±5 N.m, respectively.

Keywords: control systems; assist-as-needed; simulations; rehabilitation

1. Introduction

In recent years, rehabilitative exoskeletons have been researched, developed, and
tested for providing aid to patients with muscular disorders [1]. Elderly patients who suffer
from motor impairments and paralysis due to disorders such as stroke have increased the
demand for rehabilitative exoskeletons [2]. Studies have shown that patients who undergo
rehabilitation exercises that increase the intensity over time see more improvement in the
recovery process [3]. As such, research has been conducted on rehabilitative exoskeletons
that can provide a stable and repetitive therapy session that steadily increases in intensity.
However, a proper interaction between the exoskeleton and the patient must be established
to ensure an efficient and effective therapeutic intervention. A rehabilitative exoskeleton
must have an active monitoring system that encourages patients to utilize their body’s
muscles as opposed to simply relying on the exoskeleton to provide assistance; one common
solution is to implement an Assist-as-Needed (AAN) strategy [4]. This approach uses
feedback from the user to control the exoskeleton, and it only provides a certain level of
assistance based on the patient’s needs and behaviors. This will encourage patients to
perform the rehabilitation exercise by themselves and improve the recovery process.

The AAN strategy has been implemented by researchers with differing methods. One
of these methods is the impedance control strategy [5], where a relationship between a
desired position and a force is modeled with a mass-spring-damper system. Yang et al. [6]
implemented this strategy in their work, where they sought to have a rehabilitative robot
guide a human wrist along a planned trajectory in two planes in order to train the elbow
and shoulder joints. In their work, the forces applied by the patient are estimated using
the mass-spring-damper system relationship, which is then fed back to the control unit of
the robot.
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One limitation of such an approach is that different impedance parameters must be
determined for each patient during a tuning process, depending on the severity of the
user’s injuries. This implies longer rehabilitation sessions as the tuning and adaptation
require training data. Other strategies implemented by researchers to estimate the amount
of torque provided by the actuators within the joints include the adaptive Radial-Basis
Function Network (RBFN) [7] and model predictive control [8]. RBFN is used to estimate
the active torque provided by the fingers in a finger-exoskeleton system, based on the
actual system configuration. In model predictive control, surface EMG (sEMG) is utilized
to estimate the active torque at the elbow joint. Even though these methods provide a
solution, the trials and time required to tune these strategies are not feasible for clinical
trials. The majority of existing AAN algorithms have limitations such as relying on partial
limb movement, predefined models, or therapist intervention [9,10]. Challenges arise due
to the limited muscle activity and restricted ranges of motion observed in stroke patients,
which affect the accuracy of personalized treatment and the speed of patient recovery.
Moreover, depending solely on prior collected data can introduce bias and may not yield
effective results. These factors, among others, have led most existing AAN algorithms to
remain in the research and development phases.

The implementation of artificial intelligence into rehabilitative exoskeletons has offered
a solution. Implementing a combination of sEMG and force control to measure muscle
activity has shown to be effective in teaching rehabilitative exoskeletons how to predict
user’s movements [11–13]. Stroke patients suffering from extreme cases of spasticity may
not be able to produce strong muscle movement [13,14]. In such cases, the exoskeleton must
be able to recognize the user’s intentions using small quantities of data. Patients’ weak
muscle activity can be measured using sEMG signals, which are then converted to forces.
Those forces are then compared to the forces measured by the actuators in the exoskeleton.
From there, the actuators provide a certain amount of torque, just enough to assist the user.

Researchers have also explored implementing a fuzzy logic-based control strategy into
their rehabilitative exoskeletons [15]. Fuzzy logic is a method of computing that is based on
the idea of having multiple variations of an outcome, as opposed to a binary “true or false”
Boolean logic [16]. For instance, a Boolean logic-based system will present two functions:
True or False. Fuzzy logic, however, presents differing levels of truth: Completely False,
Somewhat True, Probably True, Likely True, Absolutely True, etc. Depending on the data,
the program will yield an outcome of varying degrees of “Truth” [16]. Fuzzy logic is useful
when dealing with systems where the data are constantly changing and cannot easily be
modeled. This makes it especially attractive when dealing with human behavior [17].

