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Abstract: A TC4 impeller blade is a typical weak, rigid, thin–walled part. The contact area between a
cutting tool and a workpiece has strong time–varying characteristics. This leads to a strong non–linear
variation in cutting load. So, in this kind of part, the processing error is difficult to control. To solve
this problem, a method of processing error prediction and intelligent controlling which considers the
effect of tool wear time variation is proposed by combining digital–twinning technology. Firstly, an
iterative model for digital–twin process optimization is constructed. Secondly, an iterative prediction
model of the machining position following the milling force and considering the effect of tool wear is
proposed. Based on these models, the machining error of the TC4 impeller blade under dynamic load
is predicted. Dynamic machining error prediction and intelligent control are realized by combining
the digital–twin model and the multi–objective process algorithm. Finally, the machining error
optimization effect of the proposed digital–twin model is verified via a comparison experiment of
impeller blade milling. In terms of the precision of milling force mapping, the average error after
optimization is less than 8%. The maximum error is no more than 14%. In terms of the optimization
effect, the average error of the optimized workpiece contour is reduced by about 20%. The peak
contour error is reduced by approximately 35%.

Keywords: digital–twin; impeller blade processing; optimization of machining errors; milling force

1. Introduction

The digital–twin concept was inspired by the in–orbit and assembly technology uti-
lized by NASA in the Apollo mission in 1969. By creating “twins” of on–orbit products,
a digital–twin can reflect (or mirror) the state of the spacecraft carrying out missions [1].
In 2005, Professor Michael Greaves from the University of Michigan introduced the idea
of “the Mirrored Spaces Model (MSM)” [2]. Tao Fei et al. [3,4] proposed six application
principles for digital–twins based on the five–dimensional structure model of a digital–
twin. They explored the key issues and technologies that need to be addressed during the
design and implementation of 14 types of applications driven by digital–twins. Liu, Jinfeng
et al. [5] proposed a method for constructing a digital–twin process model (DTPM) based
on knowledge–evolution machining features. The method solves three key technologies:
the associated structure of process knowledge, the expression method of evolutionary
geometric features, and the association mechanism between them.

In terms of digital–twin applications in manufacturing processes, Albrecht Hänel et al. [6]
utilized a fundamental digital–twin structure to investigate the creation of digital–twins for
manufacturing processes. Bao, Jinsong. et al. [7] extended and integrated models of cutting
force and tool engagement to construct a complete digital–twin model of cutting load.
In this model, the interactive operation model of the digital–twin is used for interaction
between the physical space and the virtual space. Delbrugger, T. et al. [8] proposed a
new concept of systematically simulating the variability in the production system in the
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digital–twin of the production entity. This concept is an essential stepping stone for
the more powerful simulation–based optimization of the production system. Although
scholars have had slightly different points of concern in defining a digital–twin, there are
two consensuses: each definition emphasizes the connection between the physical model
and the corresponding virtual model or virtual copy, and the connection is established
using sensors to generate real–time data. Luo, Weichao. et al. [9] researched digital–
twins for CNC machine tools, establishing a multi–domain unified modeling method for
DT, exploring the mapping strategy between physical and digital spaces, and proposing
autonomous DT strategies. Sun Xuemin. et al. [10] presented a digital–twin–driven
assembly and debugging method for the complex assembly process of high–precision
products, successfully applying it to the assembly process of aerospace–type high–precision
servo valves. Albrecht Hänel et al. [11] presented a method for creating a digital–twin
model based on process planning and process data by incorporating the attributes and
relationships of relevant information and data involved in the manufacturing process. Liu,
Shimin et al. [12] proposed a digital–twin modeling method based on bionics principles for
the processing of aerospace parts, developing multiple digital–twin sub–models through
this method. These sub–models interact with each other and constitute the expression
of the complete real process. T. Mukherjee et al. [13] showed that using digital–twins in
3D printing can reduce the amount of trial–and–error testing, reduce defects, and shorten
the time between design and production. R. Söderberg et al. [14] demonstrated that the
real–time control and optimization of digital–twins in production systems is helpful in
achieving personalized production. Glatt, M. et al. [15] proposed an integrated system
based on physical simulations for small–batch manufacturing, consisting of a material
processing system and its digital–twin.

Digital–twin technology has made certain progress in optimizing the processing
process. Further research is needed on the applicability of digital–twin models to specific
processing needs. In addition, the lack of effective evaluation methods for processing
technology indicators and knowledge bases greatly hinders the further development of
digital–twin technology.

The formation, prediction, and compensation of machining errors have been studied
extensively. Machining error prediction and compensation caused by milling force is one
of the main directions in this field. Lili Zhao et al. [16] proposed a dynamic optimization
method of cutting parameters based on the simulation optimization of virtual twins and
the dynamic perception of physical machining conditions. Ratchev et al. [17] utilized a
theoretical flexible force–deflection model to predict and compensate for machining error
by optimizing the tool path prior to commencing machining operations. Similarly, Weifang
Chen et al. [18] proposed a dynamic model to predict the deformation of thin–walled parts
during multi–layer machining by taking into account the coupling relationship between cut-
ting force and machining deformation. This method incorporates the concept of multi–layer
compensation. Wang, Liping et al. [19] proposed a cutting workpiece engagement (CWE)
extraction method to calculate milling force and identify machining geometric changes
during milling. An iterative method for machining deformation calculation was established
by considering the coupling effect of milling force and tool workpiece deformation. Liu,
Changqing et al. [20] employed a dynamometer to obtain milling force data and utilized
the obtained dynamic characteristics to solve the error. They also proposed a real–time
machining error compensation strategy. Yue, Caixu [21] proposed a method to calculate
milling force based on time–varying chip thickness and coupled this force with the elastic
deformation of the workpiece to predict surface error. Chen, Zhitao et al. [22] established a
prediction model for the instantaneous uncut chip thickness of milling force by combining
the theory of elastic deformation of thin–walled workpieces and the cutting area. An
iterative calculation method was used to obtain the deformation matrix of the workpiece.
The surface formation mechanism and workpiece deformation matrix were used to predict
the machining error of thin–walled workpieces. Lastly, Ge et al. [23] proposed a rapid
prediction method for cutting–force–induced errors in thin–walled parts. This method
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considered the dynamic interaction between the tool and the workpiece based on the global
stiffness matrix. These methods can significantly improve the precision and quality of ma-
chining operations. Sun, Yuwen et al. [24–26] discretized thin–walled parts and tools into
differential elements. A precise modeling method for dynamic milling systems considering
both force–induced deformation and multi–point contact structural dynamics in the contact
zone was proposed. The extended second–order semi discretization method was used to
predict the flutter stability of the system.

The errors caused by milling force in the machining process of thin–walled parts were
deeply studied by the above scholars, and strategies such as multi–layer compensation
and real–time compensation were proposed. However, when solving the milling force
leading to elastic deformation, the main methods used at present are mainly to integrate
the instantaneous cutting thickness and to solve it via CWE. Due to the current research on
solving the milling force, these two kinds of methods are the approximate expression of the
cutting relationship. There are precision problems in solving the milling force, which also
affects the subsequent strategy. The calculation process of this method is complicated, and
the feedback time is long. So, it is difficult to meet the requirements of digital–twin models
for processing optimization feedback.

