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Abstract: Agriculture 5.0 refers to the next phase of agricultural development, building upon the
previous digital revolution in the agrarian sector and aiming to transform the agricultural industry
to be smarter, more effective, and ecologically conscious. Farming processes have already started
becoming more efficient due to the development of digital technologies, including big data, artificial
intelligence (AI), robotics, the Internet of Things (IoT), and virtual and augmented reality. Farmers
can make the most of the resources at their disposal thanks to this data-driven approach, allowing
them to effectively cultivate and sustain crops on arable land. The European Union (EU) aims to
make food systems fair, healthy, and environmentally sustainable through the Green Deal and its
farm-to-fork, soil, and biodiversity strategies, zero pollution action plan, and upcoming sustainable
use of pesticides regulation. Many of the historical synthetic pesticides are not currently registered
in the EU market. In addition, the continuous use of a limited number of active ingredients with
the same mode of action scales up pests/pathogens/weed resistance potential. Increasing plant
protection challenges as well as having fewer chemical pesticides to apply require innovation and
smart solutions for crop production. Biopesticides tend to pose fewer risks to human health and the
environment, their efficacy depends on various factors that cannot be controlled through traditional
application strategies. This paper aims to disclose the contribution of robotic systems in Agriculture
5.0 ecosystems, highlighting both the challenges and limitations of this technology. Specifically, this
work documents current threats to agriculture (climate change, invasive pests, diseases, and costs)
and how robotics and AI can act as countermeasures to deal with such threats. Finally, specific case
studies and the application of intelligent robotic systems to them are analyzed, and the architecture
for our intelligent decision system is proposed.

Keywords: Agriculture 5.0; green deal; pesticides; crop protection; Unmanned Aerial Vehicles; smart
farming and harvesting; AI-based systems

1. Introduction

Agriculture 5.0 constitutes an entire ecosystem; it aims to integrate emerging technolo-
gies, such as AI, IoT, and ML in agriculture, to improve productivity while promoting sus-
tainability and decision-making processes. Enhancing traditional farming practices through
automation and scalable technology solutions is meant to reduce risks, enhance sustain-
ability, and provide predictive decision-making for growers [1,2]. Moreover, data-driven
agriculture and advanced farm management systems are becoming increasingly important
in the contemporary agrarian sector. Smart agriculture relies on objective information
acquired through sensors to make optimal decisions and maximize productivity while
ensuring resource efficiency and environmental sustainability. By incorporating robotic
solutions and AI techniques, data-driven agriculture lays the groundwork for sustainable
agriculture in the future. In relation to Industry 5.0 (which emphasizes collaboration be-
tween humans and intelligent machines, with a focus on resilience and sustainability),
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Agriculture 5.0 seeks to reconcile the need for sufficient and affordable food production
with the preservation of ecosystems. While Industry and Agriculture 4.0 focus mainly on
technologies, like IoT and Big Data, Industry and Agriculture 5.0 add human, environmen-
tal, and social aspects to the equation. The transition from the digital farming revolution to
Agriculture 5.0 is considered critical for the future well-being of farmers and the gradual
shift to efficient, intelligent, and autonomous farms in terms of energy consumption. In-
tegrating emerging technologies and alternative energy sources into Agriculture 5.0 can
provide cost-effective access to finance, weather updates, remote monitoring, and future
energy solutions for smart farm installations.

According to the European Agricultural Industry (EU-27), the growing demands on
agricultural products as well as the growing world population have raised the demand
for an increased production yield. Note that agriculture possesses strong links with food
processing and farm machinery sectors. The latter is directly affected by the performance
of the agrarian sector; thus, the total economic impact of agriculture is multiplied [3].
More specifically, the global population increase and the consecutive exponential one in
food demand have led to a search for more efficient ways of production, both in terms
of production size and quality of products. Specifically, the above reasons caused the
Third Agricultural Revolution to flourish by introducing vital technological pillars in the
agricultural field. The mentioned stations are: (i) the selective breeding to improve the
quality of food in products for humans and animals as well as (ii) the use of chemical fertil-
izers and synthetic pesticides for increased quality production with a low environmental
footprint. Chemical pesticides used to protect crops from pests, pathogens, and weeds pose
acute and long-term risks to humans and other non-target organisms [4]. Moreover, many
pesticides and their degradation products persist in the environment for many years [5].
The farm-to-fork, soil, and biodiversity strategies, as well as the zero pollution action
plan, include ambitious and specific targets on pesticides, fertilizers, biological agriculture,
and resistance development against pesticides (https://ec.europa.eu/info/food-farming-
fisheries/sustainability/environmental-sustainability/cap-andenvironment_en (accessed
on 1 April 2023)) [6]. Some clear targets to be achieved by 2030 are to reduce chemicals
and more hazardous pesticides by 50%, reduce fertilizer use by 20%, and enhance the
organic farming sector by 25% of total farmland (https://ec.europa.eu/info/food-farming-
fisheries/farming/organic-farming/organic-production-and-products_en (accessed on
1 April 2023)). New technological advances must be introduced in traditional agricultural
systems to support those EU targets. Hence, process automation can be a modern way
of handling this situation. The high-tech precision agriculture systems result from the
research and development of interdisciplinary teams in mechatronics and agronomy [7].
In this context, various vehicles have been developed, which are capable of moving in
difficult rural terrains, while the development of drones has given new impetus to several
applications, such as crop health assessment, plant monitoring, etc. These developments
allow modern mechatronic systems to collect data, communicate wirelessly, and share
large sizes of data between them [8,9]. The above data constitute a cornerstone of precision
farming since they can be used for timely and accurate spraying of fungicides, insecticides
and herbicides, fruit harvesting when appropriate for ripening, etc. This enables intelligent
cultivation, production automation, and production automation, saving farmers’ time in
various stages of production, such as sowing, spraying, harvesting, etc. At the same time,
farmers have the ability to control their processes and results through communication
technology [10]. The evolution of modern robots has an impact on improving the quality of
crops by increasing both the profitability of producers as well as the choice-consumption
of quality food [11]. Therefore, the implementation of new technologies helps to restrict
dosing and dispersal, thereby reducing the environmental consequences. However, inde-
pendent of their targeted operational environment, contemporary robots should be smart
and, thus, retain advanced perception abilities [12,13]. These capabilities are highly related
to how the robots understand, interpret, and represent their environment and its elements
(such as crops, leaves, etc.), and each individual productive entity (e.g., plants, trees, pests,
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pathogens, etc.). Semantic mapping is salutary and can provide viable solutions to related
problems [14]. Also, the heterogeneous data extracted from an integrated system are neces-
sary to be understandable and useful for the direct actions of the producers/farmers or for
the direct supply to another robot system that implements the next action (for example,
spraying, collecting fruit, etc.). The above challenges involve system advancements in
terms of dependability and semantic perception abilities with the ultimate requirement of
being operable in different environments.

