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Abstract: We present a formulation of the boundary element method (BEM) for simulating the tan-
gential contact with an elastic half-space coated with an elastic layer with different elastic properties.
We use the fast Fourier-transform-based formulation of BEM, while the fundamental solution is
determined directly in the Fourier space. Numerical tests are validated by comparison with available
asymptotic analytical solutions for a very thin and a very thick layer, as well as with FEM calculations
for layers with finite thickness.
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1. Introduction

Coatings are widely used to influence and to improve mechanical, electrical, thermal,
adhesive, capillary, and other mechanical properties of surfaces; an overview of related
problems and applications can be found in [1]. One of the most prominent applications
of coatings is wear reduction [2]. The key for understanding and design of coatings is
understanding the contact mechanics of coated materials. Other than for the half-space,
there are no simple analytical solutions for coated materials. However, analytical solutions
have been obtained for limiting cases. Thus, in [3], an analytic asymptotic theory of a normal
contact with a thin elastic layer on a rigid foundation was considered. Further developments
included analytical work related to rough surfaces [4] as well as contact problems with
account of surface tension [5]. Analytical solutions for the tangential contact of coated
surfaces has been derived in [6] for isotropic media, in [7] for a transversely isotropic elastic
layer, and in [8] for the case of a sliding spherical indenter. Numerical solutions of non-
adhesive contact problems for contacts with elastic half-space have been developed since
1990s in the group of Q. Wang (see a review in [9]) and have been extended later to adhesive
contacts [10] and contacts with graded materials [11]. Numerical simulation and calculation
of normal contact of coated surfaces has also been extensively studied. This includes
modelling the contact of specific body shapes [12], or creating contact models, e.g., using
finite element analysis [13,14], to investigate different contact configurations. The complete
solution for normal contact (both non-adhesive and adhesive) with coated elastic bodies has
been given in [15]. Numerical solutions for tangential contact problems of coated surfaces
are mostly associated with the study of partial slip, as in [16,17]. In [16], Z. Wang et al.
applied a similar procedure to O’Sullivan and King in [8], using Papkovich-Neuber elastic
potentials to derive the corresponding frequency response functions. A semi-analytical
method (SEM) was used to solve the contact problem. Besides SEM and FEM [18], the BEM
is a method that can be used to solve contact problems very efficiently. However, no BEM
solution for the tangential contact of coated surfaces has been presented so far. Therefore,
an extension of the method developed in [15] to tangential contact is described in the
present work; it considers only the tangential part of the contact problem. The FFT-based
formulation of the BEM is used for the solution. Since no points inside the body must be
discretized, but only the points on the surface, this method has a high numerical efficiency
compared to other methods.
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The remainder of this paper is structured as follows: Section 2, derives in detail the
fundamental solution needed for the BEM formulation. In Section 3, the derived solution is
compared with results from the investigation of limiting cases and FEM simulations. In the
last section a conclusion is drawn.

2. FFT-Based BEM for Tangential Contact of Coated Surfaces

Consider a coated elastic half-space as schematically shown in Figure 1. The layer
having thickness h is assumed to consist of a linearly elastic isotropic material with Young’s
modulus E1 and Poisson’s ratio ν1. The half-space is also an isotropic material with elastic
constants E2 and ν2. The origin of coordinates is placed on the surface of the layer and the
z-axis points in the direction of the half-space. The interface between the layer and the
underlying elastic half-space has the coordinate z = h.
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Figure 1. A schematic representation of a coated body. The elastic constants of the layer are E1 and ν1

while those of the half-space are E2 and ν2. The thickness of the layer is h and the coordinate origin is
on the outer surface of the coating.