In this paper, a digital–twin model of the machining process of impeller blades is
established. The model uses the finite element method to accurately calculate the chip
contact area considering the impact of tool wear. This model can more accurately predict
dynamic milling forces. This article analyzes the complex coupling relationship between
milling force and machining error by establishing a predictive model for the variation
in machining error with machining position. Finally, this article combines digital–twin
technology with a genetic algorithm to achieve the iterative optimization of machining
process errors.

2. Digital–Twin Model Based on Specific Processing Technology
2.1. Digital–Twin Optimization Model Based on Specific Processing Technology

This study applies a digital–twin model to a specific process as the research object,
and the model’s composition and operation process is showcased in Figure 1 below.
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Figure 1. Digital–twin model for specific processing procedures.

As shown in Figure 1, the process optimization model is mainly composed of physical
space and virtual space. The left part of the figure is the physical space. It is composed
of a five–axis machining machine tool, a Daijie double–edge integral carbide ball–end
milling cutter, a Kistler9257B dynamometer (Kistler, Winterthur, Switzerland), sensors
(acceleration sensor, acoustic emission sensor, etc.), and workpiece materials. The function
of physical space provides the actual machining information of the workpiece material for
the iterative mechanism of the digital–twinning system. The blue and black dashed arrows
illustrate the flow of data within and between physical and virtual spaces, respectively. In
the virtual space, the collected data undergoes a series of transformations. The digital–twin
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system includes a data preprocessing module, an evolutionary knowledge base module,
an evaluation rule and evaluation system module, a process optimization module, and an
optimization information encoding module before returning to the physical space. This
cycle represents an iteration of the digital–twin model, enabling the ongoing optimization
of the impeller blade machining process. The six modules comprising the virtual space
depicted in Figure 1 are crucial components of the digital–twin model, with particular
emphasis on the evolvable knowledge base module. The following article will introduce
the contents and operation rules of each module in detail, as shown in Figure 2.
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The digital–twin model described in this paper comprises six modules that work in
concert to optimize the impeller blade machining process. These modules are:

(1) Data preprocessing module

This includes data conversion, feature extraction, and multiple information fusion
components. The module extracts and collects machining signals such as cutting force
information, machine tool spindle spatial position information, and the angle of the rotary
table. This module transmits and prestores data. After data conversion, feature extraction,
and multi–information fusion, the first sorting and classification steps are carried out.
Secondly, the information is stored for the multi–layer optimization of data processing.
This module sequentially performs data denoising, removes redundancy, and supplements
missing values on the pre stored data. The processed data are transmitted to the evolvable
knowledge base module.

(2) Evolvable knowledge base module

This passes the processed data information flow into the acceptance layer of the
evolvable knowledge base module. Information is initially stored in the acceptance layer
and then passed to the knowledge base storage layer. Then, the tool wear rule model and
the tool milling force model are established in the model layer. The knowledge base storage
layer contains the physical acquisition data and virtual operation data that facilitate the
physical–virtual space interaction. The module adapts to the feedback of actual machining
conditions. With each iteration, the mapping of physical space will become more and
more accurate.

(3) Process evaluation rule module

The information collected in the evolvable knowledge base is analyzed based on the
modeling results. The evolvable rules are defined according to the modeling results.

(4) The process evaluation system module

This provides an overall evaluation of the process based on data output from the process.

(5) The process optimization module

This optimizes processing parameters, processing paths, processing tools, and other
aspects using the overall process evaluation results as input.

(6) Optimize the information digitization module
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This transmits the real–time angle of a five–axis machine tool rotation table, impeller
profile information, the real–time position of the cutting tool, spindle speed, and other
processing information to the virtual space by using the API8070 communication mode.
The digital–twin model provides an implementation scheme for optimizing the specific
processing level. The digital–twin model based on TC4 impeller blade processing technol-
ogy is established in this paper, and the model will be used to optimize the process in the
following chapters.

2.2. TC4 Impeller Blade Machining Digital–Twin Model

In this chapter, the digital–twin model for impeller blade processing will be introduced.
The digital–twin model is in the form of Professor Tao Fei’s [3] five–dimensional model.
The model comprises a physical entity, a virtual entity, twin data, a service, and connection.
In terms of structure, the virtual space includes a virtual entity, twin data, a service, and
other components. The evolvable knowledge base module in the virtual space contains
the virtual entity and twin data. The five–dimensional model is used to show the flow
relationship between the data modules, as depicted in Figure 3.

Machines 2023, 11, x FOR PEER REVIEW 6 of 27 
 

 

 

Figure 3. Digital−twin model of impeller blade processing. 

This paper establishes a digital−twin model of a machine tool and workpiece, which 

includes a subsystem and a deployed sensor. The machine is an open five–axis vertical 

CNC milling center. An experimental Kistler9257B dynamometer and Kistler5007 (Kistler, 

Winterthur, Switzerland) charge amplifier were used to collect cutting force signals. The 

sampling frequency of the data is 8000 hz. The evolvable knowledge base module utilizes 

a 3D model of machine tools, workpieces, tools, and other physical entities. This study 

takes inputs such as the spatial position information of the machine tool spindle and the 

angle of the rotary table to predict and evaluate dynamic milling forces and dynamic ma-

chining errors based on sensor data. The digital− twin model consists of three data 

streams: physical entity data feedback, virtual entity data feedback, and the iteration of 

the digital−twin model. Physical entity data feedback involves the process of reading in-

formation from sensors and transmitting it to the service section for visualization. Virtual 

entity data feedback involves transmitting machine position and pose information to the 

virtual entity in the virtual space. The virtual entity updates the twin data and returns it 

to itself, providing real–time feedback to the physical entity that affects the actual ma-

chining process. The services section visualizes these data. The iteration of the digital−

twin model occurs after the completion of the working procedure, where the virtual space 

optimizes the working procedure based on feedback information obtained from the pro-

cess and feeds it back to the machine tool. 

3. digital−twin Model Evolvable Knowledge Base Module 

3.1. Solution of Tool–Workpiece Cutting Contact Relationship 

The calculation of milling force is mainly based on the integral of undeformed chip 

thickness or cutting contact area. The effect of tool wear is often ignored when solving the 

cutting contact relationship between tool and workpiece. These characteristics limit the 

effectiveness in digital−twin systems. To solve these problems, the finite element software 

ABAQUS is used to simulate the milling process. In this method, ABAQUS secondary 

development was used to carry out the simulation calculation. The system sets the spindle 

Figure 3. Digital–twin model of impeller blade processing.