Crop protection constitutes a major food production component. Using cutting-edge
technologies such as the introduction of low-risk pesticides, precision farming, and genome
editing will help to keep modern agriculture sustainable. Timely monitoring of crop
protection problems and targeted application of the fit-for-purpose pesticide would reduce
the overall risk and increase the efficacy of each application. Specifically, our proposed
system will contribute to improving crop protection by making it more efficient and robust.
The main contributions of our work are summarized as follows:

• To summarize the most recent and relevant literature in the domain of smart farming
through robots.

• To highlight and stress the benefits of introducing an autonomous robotic ecosystem in
the agricultural field.

• To reveal the technological challenges and barriers to introducing such solutions in
this domain.

• To propose a conceptual framework for the realization of robotized systems in agricul-
tural environments to help with their protection.

• To explore potential improvements in pesticide efficacy by providing timely pesticide
delivery to targets.

• To investigate strategies for reducing the risk posed by pesticide applications to non-
target organisms.

• To discuss the development of a decision support system for selecting low-risk pesticides
among the available options.

The rest of this paper is structured as follows. Firstly, the crop justification is analyzed
in Section 2. In Section 3, we discuss related works in the field of precision agriculture.
In the same section, the problem formulation is also presented. Section 4 describes the
agriculture field requirements, and the next section highlights the benefits of utilizing AI
methods. In Section 5, we analyze the proposed system and its architecture. In Section 6, a
discussion of our findings is provided, while in Section 7, our conclusions are drawn and
plans for future work are presented.

2. Crop Justification

Two important crops for the EU economy were selected as case studies. A field crop
(wheat) and a perennial crop (olive) constitute our models, covering different (i) crop-
ping systems, (ii) pest/weed/pathogen severity, and (iii) registered pesticides. The olive
tree (Olea europea L.) is a universal tree that has accompanied Mediterranean agriculture
for thousands of years. Nowadays, over 750 million olive trees are cultivated world-
wide, 95% of which are in the Mediterranean region. The fruit, oil, and branches of
olive trees have been culturally and economically tightly linked with Mediterranean his-
tory (https://agriculture.ec.europa.eu/news/producing-69-worlds-production-eu-largest-
producer-olive-oil-2020-02-04_en (accessed on 20 April 2023)). About 98% of olive oil
and 80% of table olive production are from Mediterranean countries. Approximately
70% of the world’s olive oil production is concentrated in Europe. In the EU, olive tree
plantations are found in nine EU Member States: Spain, Italy, Greece, Portugal, Cyprus,
France, Croatia, Slovenia, and Malta. EU olive production reached 10,908,000 tonnes
and EUR 2255 million in 2016 [15]. The average annual olive yield and product qual-
ity varied between years, reflecting the effect of plant protection problems. The olive
tree is a long-living drought-tolerant species that is limited by many biotic stressors (e.g.,
pests, diseases, and weeds). Bactrocera oleae, Prays oleae, Euphyllura spp., Saissetia oleae,