For a numerical simulation, a square area with the side length L is considered, which
is discretized with N grid points in each direction. Each square simulation cell has the
same size ∆x = ∆y = ∆ (see Figure 2). For the application of BEM, it is further assumed
that the pressure or stress in each cell is uniform. The usual method for calculating the
tangential displacements u resulting from a tangential stress distribution τ with the BEM
is to perform a direct FFT of the pressure distribution, multiplying it with the FFT of the
fundamental solution and finally performing the inverse FFT as follows [15]

u = IFFT[FFT(U0) · FFT(τ)], (1)

where U0 is the fundamental solution, giving the displacement of surface points resulting
from a single localized tangential force. This procedure is possible for all laterally homo-
geneous systems, for which the displacement is represented as a convolution of stress
distribution and fundamental solution. In Fourier-space the convolution transforms to
simple multiplication. A detailed explanation can be found in Ref. [9]. Thus, to calculate
the displacements, both the known fundamental solution and the stress distribution must
be Fourier-transformed. As suggested in [15], it is much easier to derive the fundamental
solution directly in the Fourier-space than in the real space. This also omits one of the
operations in (1). In the following, this fundamental solution is to be derived, that is, in
terms of Equation (1), the factor FFT(U0).
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Figure 2. Representation of the mesh used for the numerical simulation. An area is shown enlarged
to illustrate the discretization and, by way of example, the stress in a cell.

For the derivation of the fundamental solution in Fourier-space, a distribution of
tangential stresses τxz and τyz acting on the surface of the layer is considered in the form of
a plane wave:

τxz = τx = τ0
x eikr, (2)

τyz = τy = τ0
y eikr. (3)

τ0
x and τ0

y are here the amplitudes of the corresponding component, k is the wave
vector and r is the radius vector in the contact plane. In the further text, the symbol k, which
is not printed in bold, denotes the absolute value of the wave vector, k = |k|. For simplicity,
without loss of generality, we can assume that the direction of the wave vector is given by
the x-axis. Thus, Equations (2) and (3) can be written as:

τx = τ0
x eikx, (4)

τy = τ0
y eikx. (5)

To obtain equations that contain the displacements and can be evaluated using bound-
ary conditions, the equilibrium equation of an elastic isotropic medium is used:

grad div u + (1− 2ν1,2)∇2u = 0, (6)

where ∇ is the (three-dimensional) gradient operator. The displacements u will in the
x-direction also have the form of a plane wave:

u = uxex + uyey + uzez = u0
x(z)e

ikxex + u0
y(z)e

ikxey + u0
z(z)e

ikxez. (7)

The vectors ex, ey and ez are unit vectors pointing in the direction of the coordinate
axes. ux, uy and uz denote the projections of the displacement vector on the corresponding
directions and the symbols u0

x, u0
y and u0

z denote the amplitudes which depend only on the
vertical coordinate z.

The operators appearing in (6) read:

div u =
∂

∂x

[
u0

x(z)e
ikx
]
+

∂

∂y

[
u0

y(z)e
ikx
]
+

∂

∂z

[
u0

z(z)e
ikx
]
= iku0

x(z)e
ikx +

∂u0
z(z)
∂z

eikx, (8)
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grad div u =

[
−k2u0

x(z)e
ikx + ik

∂u0
z(z)
∂z

eikx
]

ex +

[
ik

∂u0
x(z)
∂z

eikx +
∂2u0

z(z)
∂z2 eikx

]
ez, (9)

∇2u =(
∂2

∂x2 + ∂2

∂z2

)[
u0

x(z)eikx
]
ex +

(
∂2

∂x2 + ∂2

∂z2

)[
u0

y(z)eikx
]
ey +

(
∂2

∂x2 + ∂2

∂z2

)[
u0

z(z)eikx
]
ez =[

−k2u0
x(z)eikx + ∂2u0

x(z)
∂z2 eikx

]
ex +

[
−k2u0

y(z)eikx +
∂2u0

y(z)
∂z2 eikx

]
ey+[

−k2u0
z(z)eikx + ∂2u0

z (z)
∂z2 eikx

]
ez .