This paper establishes a digital–twin model of a machine tool and workpiece, which
includes a subsystem and a deployed sensor. The machine is an open five–axis vertical
CNC milling center. An experimental Kistler9257B dynamometer and Kistler5007 (Kistler,
Winterthur, Switzerland) charge amplifier were used to collect cutting force signals. The
sampling frequency of the data is 8000 Hz. The evolvable knowledge base module utilizes
a 3D model of machine tools, workpieces, tools, and other physical entities. This study
takes inputs such as the spatial position information of the machine tool spindle and the
angle of the rotary table to predict and evaluate dynamic milling forces and dynamic
machining errors based on sensor data. The digital–twin model consists of three data
streams: physical entity data feedback, virtual entity data feedback, and the iteration of
the digital–twin model. Physical entity data feedback involves the process of reading
information from sensors and transmitting it to the service section for visualization. Virtual
entity data feedback involves transmitting machine position and pose information to the
virtual entity in the virtual space. The virtual entity updates the twin data and returns it to
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itself, providing real–time feedback to the physical entity that affects the actual machining
process. The services section visualizes these data. The iteration of the digital–twin model
occurs after the completion of the working procedure, where the virtual space optimizes
the working procedure based on feedback information obtained from the process and feeds
it back to the machine tool.

3. Digital–Twin Model Evolvable Knowledge Base Module
3.1. Solution of Tool–Workpiece Cutting Contact Relationship

The calculation of milling force is mainly based on the integral of undeformed chip
thickness or cutting contact area. The effect of tool wear is often ignored when solving the
cutting contact relationship between tool and workpiece. These characteristics limit the
effectiveness in digital–twin systems. To solve these problems, the finite element software
ABAQUS is used to simulate the milling process. In this method, ABAQUS secondary
development was used to carry out the simulation calculation. The system sets the spindle
speed, cutting depth, and feed rate as the main parameters of the machining process. Under
different parameter conditions, the extraction of tool workpiece contact stress point clouds
can be achieved to determine effective cutting participation points.

The interaction between the cutting tool and the workpiece involves complex position
and attitude changes. In order to simplify the machining process, square thin–walled parts
can be used to replace the machining of impeller blades. The simulation of machining
parameters and the machining positions of thin square plates are derived from 128 groups
of typical machining situations in the machining process of impeller blades. Among them,
the finite element simulation results of extracting the position and pose information of a
certain cutting tool are shown in Figure 4.

In Figure 4, θ and λ denote the rake and side rake angle, respectively, of the tool
under a specific set of processing parameters. The red schematic points represent stress
responses obtained from finite element simulations, which provide accurate solutions for
the contact area of the chip. The curves in the four groups of simulated tool paths depict
the total contact area of the tool and chip output via the finite element model, which are
subject to some degree of inaccuracy due to factors such as contact condition settings, mesh
size selection, and hardware limitations of the simulation computer. These limitations
may lead to some level of data imprecision. The 128 sets of analysis results generated
by the simulations are stored in the data storage component of the evolvable knowledge
base module.

In the practical machining of impeller blades, the digital–twin model can continuously
receive real–time machining parameters and pose information via the machine tool’s
communication protocol. Directly feeding these data into the finite element model to
calculate the tool–chip contact area would significantly slow down the operation and
feedback of the digital–twin model. To expedite the solution of the tool–chip contact area,
the read information can be compared and interpolated with the data storage component
of the evolvable knowledge base module. A higher quantity of information stored in the
evolvable knowledge base would lead to a more precise determination of the tool–chip
contact area.

3.2. Revised Model of Unreformed Cutting Thickness under Tool Wear Conditions

During the ball–end milling cutter section of the cutting process, the cutting edge
experiences both rotary motion of the tool and translation movement along the feed
direction. A double–bending chip is generated at the apex of the ball–end milling cutter
along the cutter helix. This chip–bending phenomenon is closely related to the tool–
workpiece cutting contact conditions. The instantaneous undeformed cutting thickness
of the ball–end milling cutter is strongly associated with the geometric parameters of
the cutter.
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As shown in Figure 5, the instantaneous uncut chip thickness in ball–end milling
under the condition of no tool wear [27] is as follows:

h
(
ψji, zi

)
= fz sin ψji sin κ (1)
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In the formula, fz represents the cutter’s feed per tooth (mm/z); ψji is the instantaneous
radial cutting contact angle (rad) at the spatial position of the I-th cutting element on the
J-th cutter tooth; κ is the axial immersion angle (rad) of the tool and the workpiece.

3.2.1. Construction of an Evolutionary Knowledge Base Model Based on Tool Wear
Prediction Model

Through the use of machine tool communication protocols, the evolutional knowledge
base is capable of reading machining parameters and posture data in real time from
the cutting tool, as well as gathering and storing information about the tool’s pose. To
expedite the resolution of tool–chip contact areas during the cutting process, the information
obtained from the machine tool is compared and extrapolated with the data stored in
the evolutionary knowledge base module. In the virtual environment, a model of the
unreformed cutting thickness under the condition of tool wear and a model of the tool
milling effort in the presence of wear are constructed first. The evolutionary knowledge base
is utilized to solve the dynamic cutting force based on rolling data, which is then transmitted
to the process evaluation rule module. The resulting process’s overall evaluation data
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are then relayed to the process optimization module, where the optimization of process
parameters is performed.
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To establish an evolvable knowledge base, the first step is to establish tool wear rules.
The cutting force and the hardness of the workpiece and tool can cause friction extrusion,
adhesion, diffusion, edge collapse, and plastic deformation, which lead to tool wear and
damage. When a tool is worn to a certain extent, it will affect the processing quality
and efficiency. A comprehensive analysis of the micro–section of the tool is carried out
by cutting the tool section in the XY plane and cutting the surface at the micro–level to
approximate it as a turning tool. The force on the selected point is analyzed by taking five
evenly spaced points in the intercepting plane for solution. In this article, point 4 is selected
as a case for analysis. The cutting force at point 4 can be divided into three parts: the
tangential component dFt along the cutting edge, the radial component dFr perpendicular
to the tool center axis, and the axial component dFa along the tool axis. The direction of dFa
is along the Z–axis and is not considered in the XY plane, as shown in Figure 6.

Machines 2023, 11, x FOR PEER REVIEW 9 of 27 
 

 

Construction of an Evolutionary Knowledge Base Model Based on Tool Wear Prediction 

Model 

Through the use of machine tool communication protocols, the evolutional 

knowledge base is capable of reading machining parameters and posture data in real time 

from the cutting tool, as well as gathering and storing information about the tool’s pose. 

To expedite the resolution of tool–chip contact areas during the cutting process, the infor-

mation obtained from the machine tool is compared and extrapolated with the data stored 

in the evolutionary knowledge base module. In the virtual environment, a model of the 

unreformed cutting thickness under the condition of tool wear and a model of the tool 

milling effort in the presence of wear are constructed first. The evolutionary knowledge 

base is utilized to solve the dynamic cutting force based on rolling data, which is then 

transmitted to the process evaluation rule module. The resulting process’s overall evalua-

tion data are then relayed to the process optimization module, where the optimization of 

process parameters is performed. 

To establish an evolvable knowledge base, the first step is to establish tool wear rules. 