https://agriculture.ec.europa.eu/news/producing-69-worlds-production-eu-largest-producer-olive-oil-2020-02-04_en
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Parlatoria oleae, and Eriophyidae mites are the most important pests and Cycloconium oleag-
inum, Glomerella cingulata, Pseudomonas syringae pv. savastanoi are among the diseases receiv-
ing chemical control by various pesticides. In the EU, olive cultivation tends to move from
traditional low-density systems to new, high-density, super-intensive cropping systems.
All of these changes have affected the incidence and severity of pests and diseases. In olive
trees, at least ten of the currently registered pesticides, one insecticide (lambda-Cyhalothrin),
seven fungicides (Bordeaux mixture, copper hydroxide, copper oxide, copper oxychloride,
Difenoconazole, Tebuconazole, Tribasic copper sulfate), and two herbicides (Diflufenican,
Metribuzin) are listed as candidates for substitution. Copper products are used in high
quantities and most alternatives lack copper efficacy. Moreover, the limited number of
pesticides registered for use in olives has resulted in resistance development to most pests,
diseases, and weeds against insecticides, fungicides, and herbicides, respectively. Table 1
summarizes the currently registered pesticides in olive trees. Cereal grains have numerous
uses, such as bread, semolina, and pasta; they are also important components of animal
feed and serve as raw material in the production of products such as alcohol, beer, starch,
and dextrin, and are used in the glucose industry. In the EU, the cereal sector accounted
for approximately 11% of the total output value of agricultural production in 2016 and it
is an important sector in the northern member states (https://www.europarl.europa.eu/
RegData/etudes/BRIE/2019/640143/EPRS_BRI(2019)640143_EN.pdf (accessed on 1 April
2023)). The EU cereal sector is facing structural, financial, and climatic challenges. Russia’s
war against Ukraine has put global food security at risk and has contributed significantly
to the growing wheat and wheat flour prices. Around one-third of the EU’s cereal imports
in 2021 came from Ukraine and Russia; following the war, the EU had to undertake all
measures to certify EU cereal production. Wheat, the most important cereal crop cultivated
worldwide, is used to prepare bread for approximately 40% of the global population [16].
Wheat is an important commodity in Europe, with a production of 133 million tonnes per
year. Wheat production depends on numerous production factors, and the use of pesti-
cides is important for increasing the quantity and quality of wheat production. Pesticides
help to control pests and diseases or their vectors, as well as reduce spoilage during stor-
age. Broadleaf and grassy weeds, diseases (Puccinia striiformis/graminis/recondita, Erysiphe
graminis, Septoria tritici/nodorum, Fusarium spp. Tilletia caries, Ustilago nuda, Ustilago spp.,
Rhizoctonia spp.), insects (Agrotis spp., Rhopalosiphum padi, Sitobion avenae, Limothrips cere-
alium), and other pests can reduce wheat crop yields, and the use of pesticides helps to
minimize these losses. In the early stages of crop development, using herbicides to con-
trol weed infestations is essential for achieving optimal grain yield and desired economic
benefits. With wheat, at least two insecticides (Cypermethrin, lambda-Cyhalothrin), one
fungicide (Tebuconazole), and two herbicides (Pendimethalin, Metsulfuron-methyl) from
the current authorized products are listed as candidates for substitution. Wheat production
is also threatened by the development of weed resistance against most registered herbicides,
and there are numerous instances of insects and fungi developing resistance against insecti-
cides and fungicides, respectively. While the investigation into less harmful compounds
to substitute undesirable pesticides is an important strategy, other promising smart farm-
ing technologies (innovative formulations), tools (innovative spraying equipment), and
methodologies (lower dosages) can contribute to increased pesticide efficacy and reduced
impact on the environment and human health. Table 2 summarizes the currently registered
pesticides in wheat. AI can help in the selection of the most appropriate pesticides in order
to achieve the highest efficiency against targeted crop protection problems and the lowest
risks for resistance development and hazards related to non-target organisms. The mode of
action of pesticides, the life cycle and susceptibility of pests/pathogens/weeds, stability,
leaching and runoff potential, environmental conditions, and availability of application
technologies are among the major factors that an AI system can be trained to handle.

https://www.europarl.europa.eu/RegData/etudes/BRIE/2019/640143/EPRS_BRI(2019)640143_EN.pdf
https://www.europarl.europa.eu/RegData/etudes/BRIE/2019/640143/EPRS_BRI(2019)640143_EN.pdf
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Table 1. Major plant protection problems and the use of pesticides registered as conventional,
low-risk, and candidates for substitution (C for S) in the cultivation of olive trees.

Crop/pests/pathogens/weeds

Olives/Bactrocera oleae, Prays oleae, Euphyllura spp., Saissetia
oleae, Parlatoria oleae, Eriophyidae, Cycloconium oleaginum,

Glomerella cingulata/broadleaf and grassy weeds Conyza spp.
Parietaria Judaica

Registered insecticides and related plant protection products

Abamectin, acetamiprid, aluminium silicate, Bacillus thuringiensis
(ABTS, SA1, PB5, EG2,GC-91), Beauveria bassiana,

cyantraniliprole, deltamethrin, fatty acid potassium salt,
fenoxycarb, flupyradifurone, paraffin oil, pyriproxyfen,

spinetoram, spinosad, spirotetramat, hydrolyzed proteins, urea

C for S Insecticides lambda-Cyhalothrin

Registered fungicides

azoxystrobin, Bacillus amyloliquefaciens, dodine, eugenol,
fenbuconazole, geraniol, kresoxim-methyl, potassium

phosphonates, pyraclostrobin, sulfur, thymol, Trichoderma
asperellum, Trichoderma atroviride, Trichoderma gamsii,

trifloxystrobin

C for S Fungicides Bordeaux mixture, copper hydroxide, copper oxide, copper
oxychloride, tribasic copper sulfate, difenoconazole, tebuconazole