(10)

After substitution of these expressions into (6), we obtain:

∂2u0
x(z)

∂z2 +
ik

1− 2ν1,2

∂u0
z(z)
∂z

− 2(1− ν1,2)k2

1− 2ν1,2
u0

x(z) = 0, (11)

∂2u0
y(z)

∂z2 − k2u0
y(z) = 0, (12)

∂2u0
z(z)

∂z2 − ik
2(ν1,2 − 1)

∂u0
x(z)
∂z

+
(1− 2ν1,2)k2

2(ν1,2 − 1)
u0

z(z) = 0. (13)

We look for solutions of the differential equation system in the form:

u0
x(z) = Aeλz; u0

y(z) = Beλz; u0
z(z) = Ceλz. (14)

Substituting (14) into Equations (11)–(13), we get:

Aλ2 + C
ik

1− 2ν1,2
λ− A

2(1− ν1,2)k2

1− 2ν1,2
= 0, (15)

Bλ2 − Bk2 = 0, (16)

Cλ2 − A
ik

2(ν1,2 − 1)
λ + C

(1− 2ν1,2)k2

2(ν1,2 − 1)
= 0. (17)

Equation (16) is completely decoupled from (15) and (17) and gives λ1,2 = k,−k.
Equations (15) and (17) have non-trivial solutions if their determinant vanishes:∣∣∣∣∣∣λ

2 − 2(1−ν1,2)k2

1−2ν1,2
ik

1−2ν1,2
λ

− ik
2(ν1,2−1)λ λ2 +

(1−2ν1,2)k2

2(ν1,2−1)

∣∣∣∣∣∣ = 0. (18)

The solution of this equation gives the characteristic equation with the four roots
λ3,4,5,6 = k,−k, k,−k. The general solution has the form:

u(1)
x (x, z) = u0

x(z)e
ikx =

(
A1ekz + A2e−kz + A3zekz + A4ze−kz

)
eikx, (19)

u(1)
y (x, z) = u0

y(z)e
ikx =

(
B1ekz + B2e−kz

)
eikx, (20)

u(1)
z (x, z) = u0

z(z)e
ikx =

(
C1ekz + C2e−kz + C3zekz + C4ze−kz

)
eikx. (21)
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The superscript (1) indicates that the solutions are valid only inside the coating
(0 ≤ z ≤ h). The general solution inside the half-space has the same form with a different
set of coefficients and the superscript (2):

u(2)
x (x, z) = u0

x(z)e
ikx =

(
A5ekz + A6e−kz + A7zekz + A8ze−kz

)
eikx, (22)

u(2)
y (x, z) = u0

y(z)e
ikx =

(
B3ekz + B4e−kz

)
eikx, (23)

u(2)
z (x, z) = u0

z(z)e
ikx =

(
C5ekz + C6e−kz + C7zekz + C8ze−kz

)
eikx. (24)

Substitution of (19)–(21) and (22)–(24) into Equations (11)–(13) leads to:

C1 = −i
(

A1 − A3(3−4ν1)
k

)
,

C2 = i
(

A2 +
A4(3−4ν1)

k

)
,

C3 = −iA3, C4 = iA4 .

(25)

C5 = −i
(

A5 − A7(3−4ν2)
k

)
,

C6 = i
(

A6 +
A8(3−4ν2)

k

)
,

C7 = −iA7, C8 = iA8 .

(26)

We use the following boundary conditions:

1. The displacements of the half-space in infinite depth are zero:

u(2)
x (x, z→ ∞) = 0, u(2)

y (x, z→ ∞) = 0, u(2)
z (x, z→ ∞) = 0. (27)

2. Continuity of displacements at the interface between the half-space and the coating,
as they are assumed to be bonded together:

u(1)
x (x, h) = u(2)

x (x, h), u(1)
y (x, h) = u(2)

y (x, h), u(1)
z (x, h) = u(2)

z (x, h). (28)

3. Continuity of stresses at the interface between the half-space and coating, as they are
assumed to be bonded together:

σ
(1)
zz (x, h) = σ

(2)
zz (x, h), τ

(1)
xz (x, h) = τ

(2)
xz (x, h), τ

(1)
yz (x, h) = τ

(2)
yz (x, h). (29)

4. Vanishing of normal stresses at the contact plane:

σ
(1)
zz (x, z = 0) = 0. (30)

5. Given x-component of the tangential stress distribution on the surface:

τ
(1)
xz (x, z = 0) = τx = τ0

x eikx. (31)

6. Given y-component of the tangential stress distribution on the surface:

τ
(1)
yz (x, z = 0) = τy = τ0

y eikx. (32)

After their evaluation we obtain:

A5 = 0, A7 = 0, B3 = 0, C5 = 0, C7 = 0, (33)
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A1e2hk + A2 + A3he2hk + A4h− A6 − A8h = 0, (34)