Since human behavior rarely follows a strict model, fuzzy logic can be useful in making
rehabilitative exoskeletons adapt to the behavior of the patient and their specific needs.
The behavior of the user should dictate how the exoskeleton operates, rather than the other
way around [15]. Researchers often combine fuzzy logic with traditional means of control
such as EMG or Proportional-Integral-Derivative (PID) controllers. Control systems, such
as those employing electromyography (EMG) to discern the user’s actions, utilize fuzzy
logic to determine the extent of support delivered by the exoskeleton [17].

Combining these two strategies allows these control systems to adapt to human
behavior, which is often nonlinear and nonuniform [15]. As patients progress through their
rehabilitation programs, they will likely require less assistance from the exoskeleton as time
goes on [18]. Because of this, rehabilitative exoskeletons must be able to adapt to patients’
recovery progress and the level of assistance needed at a moment’s notice. Combining
traditional methods of the AAN strategy with fuzzy logic is effective in creating adaptive
exoskeletons that prioritize user rehabilitation, safety, and comfort [15,17]. Fuzzy logic also
alleviates a common concern amongst patients that rehabilitative exoskeletons often feel as
if the exoskeleton is dictating their movement [19].

Studies have shown that patients who adhere to exoskeleton rehabilitation programs
experience improvement in their motor functions; adherence to these programs has been
found to correlate with effective rehabilitation [18]. So long as the programs and exercises
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are safe, comfortable, engaging, and efficient, patients should expect improvements in per-
formance and rehabilitation [20,21]. Research has also shown that personalized treatment
based on a patient’s specific needs is most effective in rehabilitating patients [22,23].

However, despite rehabilitative exoskeletons demonstrating positive results for pa-
tients, adherence to these rehabilitation programs is low [24]. Several factors dictate whether
or not a patient will participate in and finish a rehabilitative program. These include but
are not limited to, lack of autonomy while wearing the exoskeleton, limits in completing
tasks of daily living, pain while wearing the exoskeleton, or simply not feeling comfortable
with wearing a robotic exoskeleton [25].

To ensure effective rehabilitation, medical exoskeleton developers must consider
both efficient performance and overall user comfort [26]. Oftentimes, the two are inter-
linked, as patients who feel comfortable are better equipped to utilize the exoskeleton’s
full capabilities [26,27]. Exoskeletons that provide a level of assistance that can adjust to a
patient’s needs are in high demand for these reasons [22].

Patients have expressed concerns that wearing exoskeletons feels unnatural, describing
the process as feeling more as if the exoskeleton was moving them, rather than them being
in control [19]. This work offers a solution to these concerns, utilizing an AAN strategy
through an adaptive sEMG-based muscle effort calculation.

In this study, a fuzzy inference system is employed to adjust the aggressiveness of a
Sliding Mode Control Law, based on adaptive surface Electromyography (sEMG)-derived
muscle effort. This adaptation allows for modifying the level of assistance provided by
an exoskeleton, enabling users to experience more natural motion during rehabilitation
exercises. The utilization of sEMG is justified by its correlation with the force or effort
exerted by the muscles, as indicated by its root mean square. To address the variability
of sEMG signals, an algorithm is proposed to estimate the current muscle effort with
minimal training time. The key contributions of this work are: an assist-as-needed control
strategy that dynamically updates the assistance according to the user’s requirements, and
a dynamic assistance level that relies solely on current measurements from the system
without the need for extensive training sessions.