Registered Herbicides

2,4-D, flazasulfuron, florasulam, fluazifop-p-butyl, fluroxypyr,
flumioxazin, glyphosate, iodosulfuron, mcpa, mefenpyr,

oxyfluorfen, pelargonic acid, penoxsulam pyraflufen-ethyl,
tribenuron

C for S Herbicides Diflufenican, metribuzin

Crop = olives Pests = Bactrocera oleae, Prays oleae, Euphyllura spp., Saissetia oleae, Parlatoria oleae, Eriophyidae.
Pathogens = Cycloconium oleaginum, Glomerella cingulata. Weeds = broadleaf and grassy weeds Conyza spp.
Parietaria Judaica.

Table 2. Major plant protection problems and registered conventional, low-risk, and candidate for
substitution (C for S) pesticides in wheat.

Crop/pests/pathogens/weeds

Wheat/Agrotis spp./ Rhopalosiphum padi, Sitobion avenae,
Limothrips cerealium/Puccinia striiformis, graminis, recondita,

Erysiphe graminis, Septoria tritici, nodorum/broadleaf and
grassy weeds

Registered Insecticides and related plant protection products Deltamethrin, Fatty acid potassium salt, flonicamid,
flupyradifurone, tau-fluvalinate, tefluthrin

C for S Insecticides Cypermethrin, lambda-cyhalothrin, cypermethrin

Registered Fungicides

Azoxystrobin, benzovindiflupyr, bixafen, cyproconazole,
difenoconazole, fenpicoxamid, fenpropidin, fludioxonil,

flutriafol, fluxapyroxad, ipconazole, isopyrazam,
mefentrifluconazole, prochloraz, prothioconazole,

pyraclostrobin, sedaxane, spiroxamine, sulfur, trifloxystrobin

C for S Fungicides Tebuconazole

Registered Herbicides
2,4-D, bentazone, carfentrazone-ethyl, florasulam, glyphosate,
iodosulfuron, MCPA, mecoprop-p, mefenpyr, mesosulfuron,

prosulfocarb, thiencarbazone-methyl, tribenuron

C for S Herbicides Pendimethalin, metsulfuron-methyl

Crop = wheat Pests = Agrotis spp., Rhopalosiphum padi, Sitobion avenae, Limothrips cerealium. Pathogens = Puccinia
striiformis, graminis, recondita, Rysiphe graminis, Septoria tritici, nodorum Weeds = Broadleaf and grassy weeds.

3. Related Works

This section presents the existing knowledge related to the research topic and provides
an overview of the relevant literature. The purpose of this section is to contextualize the
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research of the field’s current state. Through a comprehensive review of related works,
gaps in the research can be identified, providing a rationale for our study. This section also
allows readers to situate the research within a broader scholarly conversation and provides
a foundation for the argument presented in the paper.

The importance of crop area (CA) protection can be attributed to the growing pop-
ulation. Automatic mapping using information extracted from high-spatial resolution
remote sensing (RS) images is powerful for acquiring accurate and up-to-date CA maps.
RS image information extraction includes feature classification, which is a long-standing
research issue in the RS community [13]. Emerging deep learning techniques, such as the
deep semantic segmentation network technique, are effective methods to automatically
discover relevant contextual features and obtain better image classification results [17].
More specifically, several studies have dealt with agricultural precision sectors, contributing
to increased agricultural yields. Note that the authors of [18] applied transfer learning
to domain adaptation—from the source domain to the plant domain—by using a major
category in the plant domain. Category adaptation was performed from the major to minor
categories within the plant domain. UAVs are immediately accessible tools for remote sens-
ing scientists and farmers. In recent years, small commercial UAVs (<50 kg) [19] have been
available for environmental and agricultural applications. Much of the research on preci-
sion agriculture for conservation has focused on strategically placing conservation areas to
minimize runoff contaminants (e.g., sediment, nutrients, and pesticides) and, subsequently,
increasing water quality [20]. The approach in [21] stated that spatial variability in soil,
crops, and topographic characteristics, combined with temporal variability between sea-
sons, could lead to variable annual yield patterns. The complexity of interactions between
yield-limiting factors, such as soil nutrients and soil water, requires specialized statistical
processing to quantify convenience and, thus, inform crop management practices. This
study used multiple linear regression models, cubic regression, and neural propagation
networks to predict performance.