B1e2hk + B2 − B4 = 0, (35)

A1ke2hk − A2k + A3e2hk(4ν1 + hk− 3) + A4(4ν1 − hk− 3) + A6k− A8(4ν2 − hk− 3) = 0, (36)

E1
1+ν1

[
A1ke2hk + A2k + A3e2hk(2ν1 + hk− 2)− A4(2ν1 − hk− 2)

]
−

E2
1+ν2

[A6k− A8(2ν2 − hk− 2)] = 0 ,
(37)

E1
1+ν1

[
A1ke2hk − A2k + A3e2hk(2ν1 + hk− 1) + A4(2ν1 − hk− 1)

]
+

E2
1+ν2

[A6k− A8(2ν2 − hk− 1)] = 0 ,
(38)

E1(1 + ν2)
(

B1e2hk − B2

)
+ E2(1 + ν1)B4 = 0, (39)

A1k + A2k + 2A3(−1 + ν1)− 2A4(−1 + ν1) = 0, (40)

E1

1 + ν1
[A1k− A2k + A3(−1 + 2ν1) + A4(−1 + 2ν1)] = τ0

x , (41)

E1

2(1 + ν1)
[B1k− B2k] = τ0

y . (42)

For the plain tangential contact, we search for the displacements in x- and y- direction
at the contact surface u(1)

x (x, z = 0) and u(1)
y (x, z = 0). So, we calculate A1, A2, A3, A4, B1

and B2 using Equations (34)–(42). The solutions for A1, A2, A3, A4 are substituted into (19)
and we obtain:

u(1)
x (x, z = 0) =

2
(
ν2

1 − 1
)[

Ae−4hk + 4Bhke−2hk + D
]

E1k
[
−Ae−4hk + 4Bh2k2e−2hk + 2Ce−2hk + D

]τ0
x eikx. (43)

Here, the constants A, B, C and D are given by the following expressions:

A = E2
2(1 + ν1)

2(−3 + 4ν1) + E2
1(1 + ν2)

2(−3 + 4ν2)−
2E1E2(1 + ν1)(1 + ν2)(−3 + 2ν1 + 2ν2) ,

(44)

B = E2
2(1 + ν1)

2 + E2
1(1 + ν2)

2(−3 + 4ν2)− 2E1E2(1 + ν1)
(
−1 + ν2 + 2ν2

2

)
, (45)

C = E2
2(1 + ν1)

2(5− 12ν1 + 8ν2
1
)
+ E2

1(1 + ν2)
2(−3 + 4ν2)−

2E1E2
(
−1 + ν1 + 2ν2

1
)(
−1 + ν2 + 2ν2

2
)

,
(46)

D = −E2
2(1 + ν1)

2(−3 + 4ν1)− E2
1(1 + ν2)

2(−3 + 4ν2)+

2E1E2(1 + ν1)(1 + ν2)(5− 6ν2 + ν1(−6 + 8ν2)) .
(47)

Now we substitute B1 and B2 into (20) and obtain:

u(1)
y (x, z = 0) =

2(1 + ν1)
[

Fe−2hk − G
]

E1k
[
Fe−2hk + G

] τ0
y eikx, (48)

where the constants F and G are given by the following expressions:

F = E2(1 + ν1)− E1(1 + ν2), (49)
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G = E2(1 + ν1) + E1(1 + ν2). (50)

We write the solutions (43) and (48) for ux and uy in the following abbreviated form:

ux = u(1)
x (x, z = 0) = Φx(k)τ0

x eikx ,

uy = u(1)
y (x, z = 0) = Φy(k)τ0

y eikx .
(51)

In the above derivation, we have chosen the x-axis along the wave vector. However,
on the back Fourier transformation, integration goes over all possible wave vectors at the
given stress on the surface. To be able to perform this operation, we now write the result
(51) in a coordinate system where both the wave vector and the stress vector have arbitrary
directions. To this end a new coordinate system (x′, y′) is considered, which is rotated
relative to (x, y) by angle ϕ as shown in Figure 3.
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Figure 3. Representation of the new coordinate system (x′, y′), which is rotated relative to (x, y) by
the angle ϕ.