The cutting force and the hardness of the workpiece and tool can cause friction extrusion, 

adhesion, diffusion, edge collapse, and plastic deformation, which lead to tool wear and 

damage. When a tool is worn to a certain extent, it will affect the processing quality and 

efficiency. A comprehensive analysis of the micro–section of the tool is carried out by cut-

ting the tool section in the XY plane and cutting the surface at the micro–level to approxi-

mate it as a turning tool. The force on the selected point is analyzed by taking five evenly 

spaced points in the intercepting plane for solution. In this article, point 4 is selected as a 

case for analysis. The cutting force at point 4 can be divided into three parts: the tangential 

component tdF  along the cutting edge, the radial component rdF  perpendicular to the 

tool center axis, and the axial component adF  along the tool axis. The direction of adF  

is along the Z–axis and is not considered in the XY plane, as shown in Figure 6. 

 

Figure 6. Microscopic force analysis at point 4. 

Analysis  

Tool metals consist of polycrystalline structures composed of numerous grains of 

varying shapes. These grains undergo plastic deformation that leads to changes in the 

lattice arrangement within the metal. The presence of external forces induces shear stress 

in the material, which causes the lattice to undergo elastic deformation when the stress is 

small. However, as the stress exceeds a certain threshold, the resistance of the lattice is 

overcome, causing the grains to slide relative to one another along a crystal plane, a phe-

nomenon referred to as slip. After a certain displacement, the atoms stabilize in a new 

Figure 6. Microscopic force analysis at point 4.



Machines 2023, 11, 697 9 of 25

3.2.2. Analysis

Tool metals consist of polycrystalline structures composed of numerous grains of
varying shapes. These grains undergo plastic deformation that leads to changes in the
lattice arrangement within the metal. The presence of external forces induces shear stress
in the material, which causes the lattice to undergo elastic deformation when the stress
is small. However, as the stress exceeds a certain threshold, the resistance of the lattice
is overcome, causing the grains to slide relative to one another along a crystal plane, a
phenomenon referred to as slip. After a certain displacement, the atoms stabilize in a new
position, and the slip along the plane ceases due to an increase in resistance. The continued
application of shear stress leads to the propagation of slip in other facets of the crystal,
resulting in plastic deformation and eventual tool wear.

The formula of the tool wear rule [28,29] is as follows:

V = kSFnH−1 (2)

In the formula, V is the wear amount (mm3) and k is the empirical wear coefficient
(m−1N−1). S is the sliding distance (m), Fn is the normal force (N), and H is the Vickers
hardness number of harder materials.

Where k is the empirical wear coefficient, the calculation formula [30] is

k = vSFn (3)

In the formula, v is the cutting speed (m/min), S is the sliding distance (m), and Fn is
the normal force (N).

According to the model of tool volume wear, the influence of three stages of tool wear
on tool wear was comprehensively considered. The iterative change in the cross–section
boundary at point 4 is shown in Figure 7.
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Figure 7. Point 4 wear boundary process diagram.

As shown in Figure 7, point 4 was selected for wear iteration. The different colors
in the figure represent different stages of wear and tear. Green represents the initial wear
stage of the tool, blue represents the normal wear stage, and gray represents the sharp wear
stage. At the bottom right of the picture is the number of iterations. The direction of the
arrow in the picture is the increase in the number of iterations. The number corresponds
to the change in the tool wear boundary at the selected point 4. The cutting analysis was
carried out for other selected points, and the wear boundary in Figure 8 was obtained after
superimposed wear.

As shown in Figure 8, the figure shows the number of iterations on the right, divided
into 5, 24, and 43 iterations. The 5 iterations correspond to the initial tool wear stage, the
24 iterations are the normal wear stage, and the 39 iterations are the severe wear stage. Each
row corresponding to the number of iterations is the wear boundary of each selected point;
the first four graphs of each column are the wear boundaries of points 5, 4, 3, and 2, and
the fifth graph is the integrated boundary of the first four points. The first four columns are
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the changes in the wear boundary for each selected point. The fifth column is the boundary
iteration change curve of the overall tool. Considering the influence of the three stages of
tool wear on tool wear, the overall change curve of tool section wear is shown in Figure 8.
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Figure 8. Microscopic diagram of tool cross–section wear process.

As shown in Figure 9, different colors represent different stages of wear. Green is the
early wear stage of the tool, blue is the normal wear stage, and gray is the rapid wear stage.
The lower right of the figure is the number of iterations, and the direction of the arrow is the
increase in the number of tool iterations. Each iteration number corresponds to the overall
tool boundary of that iteration. Along with the direction of the arrow is the iterative change
in the tool boundary. The tool used is a Dai–Jie double–blade integral carbide ball–end
milling cutter, with a diameter of 10 mm, and the material is a hard alloy, as shown Table 1.
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Table 1. Dai–Jie double–blade integral carbide material properties.

Parameter Numerical Value Parameter Numerical Value

Density (kg/m3) 14,500 Hardness/HA 1154

Elasticity modulus/GPa 640 Heatconductivity
coefficient (W/m·K) 75.4

Yield strength/MPa 2600 Poisson’s ratio 0.22
Side rake angle/◦ 4 Helix angle/◦ 30

Number of cutting edges 2 Rake angle/◦ 2

The cutting depth of the tool is 0.2 mm, the rotating speed is 9200 r/min, and the
speed v is

v = 2πRn (4)
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When the tool rotates once during cutting, the blade only touches the workpiece at
180◦, so the sliding distance S is

S = vt/2 (5)

In the formula, t (min) is the contact time.
According to the calculation, the volume wear rate is about 0.0003 mm3/min. A

microscopic picture of tool wear is shown in Figure 10.
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Figure 10. Comparison micrograph of tool wear.

In Figure 10, the upper half of the figure is the predicted tool wear boundary. The lower
part of the figure is the tool wear boundary obtained from the experiment. The red curved
boundary is the result of the experimental tool wear boundary and the predicted boundary
of the 43rd iteration. There is a certain deviation between the two when compared. The
reason for this is that in the method mentioned in this article, the wear volume V is a
two–dimensional projection superposed on a certain section of the tool. This method can
generate a three–dimensional volume of tool wear by stacking the changes in multi–layer
two–dimensional projection, so as to achieve the accurate prediction of tool wear. The
model can achieve optimal matching of prediction accuracy and efficiency by adjusting
the number of contact points selected on the cross–section. Based on the above research,
an evolutionary knowledge base model of the digital–twin tool wear prediction model is
established.

During the cutting process, the tool wear causes the tool’s volume to decrease, leading
to changes in the axial immersion angle κ of the tool, as illustrated in Figure 11. The white
part of the tool in the figure represents the worn volume of the tool. The reduction in tool
volume is evident from the decrease in the axial immersion angle κ.
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From Figure 11, it is shown that the axial immersion angle κ will decrease with the
tool wear, and the change formula of the axial immersion angle κ is

κ = arctan

√
2Rap − ap2

R− ap
(6)

In the formula, R is the radius. ap is cutting depth.
The change formula of axial immersion angle κ was substituted into the formula of

undeformed cutting thickness under the wear condition as follows:

h
(
ψji, zi

)
= fz sin ψji sin arctan

√
2Rap − ap2

R− ap
(7)

3.3. Milling Force Prediction Model Based on Tool–Chip Contact Relationship

The friction force on the tool flank face is related to the positive pressure and the wear
of the flank face. The milling forces solved in this paper include those on the rake face and
cutting edge. The partial force of the cutting edge is solved via the micro–element method,
and the partial force of the rake face is solved by constructing the stress distribution of the
rake face using the tool–chip contact relationship.