Generally, the advent of AI and robotized solutions have revolutionized crop protection
by offering advanced capabilities and precision in addressing agricultural challenges. These
technologies enable automated monitoring, early detection of pests and diseases, targeted
application of treatments, and efficient resource management, leading to increased crop
yields and sustainable farming practices. Semantic recognition plays a crucial role in crop
protection by enabling the identification and classification of pests, diseases, and other threats
to agricultural crops [13,14]. Through advanced algorithms and machine learning techniques,
semantic recognition systems can accurately analyze images, sensor data, and other inputs to
provide timely and targeted interventions, leading to improved crop health and yield [22,23].
In recent years, different machine learning techniques have been implemented to achieve
accurate yield prediction for different crops. The most successful techniques used support
vector regression [24], M5-Prime regression trees [25], and k-nearest neighbor [26]. The authors
created the spiking neural network (SNN) model for timely crop yield prediction. The above
approach [27] introduces SNN as a promising technique for spatiotemporal data modeling
and crop analysis prediction. Because deep learning techniques have the capability to extract
feature maps from data for estimation, they can be expected to have less dependency on
the input data. Even in rural areas where data acquisition is limited, deep learning can be
expected to provide good crop yield estimation [28].

In [29], the obstacles faced in implementing smart agri-robotic solutions for global
broadacre crop production were analyzed. The authors argued that the current strategies
and technologies used in agri-robotics are insufficient to address the unique complexities
associated with large-scale crop farming. They identify several key challenges, including
the unpredictable nature of diverse broadacre crops, the necessity for adaptable robotic
systems, and the intricate decision-making processes involved in crop management. To
overcome these challenges effectively, the authors proposed fundamentally rethinking
existing approaches and technologies, like machine learning, computer vision, and sensor
networks, as essential components of smart agri-robotic solutions. Furthermore, the authors
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of [30] presented an in-depth analysis of the use of intelligent robot systems in the field
of ecological agriculture. The paper emphasized the significance of adopting advanced
technologies to address challenges related to pest control and promote sustainable farming
practices. By integrating robotic platforms, sensors, imaging techniques, and artificial
intelligence algorithms, the paper discussed how these technologies enable precise and
targeted pest management strategies, reduce reliance on chemical pesticides, and minimize
environmental impacts. The benefits of intelligent robot plant protection systems, such
as improved efficiency, reduced labor requirements, and enhanced crop yield, are high-
lighted. The authors also acknowledge potential challenges in implementing these systems,
including cost, scalability, and compatibility with existing agricultural practices.

Subsequently, the approach in [31] provides a comprehensive summary of the role and
impact of robotics, IoT, and AI in automating the agricultural sector. The review explores
various applications of these advanced technologies, including automated harvesting,
precision agriculture, crop monitoring, livestock management, and smart irrigation systems.
It highlights how the integration of robotics, IoT, and AI can enhance efficiency, productivity,
and sustainability in farming practices. The paper also emphasizes the importance of
incorporating data analytics and machine learning algorithms for intelligent decision-
making in agriculture. Finally, it addresses the challenges associated with implementing
these technologies, such as cost, scalability, interoperability, and data privacy.

Moreover, in [32], the authors presented a comprehensive overview of the integration of
machine learning and emerging technologies in precision crop protection, specifically focusing
on the transition towards Agriculture 5.0. Specifically, the paper explored the immense
potential of these technologies to revolutionize farming practices, improve sustainability,
and optimize crop protection strategies. By delving into various areas, such as machine
learning algorithms, sensor technologies, remote sensing, IoT, and data analytics, the review
examined how these technologies could be utilized to enhance crucial aspects of agriculture,
including crop monitoring, pest detection, disease diagnosis, and targeted application of
agrochemicals. The authors emphasized the significance of context-aware and data-driven
decision-making to achieve precision crop protection in the evolving agricultural landscape.
Then, it addressed pertinent issues, such as data quality, scalability, privacy concerns, and the
need for interdisciplinary collaboration among researchers, farmers, and policymakers. By
highlighting these challenges, this approach provides a holistic view of the potential barriers
and considerations that need to be addressed for successful implementation.

4. Analysis of Agriculture Field Requirements

As the global population is projected to surpass 9 billion by 2050, the agricultural
industry will have to satisfy the increasing demand for food. Pesticides will play a cru-
cial role in ensuring high crop yields. Pesticides, according to the Food and Agriculture
Organization (FAO), include substances of natural or synthetic chemicals or biological
ingredients used to repel, destroy, or regulate pests and regulate plant growth. They help
to protect seeds and crops from unwanted plants, insects, bacteria, fungi, and rodents, and
come in various types, such as herbicides, insecticides, fungicides, rodenticides, and ne-
maticides [33]. However, pesticides, herbicides, and chemicals have increased significantly
in recent years to manage plant diseases and increase crop productivity. This increases
crop quantity, but it often lowers the quality, pollutes the land and groundwater, and
poses several health risks, causing nearly 300,000 deaths worldwide each year. Early-stage
disease detection using IoT-based solutions that deploy various sensors can help reduce
the use of harmful chemicals. AI techniques, such as vision-based techniques using image
processing, machine learning, and deep learning algorithms, have also been proposed for
disease detection automation [34].