The coordinate transformations read:

ux′ = ux cos ϕ− uy sin ϕ ,

uy′ = ux sin ϕ + uy cos ϕ ,
(52)

τ0
x = τ0

x′ cos ϕ + τ0
y′ sin ϕ ,

τ0
y = −τ0

x′ sin ϕ + τ0
y′ cos ϕ ,

(53)

x = x′ cos ϕ + y′ sin ϕ ,
y = −x′ sin ϕ + y′ cos ϕ .

(54)

Substitution of (53) and (54) into (51) gives:

ux = Φx(k)
(

τ0
x′ cos ϕ + τ0

y′ sin ϕ
)

eik(x′ cos ϕ+y′ sin ϕ) ,

uy = Φy(k)
(
−τ0

x′ sin ϕ + τ0
y′ cos ϕ

)
eik(x′ cos ϕ+y′ sin ϕ) .

(55)

Further substitution of (55) into (52) leads to the result:

ux′ =
[
Φx(k)

(
τ0

x′ cos2 ϕ + τ0
y′ sin ϕ cos ϕ

)
−Φy(k)

(
−τ0

x′ sin2 ϕ + τ0
y′ sin ϕ cos ϕ

)]
eik(x′ cos ϕ+y′ sin ϕ) ,

uy′ =
[
Φx(k)

(
τ0

x′ sin ϕ cos ϕ + τ0
y′ sin2 ϕ

)
+ Φy(k)

(
−τ0

x′ sin ϕ cos ϕ + τ0
y′ cos2 ϕ

)]
eik(x′ cos ϕ+y′ sin ϕ) .

(56)
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If we assume that the stress vector τ is directed along the axis x′, then τ0
y′ = 0 and (56)

takes the form:

ux′ = τ0
x′
[
Φx(k) cos2 ϕ + Φy(k) sin2 ϕ

]
eik(x′ cos ϕ+y′ sin ϕ) ,

uy′ = τ0
x′
[
Φx(k)−Φy(k)

]
sin ϕ cos ϕeik(x′ cos ϕ+y′ sin ϕ) .

(57)

These equations show that the traction along the axis x′ lead to displacements both
in the direction of traction and perpendicular to it. The reverse is also true: a displace-
ment in the direction x′ will lead to the appearance of stress component perpendicular to
this direction.

Now it is possible to calculate the displacements in the direction of the loading and
perpendicular to it. To use it in a BEM code, we need to convert it into an inverse Fast
Fourier Transform so that:

ux = IFFT
[{

Φx(k) cos2 ϕ + Φy(k) sin2 ϕ
}
· FFT(τ)

]
, (58)

uy = IFFT
[{[

Φx(k)−Φy(k)
]

sin ϕ cos ϕ
}
· FFT(τ)

]
. (59)

The operation 〈·〉 denotes an element-wise multiplication since both terms are 2D
matrices. For the inverse problem, the calculation of the tangential stress distribution from
a given displacement field, the conjugate gradient method can be used. This completes the
formulation of the BEM for the purely tangential contact of coated systems.

3. Comparison with Limiting Cases and FEM Solutions

In order to check the correctness of the derivation and the resulting Equations (58)
and (59), comparisons are made with other solutions. For this purpose, limiting cases are
investigated and results from FEM calculations are used. The limiting cases are, first, the
case of a layer with infinite thickness and, second, the case of a thin layer on a rigid surface.
Comparison solutions can be easily created for these two cases.

To start with the general case, the comparison with FEM solutions is presented first.
More detailed information on the FEM model and how to obtain the FEM results can be
found in Appendix A. For comparison, we consider a boundary value problem in which a
circular contact area of diameter 2a is displaced tangentially by ux. The resulting tangential
force Fx and the resulting tangential contact stiffness kT are calculated. We are interested in
the influence of the ratio of elastic moduli E1/E2 on the contact stiffness at different ratios
a/h. The Poisson’s ratio of the layer and the substrate should be the same (ν1 = ν2 = 0.3).
To work only with dimensionless parameters, the normalized tangential contact stiffness
kT,norm is defined, which can be calculated as follows:

kT,norm =
kT

kT,hom
. (60)