The rest of this paper is organized as follows: in Section 2, a description and the
mathematical model of the exoskeleton used for the study are presented. In Section 3, the
low-level control law used to command the exoskeleton is stated. Section 4 presents the
proposed algorithm to determine the level of muscle effort, as well as the AAN strategy and
how it is used to modify the parameters of the low lever control law to obtain the desired
behavior. The results of the application of the AAN proposed in Section 3 are exhibited in
Section 4, as well as its findings. Lastly, the conclusion and future works of the study are
presented in Section 6.

2. Description of the Exoskeleton

The exoskeleton (Figure 1) possesses four active revolute joints; three in the shoulder
and one in the elbow. The shoulder joint is modeled using three intersecting axes. The
elbow joint is modeled as a hinge joint, a 1-degree-of-freedom (DOF) revolute joint. The
actuator used in each joint is an RMD-X8 Servo Motor with a nominal torque rating
of 9 N.m. The kinematic model of the system is described using Denavit–Hartenberg
(DH) parameters [28]. Reference joints with their frames are shown in Figure 1, and their
respective DH parameters are given in Table 1.



Machines 2023, 11, 671 4 of 16

Table 1. DH Parameter Table.

Link ai αi di qi

1 0 π/2 −0.275 π/2− q1

2 0 π/2 0 π/2 + q2

3 −0.413 0 0 q3

4 −0.297 0 0 q4

(a) CAD Model. (b) Exoskeleton Prototype.

Figure 1. Four-Joint Exoskeleton.

The dynamics of the robot are represented by the following differential equation:

M(q)q̈ + C(q, q̇)q̇ + g(q) + J(q)T Ftip = τ (1)

where q ∈ Rn×1 is a generalized vector of joint coordinates, M(q) ∈ Rn×n is the sym-
metric positive-definite mass matrix, C(q, q̇) ∈ Rn×n is the coriolis and centripetal matrix,
g(q) ∈ Rn×1 is the vector of forces due to gravity, J(q) ∈ Rn×n is the Jacobian matrix,
Ftip ∈ Rn×1 is the wrench of forces and moments applied on the environment from the
robot at the end-effector coordinates, τ ∈ Rn×1 is the vector of torque and forces exerted by
each joint, and n is the number of DOFs. Sometimes, it is more convenient to express the
summation g(q) + J(q)T Ftip as h(q). The dynamics of the robot can then be expressed in
Equation (2).

M(q)q̈ + C(q, q̇)q̇ + h(q) = τ (2)

The dynamics can be derived by using either the Euler-Lagrange method [29] or the
Recursive Newton-Euler Algorithm (RNEA) [30]. Euler-Lagrange uses the kinetic and
potential energy of the robot to obtain the equation of motion. Typically, it yields a simple
set of equations. However, as the number of DOFs or joints increases, so does the complexity
of the procedure. This makes it unfeasible for a multi-DOF rehabilitative exoskeleton. The
RNEA method calculates each link’s twist Vi(ωi, vi) ∈ R6×1 (a spatial velocity vector
containing linear and angular velocity) and each link’s wrench Fi(ni, fi) ∈ R6×1 (a spatial
force vector made of forces and moments). RNEA is computationally more efficient to
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implement for robots with many DOFs. Regardless of which method is used, the closed-
form dynamic Equation (2) can be derived.

In this study, the Recursive Newton-Euler method is implemented. The implemen-
tation of this method is based on an algorithm having two different iterations, named
the forward and backward iterations. In the forward iteration, given a robot with Ln+1
attached frames from the base to the end-effector and the actual configuration of the robot,
for the twist of each link starting at the base frame, L0 is calculated using Newton’s laws of
motion. In the backward iteration, the wrench exerted on each link is calculated, starting at
the end-effector and going backwards to the base frame. The actual configuration of the
robot, the inertia matrices, Ii, of each link, and the link masses, mi, are also required. These
parameters need to be defined with respect to the local coordinate frame where the twist of
each link is calculated. In [31], the implementation of this algorithm is explained in further
detail. The presented algorithm is formulated using Spatial Vector Algebra, which is based
on Plücker Coordinates [32]. With this representation, it is possible to combine the linear
and rotational dynamics of a robot. The equation of motion of a single rigid body in spatial
coordinates is presented in Equation (3).