In recent years, significant advances have been made in the use of deep learning
(DL) approaches to build high-performance AI models for plant disease detection. Some
lightweight convolutional neural network (CNN)-based methods show promise for use
in IoT applications. Despite advancements in these vision-based methods, real-world
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detection of plant diseases remains challenging due to complex backgrounds and varying
environmental conditions. Crop monitoring through aerial/drone-based surveillance can
be an alternative solution, but robust and reliable vision-based techniques are required to
work for various crops. Expert knowledge and thorough training are required to recognize
early symptoms of plant diseases and take timely action to prevent further spread [35].
Plant diseases are classified into different categories, and visible symptoms are important
in identifying diseases. Smart agriculture systems using AI methods for plant disease
detection can be effective solutions to combat the problem of crop loss. There have been
successful case studies in developing countries, but field disease diagnosis in real time is
still difficult. Several models have been proposed to detect healthy and diseased leaves
from various crops using CNN classification techniques, achieving high accuracy [36].

AI techniques for crop protection in agriculture have become increasingly prevalent
in recent years, allowing for more efficient and accurate identification of pests, diseases,
and soil deficiencies. AI sensors are now being utilized to identify and target weeds, with
the appropriate herbicides then being applied to the specific area. In addition, integrating
IoT sensors and supporting technologies, such as drones, geographic information systems
(GISs), and other tools allow for real-time data monitoring, measurement, and storage.
The aforementioned data can empower farmers by providing valuable insights into areas
needing irrigation, fertilization, or pesticide treatment. This enables them to make well-
informed decisions, effectively allocating resources and minimizing unnecessary expenses.
Overall, incorporating AI techniques into agriculture use cases can lead to improved
harvest quality, reduced herbicide usage, increased profits, and significant cost savings [35].
Precision weed management is an efficient tool to meet the EU targets for pesticide use
reduction. In field crops, like wheat, weed control is crucial to any plant protection
scheme. Most of the proposed commercial technologies and prototypes for precision weed
control consist of three essential elements (i) sensors for weed/crop detection, (ii) decision
algorithms regarding the type of herbicides that would be the most efficient, and (iii) a
precise sprayer to deliver the appropriate dose of each herbicide to the targeted weed. Of
the above-mentioned parts, inputs and validation of the decision algorithm are the most
crucial for increasing the efficiency and reducing the risk of the applied herbicide [37].
Saving herbicides by applying AI techniques in wheat depends on the location, stage, and
distribution of the weeds [38]. The accuracy of the detected weeds could reach up to about
99% [39]. Apart from weed management, scientific modeling has also been employed for
forecasting in an IoT context involving fungal diseases in winter wheat [40]. The recent
progress in AI and automation have been applied to a machine-learning-based classification
approach to distinguish pests of tree crops, including the olive fruit fly (Bactrocera oleae [41].
In addition, online analytical processing models have been used to combine inputs in an
integrated pest management scheme of olive tree crop protection [42].

5. Benefits of Utilizing AI Methods in Crop Protection

The integration of robotics and artificial intelligence (AI) into agriculture has rev-
olutionized the way crops are grown and protected. While the title “Sustainable Crop
Protection via Robotics and Artificial Intelligence Solutions” suggests a focus on pest
control, it is crucial to recognize that AI and robotics can contribute to comprehensive
crop protection strategies. By leveraging these technologies, we can enhance agricultural
practices and ensure a sustainable future for food production. While our primary focus
lies in crop protection, specifically in the realms of weed and disease management, it is
essential to acknowledge the broader scope of whole crop protection and monitoring. In
this section, we aim to provide a concise overview of these additional components and
highlight the invaluable contribution of AI solutions to these areas.

Crop protection encompasses various factors beyond weeds and diseases that sig-
nificantly impact crop health and yield. Elements such as climate conditions, nutrition
optimization, cultural activities, and plant physiology play crucial roles in ensuring com-
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prehensive crop protection strategies. By leveraging AI solutions, we can unlock new
possibilities and advancements in each of these areas.

Climate adaptation and resilience: Climate change poses significant challenges to
agricultural productivity. AI and robotics can play pivotal roles in adapting and mitigating
climate-related risks. Advanced algorithms can process vast amounts of climatic data,
helping farmers make informed decisions about planting times, water usage, and crop
selection. Robotics equipped with environmental sensors can monitor weather conditions,
soil moisture levels, and pest outbreaks, providing real-time data to optimize crop manage-
ment. With AI-driven climate modeling, farmers can anticipate weather patterns, allowing
for timely adjustments and minimizing crop losses [32].

Nutrition optimization: Achieving optimal crop nutrition is crucial for both yield and
quality. AI and robotics can optimize nutrient management by analyzing soil composition,
plant nutrient requirements, and growth patterns. Intelligent systems can monitor nutrient
deficiencies or excesses, enabling precise application of fertilizers or other supplements.
Additionally, robotics can automate tasks such as precision seeding, weeding, and nutrient
delivery, minimizing waste and maximizing resource efficiency. By tailoring nutrition
strategies to specific crop needs, AI and robotics contribute to sustainable agriculture while
reducing environmental impacts [43].

Cultural Activities and Labor Optimization: Agriculture encompasses a range of
cultural activities that are essential for successful crop production. AI and robotics can
automate and streamline various tasks, reducing labor-intensive efforts and optimizing
resource allocation. For example, robotic systems can perform time-consuming activities
such as harvesting, pruning, and sorting with greater accuracy and efficiency. By automat-
ing repetitive tasks, farmers can focus on higher-value activities, such as crop planning,
disease management, and market analysis. The integration of AI and robotics not only
enhances productivity but also improves the quality of life for farmers, making agriculture
a more attractive profession [44].