The contact stiffness resulting from BEM or FEM simulations is thus divided by the
contact stiffness that would result without the layer. This contact stiffness can be calculated
analytically for our case [19]

kT,hom = 2aG∗2 , (61)

with G∗2 = 4G2/(2− ν2) and G2 as the shear modulus of the substrate.
Figure 4 shows the results and the comparison. The normalized tangential contact

stiffness is plotted against the ratio of elastic moduli for different ratios a/h. The different
types of lines represent the BEM solutions, and the markings represent the FEM solutions.
The comparison was made for each case: the contact radius is smaller, larger, or equal to
the layer thickness. In addition, two other ratios a/h were calculated with the BEM.
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corresponding line. The Poisson’s ratio of the layer and the substrate are ν1 = ν2 = 0.3.

As can be seen, the agreement between the results of the two simulation methods is
very good. Moreover, all curves meet at the point kT,norm = 1 and E1/E2 = 1, as it is to
be expected, since it is the case of the homogeneous half-space. We can also see that the
layer stiffness has a direct influence on the tangential contact stiffness of the contact system.
When E1 > E2, kT,norm > 1, since the contact stiffness is larger than in the homogeneous
case. The reverse case also applies, so that kT,norm < 1 if E1 < E2. The influence of the
layer depends of course on its thickness. For thinner layers (a/h > 1), kT,norm tends to
become a constant with a value of 1, since the properties of the substrate dominate the
contact configuration. For thicker layers (a/h < 1), the relation between kT,norm and the
ratio E1/E2 becomes linear, as the properties of the layer are more dominant, which can
also be represented analytically. If the layer is thick enough, we can assume it to be a
homogeneous half-space. In this case, (61) can be used for kT , but with G∗1 = 4G1/(2− ν1).
Thus the Equation (60) reads (with ν1 = ν2 = 0.3):

kT,norm =
2aG∗1
2aG∗2

=
G1

G2
=

E1

E2
. (62)

This relation can be seen in Figure 4 for a/h = 0.05.

3.1. Limiting Cases for Tangential Contact without Slip

The procedure for checking the limiting cases is similar to the comparison with the
FEM solutions. We again consider a circular contact area with diameter 2a, which is
displaced tangentially by ux, and calculate the tangential force and the resulting tangential
contact stiffness kT . Since in both limiting cases the layer thickness is important, we are
now interested in the influence of the ratio a/h on the contact stiffness. To investigate both
cases in an efficient way, the following considerations were made.

For the first case, the infinite layer thickness, very large values for h should be used.
Now we can use the assumption we have already used for the comparison with the FEM
results: If the layer is thick enough, it can be assumed to be an elastic half-space with
the appropriate elastic parameters. Thus, the results of the BEM simulation should be
consistent with those obtained by assuming a homogeneous elastic half-space with the same
parameters as the layer. As written above, the tangential contact stiffness in this case can be
calculated with (61), with the difference that now G∗1 is used. For the second limiting case,
the thin layer on a rigid surface, very small values for h should be used and, in addition,
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the value of E2 must be large. In this case, it is also possible to calculate the tangential
contact stiffness analytically. The derivation of the equation will be briefly illustrated.

Considering a thin elastic layer of thickness h on a rigid surface, the shear strain γxz
can be approximated as follows:

γxz =
∂ux

∂z
≈ ux

h
. (63)

The thin elastic layer acts as a three-dimensional Winkler foundation. Thus, the shear
strain does not depend on z and is constant under the displaced area. The resulting shear
stress is then:

τxz = G1γxz ≈ G1
ux

h
. (64)

This results in the following equation for the tangential contact stiffness:

kT,ana ≈ G1
πa2

h
. (65)

The use of the model of a Winkler foundation for a thin elastic layer can also be
found in other literature [20]. To illustrate the comparison, we now use the normalized
tangential contact stiffness again by dividing each calculated contact stiffness by that of
the homogeneous half-space (but now with the parameters of the layer). Since the elastic
modulus of the substrate should not matter in the first case and must be large in the second,
E1/E2 = 10−9 is used to mimic a rigid surface as closely as possible.