Vb = Ab q̇b + Vp(b) (3)

Fb = GbV̇b − adT
Vb

GbVb (4)

where Vb is the spatial velocity twist in Body b, Ab ∈ R6×1 is the screw vector in Body
b coordinates that maps joint rates to joint velocities, Vp(i) is the spatial velocity of the parent
of Body b but in b coordinates, Gb ∈ R6×6 is the spatial inertia matrix, adT

Vb
is the transpose

of the adjoint representation of Vb, the bracket operator [·] represents the skew symmetric
matrix of a vector ∈ R3×1, and I3×3 is the identity matrix. Given this information, the
RNEA can be formulated as in Algorithm 1,

Gb =

[
Ib 0
0 mb I3×3

]
adVb =

[
[ωb] 0
[vb] [ωb]

]
where the subscripts p(i) and c(i) refer to the parent and child of body i in i coordinates,
respectively. The presented RNEA algorithm can be used to obtain different components of
Equation (2). As an example, if the vector of the forces and torques h(q) is desired, then the
inputs q̇ and q̈ are set as equal to 0.

Algorithm 1 RNEA as in [31]

Require: q, q̇, q̈, model, Ftip, and g in world coordinates
Initialization :

1: V0(ω0, v0) = 0; V̇0(ω̇0, v̇0) = (0,−g) Fi+1 = Ftip
Forward Iteration

2: for i = 1 to n do
3: Vi = Ai q̇i + Vpi
4: V̇i = Ai q̈i + V̇p(i) + adVi (Ai)q̇i
5: end for

Backward Iteration
6: for i = n to 1 do
7: Fi = GiV̇i − adT

Vi
(GiVi) + Fc(i)

8: τi = FT
i + Ai

9: end for
10: return τ
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Inertia Parameters of the Exoskeleton

The inertia parameters of the exoskeleton are presented in Table 2. Each parameter
has been estimated from CAD software at the frames defined in Figure 1, following the
DH parameters presented in Table 1.

Table 2. Inertia Parameters, expressed in kg and kg·m2.

Link 1 2 3 4

Mass 1.398 1.264 1.306 0.425

Ixx 0.076 0.013 0.028 0.008

Iyy 0.165 0.035 0.198 0.029

Izz 0.089 0.023 0.172 0.022

Ixy 0.0002 0.002 0.008 0.002

Ixz −0.078 −0.006 0.063 −0.011

Iyz 0.0000882 0.00026 −0.003 −0.001

3. Sliding Mode Control Law

The equation of motion of the robot yields a nonlinear system of differential equations;
they must be linearized in order to apply linear time-invariant (LTI) control system strate-
gies. One strategy used to linearize the robot’s dynamics is to use feedback linearization
or computed-torque control (CTC) [31,33,34]. However, this approach assumes that the
characteristics of the system are precisely known in order to cancel the nonlinear terms
of the equation of motion of the system. This is highly unlikely in a real prototype of the
system, due to manufacturing imperfections. Therefore, another control strategy that is
robust with system uncertainties is preferred. Another control law strategy for nonlinear
systems with such characteristics is Sliding Mode Control (SMC) [35,36]. This control
law forces the state trajectories to reach and lie in a finite amount of time of some given
function, usually called sliding surface, using a discontinuous decision function (switching
gain). The stability of the SMC is guaranteed in the Lyapunov sense. The robustness of the
SMC law makes it ideal for the control strategy for the four-joint exoskeleton presented in
this work.

Control Law Derivation:

This work exploits the characteristics of the equation of the motion of a robot to
derive the SMC law of the given system, as presented by Slotine in [35]. The mass ma-
trix M(q) and the Coriolis matrix C(q, q̇) of Equation (2) are not independent; they are
related by the constraint of Ṁ(q)− 2C(q, q̇) = 0. Since Ṁ(q) is symmetric, C(q, q̇) must be
skew-symmetric [35,37]. The SMC law is derived using the candidate Lyapunov function
V(t) = 1

2 [Φ̇
T MΦ̇], where Φ ∈ Rn×1 is the vector of sliding surfaces, such that when Φ = 0,

the control target is achieved. Therefore, the state trajectories are assured to converge
to zero.