Enhancing plant physiology and health: Understanding plant physiology is vital
for effective crop protection. AI can analyze large datasets on plant physiology, growth
patterns, and disease symptoms, enabling early detection and intervention. By analyzing
the relationships between plant traits and environmental conditions, AI can develop models
to predict plant stress and disease susceptibility. Robots equipped with cameras and sensors
can precisely monitor plant health, detecting signs of nutrient deficiencies, water stress,
or pest damage. This data-driven approach allows for proactive management strategies,
reducing the reliance on reactive measures and promoting sustainable plant health [32].

Furthermore, we outline some additional advantages of utilizing artificial intelligence
(AI) methods in crop protection and agriculture as a whole. By enhancing precision agricul-
ture, AI systems are improving the overall accuracy and quality of crop yields. Primarily,
AI technology plays a role in detecting plant diseases, pests, and poor soil nutrition. Using
AI-based sensors, weeds can be identified and targeted, and the appropriate herbicide
can be applied in the area. Additionally, AI techniques allow for the collection of soil
health data, fertilizer recommendations, weather monitoring, and tracking of the product’s
readiness [45]. Hence, farmers are empowered to make informed decisions throughout the
crop-growing process. Precision agriculture is a technique that incorporates the most effi-
cient soil management practices, variable rate technology, and optimal data management
methods to help farmers enhance crop yields and minimize expenses. AI can offer real-time
insights to farmers, allowing them to identify which areas require irrigation, fertilization,
or pesticide treatment [46]. Additionally, innovative farming methods such as vertical
agriculture can boost food production while minimizing resource usage. This approach
reduces herbicide use, improves harvest quality, increases profits, and has significant cost
savings. By employing IoT sensors and other supporting technologies, farmers can monitor,
measure, and store field data on various metrics in real time. Combining AI-based farming
tools with IoT devices and software quickly provides farmers with more accurate informa-
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tion. Having better data enables farmers to make more informed decisions, reducing the
time and money spent on trial and error [47].

6. Proposed Framework
6.1. Background and Use Case Scenario

Crop protection is an essential aspect of modern agriculture, and the use of fungicides,
insecticides, and herbicides is common. However, the indiscriminate use of chemicals can
lead to environmental damage and harmful effects on human health. An AI- and robotics-
based crop protection system can provide a sustainable and efficient solution to this prob-
lem. The objective of this conceptual scenario is to develop an AI- and robotics-based crop
protection system that minimizes the use of chemicals, chooses the most appropriate pesti-
cide, and improves crop yield. The proposed methodology—as an example case—is applied
to the agricultural crops colorof wheat and olive trees based on the following assumptions:
(i) Major plant protection problems (pests/weeds/pathogens) of the selected crops (wheat
and olive tree) have been identified (Tables 1 and 2). (ii) Registered insecticides, fungicides,
and herbicides have been categorized as conventional, low-risk, and candidates for sub-
stitution. It is also necessary to integrate the following: (iii) A decision support system
regarding the selection of the most appropriate pesticide on an integrated pest management
(IPM) system. (iv) Environmental factors affecting efficacy and the environmental fate of
pesticides. (v) Legislation and other policy information. The proposed crop protection
scheme can be applied to environmentally sensitive cases (e.g., near protected surface- and
ground-water bodies, sensitive non-target organisms, like bees, earthworms, and beneficial
microbes) or in cases of resistance to pesticides pests/pathogens/weeds.

6.2. Concept

The proposed concept incorporates a comprehensive and research-driven approach
to revolutionize crop protection and enhance agricultural practices. A preliminary phase
involves the creation of an extensive database that encompasses detailed information about
various plant diseases, their corresponding pesticides, and the overall health status of plants.
This database forms the foundation for accurately identifying the specific disease based
on the symptoms exhibited by candidate plants. To ensure practical implementation, the
system utilizes portable devices, such as smartphones or tablets, to provide farmers with
images of diseased plants for disease recognition. In larger crop areas, a UAV equipped
with visual sensors, capable of high or low-resolution imaging, can perform the disease- and
pest-recognition process. Additionally, the system obtains georeferenced data on the examined
plants, enabling the determination of potential disease spread to nearby crops within the area.

Moreover, the system goes beyond disease identification and extends its capabilities
to identify weed species and distribute grassy and broadleaf weeds automatically. This
information empowers the system to automatically employ AI to select the most appro-
priate herbicide. In the future, selective spraying techniques utilizing UAVs could be
implemented, provided that technological feasibility is achieved. This exciting prospect
has the potential to revolutionize crop protection practices. The system also incorporates
information on insect populations obtained from digital traps or other monitoring sys-
tems. In the pesticide prioritization process, considerations regarding the pesticide risk to
non-target organisms in wheat and olive agroecosystems can be considered. The system
adapts to specific crop/pesticide combinations by incorporating pesticide cutoff criteria or
dedicated authorization schemes aligned with national or regional legislation.