In Figure 5 the results are shown. The BEM results are represented by solid lines
and the limiting cases by dashed or dotted lines. In addition to the previous theoretical
considerations and for the sake of completeness, the comparison is performed for two
different values of ν1, since kT,hom = 2aG∗1 depends on this quantity. However, as can
be seen, the influence of the Poisson’s ratio of the layer on the normalized tangential
contact stiffness is not large. The more interesting point is that the limiting cases are very
well reproduced with the derived BEM solution. For very thick layers (a/h� 1), the
normalized tangential contact stiffness becomes 1, as this is very close to the homogeneous
case. For very thin layers (a/h� 1) there is a linear relation between kT,norm and a/h, as
can be seen from the equations. To give information about the deviations between BEM
results and the analytical results: For a/h = 0.1, the deviation between the BEM result and
the analytical result for the homogeneous half-space is 4%. The same deviation results for
the case of the thin layer on a rigid surface for a/h = 22.
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3.2. Limiting Cases for the Tangential Contact of a Parabolic Indenter Considering Slip

The same limiting cases are now tested for the contact of a parabolic indenter, taking
partial slip into account. For this purpose, a parabolic indenter with the radius of curvature
R is first pressed in by δ and then tangentially displaced by ux. For the calculation, we
assume that the normal and the tangential contact can be considered as decoupled. We
also assume Coulomb friction with the coefficient of friction µ. With these assumptions, an
iterative procedure can be used to investigate the partial slip and calculate the stick-slip
regions for each incremental displacement ∆ux. To do this, the no-slip condition |τ| < µp
is checked for each contact point after each incremental displacement. The pressure distri-
bution p is calculated using the BEM formulation presented in [15]. As can be seen, only
the absolute value of the tangential stress τ is considered in the no-slip condition. Thus, the
Cattaneo-Mindlin assumption is used, and the exact directions of the displacements and
the friction force are not considered [21,22].

For the comparison between the calculations and the limiting cases, we are interested
in the ratio of the radii of the stick region c and the total contact area a for each ∆ux.
To derive asymptotic analytical solutions, the Ciavarella-Jäger assumption is used, with
which the tangential contact can be determined by the corresponding frictionless normal
contact [23,24]. Thus, among others, the following equation can be used:

τ(r) = µ[p(r; a)− p(r; c)] . (66)

For the case of infinite layer thickness, the solution of the homogeneous half-space can
be used as before, which has the same elastic parameters as the layer. The derivation can
be found for example in [20] and the resulting equation is:

( c
a

)
hom

=

(
1− Fx

µFN

)1/3
. (67)

For the case of the thin layer on a rigid surface, the model of a three-dimensional
Winkler foundation is again used. Thus, Equation (64) can be used for the shear stress in
the stick region. The derivation of the pressure distribution p(r; ã) is similar to that of the
shear stress. The strain can be approximated as:

εzz =
duz

dz
≈ −1

h

(
δ− r2

2R

)
, (68)

where r2/2R describes the shape of the indenter. The known relation between the indenta-
tion depth δ and the corresponding contact radius ã, δ = ã2/2R, can be used and thus the
following pressure distribution is obtained:

p(r; ã) = −σzz =
G1

h
2(1− ν1)

(1− 2ν1)

(
ã2 − r2

2R

)
. (69)

The representation with G1 serves to facilitate the transformation of the equation after
(64) and (69) have been substituted into (66). In this way, the following result is obtained:

( c
a

)
ana

=

(
1− (1− 2ν1)

2(1− ν1)

ux

µd

)1/2
. (70)

The comparison is shown in Figure 6. The tangential displacement is normalized to
ux,max, i.e., the maximum tangential displacement at which the stick region just vanishes in
the homogeneous case. It can be calculated as follows:

ux,max = µ
2− ν1

2(1− ν1)
δ . (71)
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Figure 6. The ratio of radii c/a plotted against the ratio ux/ux,max. The analytical results of the
limiting cases (solid and dashed lines) are compared with the BEM results (markers) for different
ratios atheo/h. The elastic parameter data are given and the contact configuration at c/a = 0.5 for
atheo/h = 1 is shown as an inset image.