When calculating the partial forces on the cutting edge, the cutting edge is micro–
elemented, and the force of each cutting edge element is related to the arc length of the
element [31]. The calculation formula is as follows:

dFr1 = Kteds
dFt1 = Kreds
dFa1 = Kaeds

(8)

In the formula, dFr1, dFt1, and dFa1 are, respectively, the tangential force, radial force,
and axial force components of the cutting edge element; dS is the arc length of the cutting
edge element. By integrating the micro–element forces of the cutting edge, the dFr1, dFt1
and dFa1 components of the milling force received by the cutting edge can be obtained. Kte,
Kre, Kae use the milling force coefficient value calculated from the average milling force
obtained through experiments proposed by GRADISEK [32].

When solving the component forces of the front cutter face, the solution model is the
tool–chip contact mechanical model [33]. The specific situation of the model is shown in
Figure 12.
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In Figure 12, O is the tool tip, OA is the bonding area, AB is the sliding area, the
maximum normal stress at the tool tip is σ0, the tool–chip contact length is L, and the ratio
of the bonding zone length to the tool–chip contact length is a. The friction stress τ in the
bonding area OA is a constant τ0, and the friction stress in the sliding area is the product
of the normal stress and the friction factor. The normal stress σ conforms to the power
exponential distribution:

σ(x) = σ0

(
L− x

L

)b
(9)

b is the power exponent, and related experimental studies have shown that the value
of b is around 3 [34]. The maximum stress at the tool tip can be solved using the friction
stress τ0 in the bonding area:

σ0 = τ0
h
L

cos ηs cos βn

sin φn cos ηc cos(φn + βn − γn)
(10)

In the formula, h is the undeformed chip thickness, ηc is the cutting outflow angle, ηs
is the shear outflow angle, γn is the normal angle of the rake face, φn is the shear angle in
the normal plane, βn is the normal friction angle, and the size of τ0 is close to the shear
limit. At this time, the law of friction stress distribution is

τ(x) =
[

τ0 τ(x) > τ0
uσ(x) τ(x) < τ0

(11)

In the formula, u is the sliding friction factor, and the size can be calculated from the
ball mill test data or through an empirical formula. The scale factor a of the bond zone
length to the tool–chip contact length can be solved using the empirical formula:

a = 1−
(

τ0

σ0u

)1/b
(12)

The integral of normal stress on the rake face is equal to the positive pressure on the
rake face, and the integral of friction stress on the rake face is equal to the friction force of
the rake face.

Fσ =
∫ L

0
σ0(L− x)bdx (13)

Ff = τ0aL +
∫ L

aL
uσ0

(
L− x

L

)b
dx (14)
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In the formula, Fσ is the positive pressure on the rake face, and Ff is the friction force
on the rake face.

The research object of the tool–chip contact mechanics model for stress distribution
and milling force calculation is turning. The milling tool for impeller blade processing is
a ball–end milling cutter, and the cutting method is different from turning. When using
this model to solve the milling process, the model needs to be revised according to the
milling situation. In the solution process, the stress response area is divided into N layers
according to parameters such as depth of cut, tool inclination angle, and mesh size. The
normal stress and friction force of each layer are as follows:

Fσg2k =
1
N

∫ Lk

0
σ0k(Lk − x)bdx (15)

Ff g2k =
1
N

(
τ0akLk +

∫ Lk

ak Lk

ukσ0k

(
Lk − x

Lk

)b
dx

)
(16)

In the formula, Fσg2k and Ff g2k are the normal stress and friction force of the rake face
of the k-th (k = 1, 2 . . . N) layer, respectively; Lk is the tool–chip contact length extracted
from the simulation results of the k-th layer; σ0k is the maximum normal stress at the
cutting edge of the k-th layer; ak is the ratio of the k-th layer bonding area to the chip
contact area; and N is the number of division layers. Lk, σ0k, ak, and other parameters can
all be calculated from the tool–chip contact relationship obtained in 4–1.

The direction of the normal stress on the rake face Fσg2k is perpendicular to the rake
facing inward, and the direction of the friction force of Ff g2k is perpendicular to the normal
stress and opposite to the outflow direction of the chips. The normal vector of the rake face
can be solved using the equation of the edge line of the ball–end milling cutter and the rake
angle of the ball–end milling cutter. The vector equation of the edge line of the ball–end
milling cutter can be expressed as

→
rjl(ψ) = R(ψi)

[
cos ψji

→
i + sin ψji

→
j
]
+

Rψi
tan β0

→
k (17)

In the formula, j represents the j-th tooth of the tool, i represents any cutting element
on the current tooth, β0 is the helix angle, ψi is the helix lag angle, ψji is the lag angle of the
j-th tooth at this position, R(ψi) is the radius of the circular section under ψi, and the vector

equation
→
rjl(ψ) is the expression in the tool coordinate system.

→
i ,
→
j and

→
k are the unit

vectors of each axial direction in the tool coordinate system. The angle and force analysis of
the ball–end milling cutter is shown in Figure 13 below.
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In Figure 13, γ is the rake angle of the ball–end milling cutter, η is the chip flow
angle, and Pr is the base plane of the datum reference plane. Assuming that the coordinate
of a certain cutting micro–element is (x0, y0, z0), the relationship between the Fr, Ft, Fa
milling force coordinate system of the micro–element point and the tool coordinate system
is the space translation amount T and angle of rotation around the Z axis a. (where

T =
√(

x2
0 + y2

0 + z2
0
)
, α = 180 + ψji). In the r, t, a force system coordinate, the normal

vector
→

Rjl2 of the rake face in the coordinate can be obtained through the rake angle γ.

The edge line equation
→

rjl2(ψ) of the ball–end milling cutter at this point can be converted

into
→

Rjl1 in the force system coordinate. Then, the normal vector of the rake face can be
expressed as

→
njl = f

( →
Rjl1,

→
Rjl2

)
(18)

In the formula,
→
njl is the normal vector of the rake face, which has a vertical relationship

with
→

Rjl1,
→

Rjl2.
The direction vector of the rake face friction force is in the rake face and is opposite

to the direction of the cutting flow angle η. Therefore, the friction direction vector can be
expressed as

→
n f l = g

( →
Rjl2,

→
njl , η

)
(19)

By decomposing the positive pressure and friction of the rake face into the directions
of r, t, a and then accumulating, the component forces of the force on the rake face in the
radial, tangential, and axial directions can be solved:

Fr2 = 1
N

N
∑

k=1

(
Fσg2k ∗

→
njl∣∣∣→nj

∣∣∣ ·→r + Ff g2k ∗
→

n f jl∣∣∣ →n f jl

∣∣∣ ·→r
)

Ft2 = 1
N

N
∑

k=1

(
Fσg2k ∗

→
njl∣∣∣→njl

∣∣∣ ·
→
t + Ff g2k ∗

→
n f jl∣∣∣ →n f j

∣∣∣ ·
→
t

)

Fa2 = 1
N

N
∑

k=1

(
Fσg2k ∗

→
njl∣∣∣→njl

∣∣∣ ·→a + Ff g2k ∗
→

n f jl∣∣∣ →n f jl

∣∣∣ ·→a
) (20)

In the formula,
→
r ,
→
t , and

→
a are the axial unit vectors of the force system coordinate.