Φ = ė(t) + Λe(t) = q̇(t)− q̇r(t) (5)

where e = q− qd is the trajectory error, qd is the desired state trajectory, qr = q̇d −Λe can
be viewed as a virtual desired velocity trajectory, and Λ is a positive-definite matrix that
contains the parameters that determine how fast the state trajectories reach the desired
targets once they are on the sliding surfaces. Using Lyapunov’s stability criterion, for V(t)
to reach zero, V̇(t) must be negative definite. Differentiating V(t):

V̇(t) = ΦT M(q)Φ̈ +
1
2

ΦT Ṁ(q)Φ̈ (6)

= ΦT [M(q)q̈−M(q)q̈r] +
1
2

ΦT Ṁ(q)Φ̈ (7)
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Solving for M(q)q̈ in (2) in substituting it in V̇(t):

V̇(t) = ΦT [τ −M(q)q̈r − C(q, q̇)q̇r − H(q)] (8)

The control input τ is defined as τ = τ̂ − Ksgn(Φ) to make V̇(t) = 0, where τ̂ is the
best estimate of the robot dynamics and K ∈ Rn×1 is the vector of the gains of components
Kisgn(si). Then, Equation (8) turns into Equation (10).

τ̂ = M̂(q)q̈r + Ĉ(q, q̇)q̇r + ĥ(q) (9)

V̇(t) = ΦT [M̃(q)q̈r + C̃(q, q̇)q̇r + H̃(q)− Ksgn(Φ)] (10)

From Equation (10) and satisfying the sliding condition [35]:

V̇(t) ≤ −
n

∑
i=1

ηi|Φi|

The gain vector K can be derived as follows:

Ki ≥ |[M̃(q)q̈r + C̃(q, q̇)q̇r + H̃(q)]i|+ ηi (11)

where ηi is a constant value that is greater than 0, M̃ = M̂−M, C̃(q, q̇) = Ĉ(q, q̇)− h(q, q̇),
and ˜h(q) = ˆh(q)− h(q) are the bounded uncertainties of the mass matrix, Coriolis matrix,
and vectors of gravity and external forces, respectively.

In practice, the discontinuous sign function K sgn(Φ) induces chattering in the control
signal, which might excite the high-frequency dynamics of the system [38]. In order to
avoid this, the discontinuous sgn() function must be smoothed out. One commonly used
function to smooth the discontinuous term is the saturation function sat() [35,39]. Applying
the substitution to the control input τ yields Equation (12). Under this circumstance, the
system will converge and stay within a boundary layer around the sliding surface; the
width of the boundary layer depends on the variable θ. As a result, the chattering is
controlled, but the tracking error is affected negatively.

τ = τ̂ − Ksat(Φ/θ) (12)

With that being said, if the SMC law explicitly uses a Coriolis matrix C(q, q̇) constrained
to Ṁ(q) − 2C(q, q̇) = 0, then the shown algorithm in Section 2 cannot yield the said
matrix. To work around this inconvenience, the C(q, q̇) is numerically derived by using the
proposed algorithm by Echeandia et al. [40].