The asymptotic analytical results are represented by the solid and dashed lines and
the BEM results for different ratios atheo/h by markers. The contact radius atheo =

√
2Rδ

is used to have a fixed value for comparison since the real contact radius changes for
different layer thicknesses. In addition, the contact configuration with the stick-slip regions
at c/a = 0.5 for atheo/h = 1 is shown as an inset image.

As can be seen, the agreement between the BEM results and the limiting cases is very
good. For very thick layers (atheo/h = 0.02) the course of the BEM result is equal to the
course described by Equation (67). For both results, the ratio c/a at ux/ux,max = 1 becomes
zero due to normalization. For thinner layers, larger tangential displacements are required
to reach the full slip state, as can be seen for atheo/h = 1. The ratio of the radii becomes
zero for ux/ux,max > 1. The agreement between the BEM result and Equation (70) for the
limiting case of the thin layer can be seen for atheo/h = 100. Although the curves do not
overlap as well as in the infinite layer thickness case, the deviation between both results is
only about 1%.

For the same values of atheo/h, the tangential stress distributions normalized to their
maximum are plotted against the radial coordinate normalized to the contact radius a and
represented by markers (see Figure 7). In addition, the homogeneous case is plotted and
represented by a solid line. As before, the homogeneous case can be represented very
well by the result of atheo/h = 0.02. Even for atheo/h = 1 there is no big difference to
the homogeneous case with the used normalizations, especially in the slip region. The
course for a very thin layer (atheo/h = 100) looks quite different. In the stick region the
tangential stress is constant, which is in very good agreement with Equation (64), in
which no dependency on the ratio r/a is given. Thus, the tangential stress distributions
of the BEM results and the limiting cases can also be successfully compared using the
above assumptions.
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4. Conclusions

The derivation of a fundamental solution for the calculation of the tangential contact
of a coated elastic half-space and its integration into the boundary element method are
presented. To make the integration as simple as possible, the solution was derived in
Fourier space. It is assumed that the layer is bonded to the substrate and there is no normal
load to consider. The main conclusions are as follows:

• The derived solution works very well, as comparison with asymptotic analytical
solutions for a very thin and a very thick layer, as well as with FEM results for finite
layer thicknesses, shows very good agreement.

• With the new formulation, tangential contact problems between an arbitrarily shaped
indenter and an elastic half-space coated with a layer with different elastic prop-
erties can be simulated and computed. In addition, arbitrary tangential loads can
be considered.

• It might be interesting to take a closer look at the findings that have been pointed out
and briefly discussed.

• Some strong assumptions, such as decoupling, Cattaneo-Mindlin and Ciavarella-Jäger,
are used to study the stick-slip regions of a parabolic indenter. A study without these
assumptions, that is with accounting of coupling terms and considering the direction
of the displacements and the frictional force will be presented in a separate publication.
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Appendix A FE-Model of the Tangentially Loaded Coated Half-Space

The finite element simulations were carried out using the commercial software Abaqus
Standard. As shown in Figure A1, the tangential loading was applied by prescribing a
tangential displacement to a circular area on the coating with radius a. We modelled the
coating of thickness h as a cylinder and the half-space below as a hemisphere of the same
radius. Due to symmetry in the x − z plane, it is sufficient to use a half model with the
appropriate symmetry conditions. We meshed the half of the cylinder with approximately
25 k–100 k C3D8R elements (depending on the ratio a/h) and the half of the hemisphere
using approximately 300k C3D10 elements. Especially for the case of a softer half-space
G2 < G1, any regular boundary conditions (fixed or free) on the outside influence the results
falsely. Thus, we used infinite elements CIN3D8 that are connected to the outer boundary
of the cylinder and hemisphere that assume a linear far field solution. As described in the
Abaqus Documentation [25], the radial dimension of these elements must be the distance
of their inner point to the pole (radius R in Figure A1). For each geometry a/h, both
the mesh size and the dimension of the region with regular mesh were determined by
studying the convergence of the tangential contact stiffness. The ratio R/a = 20 showed
good convergence for all studied cases. For the homogeneous half-space (G2 = G1), the
agreement with the available analytical solution in Equation (61) is very good with less
than 1% error for all geometries (see also Figure 4).
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