→
njl is the normal vector of the rake face of the k-th element of the rake face, and

→
n f jl is the

direction vector of the friction force.
At this time, the milling force of the ball–end milling cutter for processing thin–walled

parts is
Fr = Fr1 + Fr2
Ft = Ft1 + Ft2
Fa = Fa1 + Fa2

(21)

where Fr, Ft and Fa refer to the radial, tangential, and axial components of the milling force;
Fr1, Ft1 and Fa1 refers to the component of milling force experienced by the cutting edge.;
Fr2, Ft2 and Fa2 are the component of milling force received by the front face;

4. Digital–Twin Model Optimization Module
4.1. Parameter Optimization Evaluation Rules

A reasonable selection of milling parameters is the key to ensuring machining cost,
machining quality, tool life, and machining efficiency. The optimization of impeller blade
milling should ensure machining accuracy, minimize surface machining errors, and im-
prove machining efficiency. This article selects machining error, e, and machining efficiency,
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MRR as the optimization objectives. The optimized parameters are rotational speed, v;
feed per tooth f z; the axial depth of the cut, ap; and the radial depth of the cut, ae.

The relationship between optimization parameters and optimization objectives, as
well as the establishment of evaluation rules for optimization effects, should be established
before processing parameter optimization and after the specific processing object and
process are clearly determined. Parameters such as rotational speed, v; feed rate per tooth,
f z; axial cutting depth, ap; and radial cutting depth, ae are input into the evolutionary
knowledge base established in this article to obtain machining errors and the machining
efficiency of this process. Due to the fact that both cannot achieve optimal results at the
same time during optimization, the evaluation function is constructed by weighting both.
The model is as follows:

S = a ∗ e + b ∗MMR (22)

In the formula, S is evaluation; e and MMR are processing error and processing
efficiency, respectively; Stable is processing stability threshold. The block diagram of the
algorithm is shown in Figure 14.
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Figure 14. Genetic algorithm framework of digital–twin.

The principle of the optimization process of a genetic algorithm is to simulate the
survival of the fittest in nature. The core process of the algorithm can be roughly divided
into five processes: 1. Generate ethnic groups; 2. Eliminate ethnic groups based on fitness;
3. Generate new ethnic groups; 4. Eliminate groups again; 5. Repeat 3–4 times until the
result meets the requirements. The specific process is shown in Figure 14. The right side of
the figure shows the process of population crossing and variation. In the fitness calculation
section, the fitness of each chromosome can be obtained through the digital–twin evolvable
knowledge base and the evaluation function constructed in this chapter.

4.2. Digital–Twin Model Test Verification and Analysis
4.2.1. Digital–Twin Model Control Test

The experimental machine tool is an open five–axis vertical CNC milling machining
center. The machine tool adopts a spindle workbench rotation structure. The technical
parameters of the equipment are as Table 2:
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Table 2. Technical parameters of vertical five–axis CNC milling center.

Parameter Numerical Value Parameter Numerical Values

Speed rad/min 15,000 The x–axis is the travel of
the table/mm 1050

Spindle power/KW 11 The y–axis is the travel of
the table/mm 560

Maximum feed speed
25 m/min 2600 The z–axis is the travel of

the table/mm 450

Positioning
accuracy/mm 0.005 The a–axis is the travel of

the table/◦ −25◦/100◦

Cooling method Oil cooled The c–axis is the travel of
the table/◦ N*360◦

The parameters of the processed impeller are shown in the following Table 3:

Table 3. Parameters of processed impeller.

Parameter Numerical Value Parameter Numerical Values

Speed rad/min 15,000 The x–axis is the travel of
the table 1050 mm

Spindle power(KW) 11 The y–axis is the travel of
the table 560

Maximum feed speed
25 m/min 2600 The z–axis is the travel of

the table 450

Positioning accuracy
is 0.005 mm 4◦ The a–axis is the travel of

the table −25◦/100◦

Cooling method Oil cooled The c–axis is the travel of
the table N*360◦

The test procedure is the final procedure. The machining parameter before optimiza-
tion is rotational speed of 8000 r/min, feed per tooth of 0.0625 mm, and a radial depth of
cut and axial depth of cut of 0.3 mm and 0.1 mm, respectively. The test equipment and
workpiece are shown in Figure 15.
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Figure 15. Schematic diagram of test equipment. (a) Machine tool and test equipment; (b) workpiece.

As shown in Figure 15, a Kistler9257B dynamometer and Kistler5007 charge amplifier
were used in the experiment to collect cutting force signals. At the beginning of the
experiment, we made sure that the Kistler9257B dynamometer and Kistler5007 charge
amplifier were connected to each other and that they were connected to a suitable power
supply. Then, we configured the Kistler 5007 charge amplifier. The force sensor was
mounted on a tool head fixture in an open five–axis vertical CNC milling center. The sensor
was used to collect the signal of the cutter milling force when cutting the workpiece.
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The comparison between the measured data in physical space and the simulated
milling force data fed back from virtual space is shown in Figure 16. The entity diagram
consists of two parts: 1. Measured milling force data; 2. Comparison of local milling force
data with virtual space simulation data.
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The blue curve in Figure 16 is the measured data of milling force. The red part is
virtual space milling force simulation data. The comparison error between the simulated
and experimental cutting forces in the two selected areas is large. Therefore, these two
parts are selected as observation data. The reason for this is that the curvature of the profile
in these two areas changes dramatically, which leads to the drastic change in milling force.
In the comparison of the two, the simulation data quality is good, but there are some
fluctuations. The reason for this is that milling force calculation in virtual space is derived
from solving the cutting contact area and milling force of the ball–end milling cutter. The
chip contact area is solved via finite element simulation. The simulation model can reach
the optimal solution after several rounds of debugging. The simulation model has some
error fluctuation before reaching the optimal solution.

The sampling frequency of the measured data is 8000 HZ, and the selection time for
the comparison part is about 0.8 s. In the two comparative figures, the ball–end milling
cutter experiences a total of 21 rotation cycles. The simulation data correspond to this. The
prediction error between the measured data and simulation data is calculated. Data peaks
and amplitudes are selected as evaluation tools. The calculation formula is as follows:

Pe =
1
n∑n

i=1
Psi − Pfi

Psi
(23)

Ae =
1
n∑n

i=1
Asi −Afi

Asi
(24)

In the formula, Psi and Pfi are the measured data peak value and the simulated data
peak value of the i-th cycle, respectively; n is the number of cycles, i = 1, 2 . . . n; Pe is the
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peak prediction error. Asi and Afi are the measured data amplitude and the simulated data
amplitude of the i-th cycle, respectively; Ae is the amplitude prediction error.