4. A Proposed AAN Control Strategy

In this section, the proposed AAN control strategy is described. A Fuzzy Logic Con-
troller (FLC) is proposed to increase or decrease the aggressiveness of the SMC law to
reach the desired tracking trajectories. The positive-definite matrix Λ in Equation (5) deter-
mines how exponentially fast the state trajectories, q(t), will reach the desired trajectories,
qd(t). This fact is exploited in this work to decrease how aggressive the SMC law will be
around qd(t), creating a boundary region where the wearer needs to apply some effort
in order to reduce the position error, e(t). Therefore, two candidate inputs for the FLC
are proposed, the current e(t), and the effort being provided by the wearer. The former is
obtained by subtracting the current joint positions q(t) by the target positions qd(t), and
the latter is estimated by using an adaptive muscle effort algorithm based on sEMG. The
proposed FLC yields the corresponding components of Λ. For simplicity, in this work, Λ
is a diagonal matrix; this will allow us to control the SMC law aggressiveness for each
one of the exoskeleton’s joints. The proposed closed-loop diagram for the presented ANN
control strategy is shown in Figure 2. The inner loop of the control system consists of the
Sliding Mode Control (SMC) law, which serves as the low-level control logic. It operates by
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comparing the desired trajectories with the actual state trajectories of the robot, resulting
in the error dynamics, denoted as e(t). On the other hand, the outer loop comprises the
Fuzzy Logic Controller (FLC), which takes both the error dynamics of the system and the
extracted muscle effort from the wearer’s muscle activities as inputs.

Figure 2. Closed-loop diagram of the proposed AAN Control Strategy.

In the following subsections, the proposed strategy to estimate the muscle effort and
the configuration of the FLC are presented.

4.1. Adaptive Muscle Effort Level Algorithm

In this study, an instance-based adaptive muscle effort based on sEMG to calibrate
the aggressiveness by which the SMC law changes the amount of torque provided by the
exoskeleton’s joints is proposed. Usually, the exoskeleton is pre-programmed with a given
routine—for example, elbow flexion—and then it carries the subject’s limb during the
exercise. One drawback of this approach is that the subject may become dependent on the
exoskeleton and may not put enough effort to complete the exercise; therefore, the recovery
speed will be delayed. Thus, real-time user feedback is needed to adjust the amount of
torque/force provided by the exoskeleton. In this work, we proposed to use sEMG to
provide such feedback. Researchers commonly use the Root Mean Square (RMS) value of
the sEMG, Equation (13), as an indicator of muscle health as it reflects the mean power of
a signal [41].

xrms(t) =

√
1
T

∫ t−T

t
x2(τ)dτ (13)

In the current work, the elbow flexion exercise and the sEMG level of the bicep’s
brachii muscle are selected for the implementation of the instance-based adaptive muscle
effort as an input to a Fuzzy Inference System (FIS) to regulate the torque provided by the
exoskeleton. There is evidence that there is a linear relationship between the RMS of the
sEMG and the contraction force of the bicep brachii [42]. The proposed algorithm obtains
the maximum RMS value of the first 10 s of data collection for sEMG from the subject’s
muscle, while the robot performs the pre-programmed trajectory; this value is updated if,
during the rest of the rehabilitation section, another maximum RMS calculation is found.
Then, the muscle effort is updated as the ratio of the already found maximum RMS value
with respect to the coming RMS calculations of the coming sEMG; Equation (14).

α(t) =
γ(t)
β(t)

(14)

where γ(t) and β(t) are the coming RMS calculations of the coming sEMG and the maxi-
mum RMS calculation of the current training section. An example of the proposed threshold
calculation is shown in Figure 3.
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Figure 3. Instance−based adaptive muscle effort based on sEMG for the bicep muscle during a 90 s
session of elbow flexion.

By following this strategy, the muscle effort, α(t), is the acceptable maximum effort
(AME) and will always range from 0% to 100%. Furthermore, this strategy avoids the
issue of obtaining the Maximum Voluntary Contraction (MVC) of a muscle since from the
medical point of view, this quantity cannot be determined if a person is currently suffering
from a disability [43].

4.2. Fuzzy SMC Law

In this work, a Mamdani FIS [44] is used to generate the component of Λ that affects
the SMC law output for joint 4 of the exoskeleton. This FIS is a nonlinear model that applies
if-else statements or rules to produce an output that is based on qualitative knowledge
instead of quantitative analysis. This means that it is not necessary to know the actual
model of a physical system, but with enough experience on how it works, it is sufficient
to generate control inputs to obtain a desired behavior. In our problem, perhaps it is
desired to make the SMC law less aggressive if the position error, e(t), and the muscle
effort, α(t) are high, or perhaps if the current e(t) is too high, then the controller should be
more aggressive independently of the muscle effort. Therefore, the Mamdani FIS model is
suitable for our problem.

The configuration of the Mamdani FIS with two inputs and one output is made in
MATLAB. The two inputs are defined as the position error, e(t), and the muscle effort,
α(t), with a range of −π to π and 0 to 100%, respectively. On the other hand, the output
is the component of matrix Λ that affects joint 4 on the exoskeleton, which will be known
as λ for the rest of the work, and it ranges from 0 to 15. Each input and the output are
mapped into fuzzy sets using three membership functions for each; these functions are
shown in Figure 4. For e(t), its three membership functions are defined as a z-shape open
to the left, and a bell-shape and s-shape open to the right for negative high, medium, and
positive high values of position errors, respectively; Figure 4a. On the other hand, the
membership functions for the input α(t) are defined as being trapezoidal, where each one
of them represents low, medium, and high values of muscle effort; Figure 4b. Lastly, the
membership functions of the output λ(t) are defined as bell-shaped functions to represent
low gain, medium gain, and high gain values; Figure 4c.

The if-then rules of the proposed FIS are based on the reasoning that the SMC law
must be more or less aggressive, based on the current position error, e(t) and the muscle
effort, α(t) is the following:
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• If e(t) is positive high, then λ(t) is high.
• If e(t) is negative high, then λ(t) is high.
• If e(t) is medium and α(t) is high, then λ(t) is low.
• If e(t) is medium and α(t) is medium, then λ(t) is medium.
• If e(t) is medium and α(t) is low, then λ(t) is high.

(a) Position error e(t) membership functions. (b) Muscle effort α(t) membership functions.

(c) Λ(t) membership functions.
Figure 4. Input and output membership functions for the Fuzzy Inference System.

Based on the above if−then rules, the control surface that determines the value of α(t)
given e(t) and α(t) is shown in Figure 5. From the figure, it is shown how the values of λ
are saturated to 15 when the current error, e(t), is outside of the allowable range of error
independently of α(t). On the other hand, if e(t) is maintained inside an allowable range,
the value of λ changes with respect to e(t) and α(t).

Figure 5. Control surface for the Fuzzy Inference System, based on the input and output membership
functions.
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5. Results and Discussion
5.1. Implementation without Assistance

The SMC is implemented to verify its stability and to showcase the efficiency of the
SMC law. The error dynamics of the state trajectories are bounded as established in Section 3.
The system parameter uncertainty is 20%. The parameters for the SMC are defined as the
diagonal matrix Λ = 15× I4×4, η = [4, 4, 4, 4]T , and θ = 0.5 in the simulation to calculate
the controller gain Ki and the actual torque τ, using Equations (11) and (12), respectively.
The desired trajectories, qd, are 0 for joints 1 through 3, and joint 4 will vary from 0 to 120◦.
This motion follows a trapezoidal motion profile [31,45], with a maximum velocity and
acceleration of 0.24 rad/s and 1 rad/s2, respectively. The elbow flexion-extension motion
is performed for approximately 90 s. Furthermore, a sinusoidal disturbance torque with
an amplitude of 0.5 N.m with a period of 2 s is applied to joint 4. The implementation of
the SMC was performed in Simulink and MATLAB; the simulation diagram is shown in
Figure 6. The desired trajectory, qd, the error dynamics of each joint, e(t), and the required
input torques are shown in Figures 7–9, respectively. From these results, it can be observed
that the error dynamics given by e(t) are bounded. Specifically, the position error at joint 4
is bounded between −20× 10−3 and 4× 10−3 rads during the task, while requiring a
feasible amount of bounded torque between −0.5 and 1.5 N.m.