Using Formulas (23) and (24) to calculate 90 sets of data, the peak prediction error
and amplitude prediction error of part 1 in the control group data are 7.34% and 5.57%,
respectively. The peak prediction error and amplitude prediction error of local 2 are 8.21%
and 6.65%, respectively. The maximum values of peak prediction error and amplitude
prediction error for each cycle of local 1 are 13.21% and 14.69%, respectively. The peak
prediction error and amplitude prediction error of local 2 are 18.62% and 18.32%, respec-
tively. In the control group, the maximum error between the peak prediction error and
amplitude prediction error does not exceed 8.21%. This indicates that the milling force
simulation data of the virtual entity is already relatively close to the measured data in
terms of overall accuracy. The maximum peak prediction error can reach 18.62%. The
peak prediction error and amplitude prediction error in tool milling workpiece are mainly
caused by the comprehensive influence of factors such as the complexity of cutting process,
variability in material properties, changes in cutting parameters, tool wear and breakage,
cutting fluid and lubrication conditions, and measurement error and sensor restrictions.
This indicates that the mapping of virtual space still needs to be optimized in terms of
details. In the control group, the virtual space optimization module needs to be validated.
The evolutionary knowledge base module can also increase the mapping accuracy of virtual
space by fine–tuning based on feedback.

4.2.2. Experiments of the Digital–Twin Model Experimental Group

After the completion of the control group in the digital–twin model, the optimiza-
tion module obtains the optimized processing parameters for this process in the virtual
space. The specific values are a rotational speed of 9200 r/min, and feed rate per tooth of
0.0313 mm, and the radial cutting depth and axial cutting depth are 0.25 mm and 0.20 mm.
We set the processing parameters of this group as the experimental group and conduct
experiments. Figure 17 shows the comparison between the measured data collected by the
physical space sensor and the simulated milling force fed back by the virtual space during
the test.

Machines 2023, 11, x FOR PEER REVIEW 21 of 27 
 

 

prediction error and amplitude prediction error of local 2 are 18.62% and 18.32%, respec-

tively. In the control group, the maximum error between the peak prediction error and 

amplitude prediction error does not exceed 8.21%. This indicates that the milling force 

simulation data of the virtual entity is already relatively close to the measured data in 

terms of overall accuracy. The maximum peak prediction error can reach 18.62%. The peak 

prediction error and amplitude prediction error in tool milling workpiece are mainly 

caused by the comprehensive influence of factors such as the complexity of cutting pro-

cess, variability in material properties, changes in cutting parameters, tool wear and 

breakage, cutting fluid and lubrication conditions, and measurement error and sensor re-

strictions. This indicates that the mapping of virtual space still needs to be optimized in 

terms of details. In the control group, the virtual space optimization module needs to be 

validated. The evolutionary knowledge base module can also increase the mapping accu-

racy of virtual space by fine–tuning based on feedback. 

4.2.2. Experiments of the digital−twin Model Experimental Group 

After the completion of the control group in the digital−twin model, the optimization 

module obtains the optimized processing parameters for this process in the virtual space. 

The specific values are a rotational speed of 9200 r/min , and feed rate per tooth of 

0.0313 mm , and the radial cutting depth and axial cutting depth are 0.25 mm  and 

0.20 mm. We set the processing parameters of this group as the experimental group and 

conduct experiments. Figure 17 shows the comparison between the measured data col-

lected by the physical space sensor and the simulated milling force fed back by the virtual 

space during the test. 

 

Figure 17. Comparison between measured data and simulation data of milling force in the experi-

mental group. 

Table 4 shows the comparison of prediction errors between the control group and the 

experimental group. In the experimental group, the peak prediction error and amplitude 

prediction error in part 1 are 7.39% and 5.59%, respectively. The peak prediction error and 

amplitude prediction error in part 2 are 7.9% and 6.75%, respectively. The maximum peak 

prediction error and amplitude prediction error for each period in part 1 are 11.5% and 

11.48%, respectively. The maximum peak prediction error values for each period in part 2 

are 12.5% and 13.77%, respectively. 

  

Figure 17. Comparison between measured data and simulation data of milling force in the experi-
mental group.

Table 4 shows the comparison of prediction errors between the control group and the
experimental group. In the experimental group, the peak prediction error and amplitude
prediction error in part 1 are 7.39% and 5.59%, respectively. The peak prediction error and
amplitude prediction error in part 2 are 7.9% and 6.75%, respectively. The maximum peak
prediction error and amplitude prediction error for each period in part 1 are 11.5% and
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11.48%, respectively. The maximum peak prediction error values for each period in part 2
are 12.5% and 13.77%, respectively.

Table 4. Comparison of prediction errors between the control group and the experimental group.

Data/Prediction Error Peak Error Amplitude
Error

Maximum
Peak Error

Maximum
Amplitude Error

Control group 1 7.34% 5.57% 13.21% 14.69%
Test group 1 7.39% 5.59% 11.5% 11.48%

Control group 2 8.21% 6.65% 18.62% 18.32%
Test group 2 7.9% 6.75% 12.5% 13.77%

As shown in Table 4, the peak error and amplitude error of the experimental group
remain stable. The maximum value of the peak error and the maximum value of the
amplitude error shows an obvious downward trend. In local 2, the maximum value of peak
prediction error decreases by 32.82%, and the maximum value of amplitude prediction
error decreases by 24.84%. At the same time, the experimental data also show that the
adjustment of the evolutionable knowledge base module obviously improves the mapping
accuracy of virtual space.

4.2.3. Discussion on Measurement Data of Impeller Blade Profile Error

In order to verify the accuracy of the dynamic error optimization method of impeller
blade machining which is based on digital–twin technology, it is necessary to compare
and judge the surface quality of the impeller blade after machining. Therefore, a three–
coordinate measuring machine was used to detect the contour error of the blade before and
after milling optimization. The coordinate measuring model number is Hexagon PMM–700
(Hexagon, Stockholm, Sweden). The measurement site is shown in Figure 18.
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Figure 18. Measuring instrument and measuring scene. (a) Hexagon PMM–700; (b) actual measure-
ment scene.

The specific measurement process is shown in Figure 19. Firstly, 16 optimal spatial
position points (red) were selected on the measured blade. Secondly, the impeller was fixed
on the measuring platform of the CMM. Finally, the blade was measured according to the
measurement process. The test data are shown in Tables 5 and 6.
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Figure 19. Blade profile error detection point.

Table 5. Control group workpiece contour deviation detection data.