Figure 6. Simulation Diagram of the System in Simulink, MATLAB.

(a) qd (b) q̇d

Figure 7. Desired trajectory , (a) q5 and (b) q̇5.
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Figure 8. Error dynamics , e(t), during the Elbow Flexion-Extension Exercise.

Figure 9. Required Torque , τ(t), during the Elbow Flexion-Extension Exercise.

5.2. Implementation with Assistance

Surface EMG signals were collected from four healthy subjects aged between 18 and
25 years. The Delsys Trigno Wireless EMG system was used to collect data at a sampling
rate of 2000 Hz. In order to avoid any artifact coming from the motion, the mean of the
sEMG data was subtracted, since its mean value must be zero [43]. Additionally, the sEMG
signal was filtered with a fifth-order Butterworth bandpass filter with cutoff frequencies
at 20 Hz and 150 Hz. This process was performed before extracting the RMS value of
the signal, defined by Equation (13). Then, simulations were performed as well with
each individual sEMG information and with the FLC SMC Law. Figures 10–13 show the
inputs and outputs of the FIS for each subject, where each individual presents different
levels of position error, muscle effort, and controller parameter λ. Subject 1, Figure 10,
presented a muscle effort α(t) between the low and medium range, as well as an absolute
value of the position error at joint 4 less than 0.04 rad, which is considered as a medium
value; as result, the controller parameter λ(t) was maintained in the medium range. A
similar result can be inferred from subject 2, Figure 11. In this case, there are low peaks
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on the controller parameter due to the high values of muscle effort α(t). For subject 3,
Figure 12, the controller parameter λ(t) was maintained on the low range, since most of the
time, the subject presented a medium to high firing activity on α(t) while maintaining the
position error in the medium range. Lastly, Subject 4, Figure 13, presented similar results as
Subject 3.

In addition, the control input torque for joint 4 has presented feasible values, which
can be achieved by the servo motor presented in Section 2. The torque input values account
for a range from −0.6 N.m to 1.4 N.m, and the torque curve did not present undesirable
chattering, which is desirable.

Figure 10. Joint 4 position error and Torque, adaptive sEMG-Based Effort, and Controller Parameter
for subject 1.

Figure 11. Joint 4 position error and Torque, adaptive sEMG-Based Effort, and Controller Parameter
for subject 2.

Figure 12. Joint 4 position error and Torque, adaptive sEMG-Based Effort, and Controller Parameter
for subject 3.
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Figure 13. Joint 4 position error and Torque, adaptive sEMG-Based Effort, and Controller Parameter
for subject 4.

6. Conclusions and Future Work

In this study, an adaptive muscle effort based on sEMG that serves as an input to a
fuzzy inference system that modifies the aggressiveness of the SMC law that controls the
exoskeleton was provided. The proposed control was used as an Assist-as-Needed (AAN)
control strategy to provide assistance to a wearer while performing an elbow flexion task
while adapting its parameters, based on the current joint position error and subject-varying
muscle effort. The results showed that the controller was capable of maintaining the
position error bound for each subject while requiring feasible torque inputs. Additionally,
it demonstrates its usefulness for this type of application, where different subjects can wear
the exoskeleton for rehabilitation, and it can automatically adjust itself to provide assistance
without needing long training sections to train an algorithm. Future works will explore the
involvement of other muscles on different joints of the upper arm such as the shoulder, in
order to feed the proposed fuzzy SMC Law.
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Special Symbols

The following Special Symbols are used in this manuscript:

τ Vector of torque and forces exerted by joints
Φ Sliding surfaces vector
Λ Positive-definite matrix of decaying exponential rate of the state trajectory errors
λ Decaying exponential rate of the state trajectory error
sgn Signum operation
sat Saturation operation
θ Boundary layer value to smooth out the switching operation in the SMC
γ Current surface EMG values
β Current maximum surface EMG values
α Calculated muscle effort
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