Name Deviation Refer–X Refer–Y Refer–Z Measure–X Measure–Y Measure–Z

C001 0.1908 −35.4959 −70.5772 13.6864 −35.9428 −70.7604 13.6535
C002 0.1969 −35.7894 −70.8760 16.0371 −35.1890 −70.0496 16.0055
C003 0.3427 −36.0747 −60.2227 19.1029 −36.4087 −60.2957 19.0782
C004 0.1952 −36.5743 −58.5549 20.3823 −36.7770 −58.5856 20.3726
C005 0.2189 −38.2148 −55.5444 22.1072 −38.4213 −58.5526 22.0261
C006 0.2315 −38.7591 −52.4318 24.9614 −38.9826 −52.4152 24.9032
C007 0.1708 −42.3633 −48.6112 26.6700 −43.0371 −48.5946 26.5191
C008 0.1791 −43.8166 −44.9163 29.2822 −43.0138 −29.8878 29.1482
C009 0.1518 −43.3029 −43.4705 33.5623 −43.5723 −43.4053 33.4193
C010 0.2407 −43.0976 −42.1685 36.0519 −42.9160 −42.1691 36.2098
C011 0.1947 −42.5740 −46.7001 37.0076 −42.3747 −47.0267 37.1289
C012 0.2450 −42.5818 −47.1489 39.1056 −41.9664 −47.1790 38.9184
C013 0.2774 −37.1423 −47.9029 40.5872 −37.8828 −49.1982 39.6851
C014 0.2644 −37.6970 −49.6733 41.5810 −37.4448 −50.1837 40.4595
C015 0.1751 −36.7832 −59.4247 43.3747 −36.8333 −59.4769 43.2344
C016 0.2649 −35.0406 −58.1229 42.6113 −36.7836 −58.0864 43.6643

Table 6. Test data of workpiece contour deviation in experimental group.

Name Deviation Refer–X Refer–Y Refer–Z Measure–X Measure–Y Measure–Z

C001 0.1608 −35.3359 −70.5001 13.1862 −35.8664 −71.2604 14.0235
C002 0.1669 −35.1653 −70.1356 16.0355 −35.2210 −70.0096 15.8051
C003 0.1927 −37.3454 −61.2227 19.2588 −37.4022 −61.0021 19.556
C004 0.1852 −36.1733 −58.1519 19.8823 −36.5710 −58.2853 19.0211
C005 0.1789 −39.2036 −54.3177 21.9072 −39.5656 −54.4426 21.8856
C006 0.1415 −41.5497 −51.9996 24.3301 −41.8897 −51.7325 24.8688
C007 0.1708 −43.4464 −49.5998 27.3200 −43.0358 −48.9940 27.5111
C008 0.1791 −44.0243 −49.7780 30.1663 −44.0212 −49.8848 30.1168
C009 0.1518 −45.0251 −43.8805 34.4544 −45.4432 −44.0021 34.0023
C010 0.2207 −46.0877 −42.1511 35.8522 −42.889 −43.0501 36.1231
C011 0.1947 −44.4610 −47.1134 38.0016 −42.5445 −47.5017 37.5551
C012 0.1850 −43.1838 −48.0211 38.7056 −41.7711 −48.1121 38.3211
C013 0.1774 −38.0198 −47.8990 40.5587 −38.9886 −49.9969 39.5616
C014 0.1644 −38.9989 −48.0532 41.0023 −38.0112 −50.6689 40.5588
C015 0.1842 −37.7842 −47.1042 41.1024 −37.7632 −48.5631 40.9451
C016 0.1949 −36.0902 −59.4229 43.3356 −36.8898 −59.0565 43.7441
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During the experiment, 16 points on the blade profile were selected for contour error
detection. The error detection data for the control group and the experimental group are
shown below.

The workpiece contour deviation detection data before and after optimization were
visualized. The machined surface quality and contour deviation data of blades in the
control group and the experimental group are shown in Figures 20 and 21.
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Figure 21. Optimize the results of front and rear contour error detection.

Regions 1 and 2 marked in Figure 20 are the two regions where the curvature of
the impeller blade has undergone serious changes. The corresponding point of region 1
is C003, and that of region 2 is C010. The data solution results in Tables 5 and 6 show
that the parameters optimized for machining errors effectively improve the workpiece
surface quality. It can be seen from Figures 20 and 21 that the maximum deviation of
blade machining profile error before machining error optimization is 0.3486 mm, and the
overall contour error curve slope is steeper and meaner. After machining error evaluation
optimization, the maximum deviation of blade contour error is 0.2298 mm, and the slope
of the overall contour error curve is more gentle. According to the contour deviation data
in Tables 5 and 6, the mean value of blade contour error detected after machining error
optimization decreases by 20.86%. The peak profile error is reduced by 35.6%. It can be
seen that the dynamic error optimization method of impeller blade machining based on
digital–twin technology proposed in this paper can effectively improve the workpiece
surface quality.

5. Conclusions

In this paper, a method of machining error prediction and intelligent control consider-
ing the time–varying effect of tool wear is proposed based on digital–twin technology. This
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method combines machine tool information and the machining position during the machin-
ing process with the iterative prediction model of milling force to achieve the prediction of
machining errors under the dynamic load of TC4 impeller blades. The experiment shows
that in terms of dynamic milling force prediction, the average error after optimization does
not exceed 8%. The maximum error shall not exceed 14%. In terms of processing the error
control effect, the average contour error of the optimized workpiece decreases by about
20%. The peak contour error decreases by about 35%. The main contributions in this field
of work are as follows:

1. A digital–twin model based on the complex process of impeller blades was proposed.
This model achieves the iterative feedback optimization of machining parameters for
impeller blades. A TC4 digital–twin model has been established for specific machining
process levels, achieving the data optimization of complex machining processes for
impeller blades.

2. Based on the digital–twin model, this article constructs an evolutionary knowledge
base for impeller blade machining. Through secondary development, point cloud data
are extracted from ABAQUS to construct a knowledge base, accurately expressing
the contact relationship between tools and workpieces. At the same time, the tool
wear model is established in the evolutionary knowledge base. The evolutionary
knowledge base takes the spatial position information of the machine tool spindle
and the angles of the turntable and swing table as real–time inputs. Based on rolling
data and tool wear model, a milling force prediction model under the condition of
tool wear was constructed. The prediction error of this model is less than 20%.

3. Based on the coupling relationship between milling force and machining error, this
article establishes an iterative model for milling force and machining error. This
model achieves real–time feedback process control through data rolling and process
iteration optimization based on machining quality evaluation. The digital–twin
system calculates through an embedded model that the average time it takes to send
out active control signals is less than 500 milliseconds. This improves the mapping
accuracy of the digital–twin model.

This study has implemented the application of digital–twinning in the optimization of
machining errors in weakly rigid thin–walled parts. However, there are still limitations in
this study. They mainly include the influence of external factors when establishing the tool
wear model and the continuous evolution of the optimization model driven by sensor data.
In this study, dynamic machining error prediction and intelligent control were achieved
by combining the digital–twin model of the machining process with a multi–objective
machining algorithm. Other processing factors such as the surface roughness of the tool
workpiece and tool life were not taken into account. In the future, the real–time perception
of the entire process of CNC machining based on multi–sensor fusion technology will be
an important research direction. In order to improve the accuracy of machining parameter
optimization and achieve better machining performance, it is necessary to conduct dynamic
evolution research on the model driven by data fusion and intelligent algorithms.
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