Furthermore, the proposed system is designed to seamlessly communicate with other
components of Agriculture 5.0. These include automatic watering functions, autonomous
spraying robots, weather sensors, and software for optimizing spraying schedules, har-
vesting, and other farming operations. By leveraging these interconnected components,
the system aims to optimize farm protection, create a sustainable ecosystem, and foster a
holistic approach to agriculture. The proposed framework is depicted in Figure 1, highlight-
ing the systematic flowchart of the entire process. Its primary focus revolves around crop
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protection, which is continuously threatened by weeds, pests, and diseases. Building upon
this pipeline, the aim is to establish a digital ecosystem, termed the industrial metaverse
(IM) digital world, which is capable of recording the complete life cycles of agricultural
crops. This digital ecosystem will gather extensive information about the rural environment
by leveraging IoT, virtual reality (including augmented reality capabilities), cloud and edge
computing, and other features of Industry 5.0 (Agriculture 5.0), as depicted in Figure 2.

Figure 1. A flowchart of the crop protection system with AI and robotics techniques.

Figure 2. High-level architecture of a crop protection system with AI and robotics techniques.

Ultimately, the industrial metaverse comprises an explainable AI system that derives
actionable results to improve production, environmental sustainability, and economic
status. This comprehensive approach fosters communication across the supply-value chain,
enhances responsiveness to potential issues, and improves safety, production efficiency,
and environmental monitoring in real time. By leveraging the power of technology and
research-driven methodologies, the proposed system aims to revolutionize agriculture and
pave the way for a more sustainable and efficient future.

6.3. Architecture

The methodology of the above-described system for improving crop protection is
based on extensive research and aims to provide a convincing and actionable solution.
The proposed architecture encompasses various data collection techniques and advanced
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technologies, as illustrated in Figure 2. The agriculture field’s digital transformation begins
with IoT sensors for irrigation and weather monitoring. These sensors gather real-time data
on soil moisture levels, temperature, humidity, and other relevant factors. Additionally,
AI techniques are employed to recognize plant diseases based on visual cues and patterns,
allowing for early detection and timely intervention. The production evolution aspect
involves monitoring and analyzing crop growth and development over time.

The AI- and robotics-based crop protection system comprises several modules that
work in tandem to enhance agricultural practices:

Data collection module: To generate valuable insights, the system collects data from
diverse sources, including weather reports, soil sensors, satellite imagery, and digital insect
traps. This comprehensive dataset enables accurate predictions of pest infestations, disease
outbreaks, weed growth, and weather conditions.

Machine learning model development and interpretation module: This module
involves the creation of automated systems that process data and derive meaningful
conclusions. The system provides clear and actionable insights to guide decision-making
by interpreting results from machine learning models.

Decision-making module: AI algorithms analyze the collected data and determine
appropriate crop protection strategies. Factors considered include crop type, growth stage,
severity of pests, weeds, or diseases, as well as environmental and risk assessment aspects
related to pesticide use. Legislative limitations and the potential development of pesticide
resistance are also taken into account.

Robot module: The system can be integrated into autonomous robots equipped
with sensors, cameras, and spraying equipment. Through the use of machine learning
algorithms, these robots are trained to accurately identify and target pests, weeds, and
diseases, optimizing the effectiveness of crop protection strategies.

Monitoring module: AI is leveraged to monitor the effectiveness of crop protection
strategies and make necessary adjustments in real time. This continuous monitoring
ensures optimal performance and enables timely intervention when needed.

User interface module: To facilitate communication between farmers, agricultural
scientists, and other stakeholders, a user interface is provided. This interface presents the
system’s findings and suggestions, allowing users to provide input and customize results
according to their specific needs.

The above system will have the modularity and agility to integrate other modules, for
example, blockchain and NFT development platforms, with the aim of achieving the traceability
of foods. The AI- and robotics-based crop protection systems hold immense potential to
revolutionize crop protection practices while minimizing the detrimental impact of chemical
use on the environment and human health. The system maximizes crop yields and promotes
sustainable agricultural practices by enabling farmers to make informed decisions about
their crop protection strategies. However, implementing this system requires extensive
research and development to continually improve its efficiency and effectiveness.

7. Discussion

Crop protection is a critical aspect of agriculture that involves safeguarding crops
against various threats, including pests, diseases, and weeds. Traditional crop protection
methods involve using fungicides, insecticides, and herbicides, which can adversely affect
the environment and human health. However, with the advent of robotics and artificial
intelligence (AI), farmers now have new tools at their disposal to improve crop protection
and increase yields. Robotic- and AI-based crop protection solutions involve using sensors,
cameras, and machine learning algorithms to monitor crops and detect potential threats.
These solutions offer several advantages over traditional methods, such as increased
accuracy, efficiency, and cost-effectiveness. For example, robots equipped with sensors
can detect pest infestations and apply targeted treatments only where necessary, reducing
the number of chemicals used and minimizing the environmental impact. Furthermore,
AI algorithms can analyze vast amounts of data on weather patterns, soil conditions,
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and crop growth to predict potential threats and recommend preventive measures. This
comprehensive approach enables farmers to make well-informed decisions regarding
crop protection. It empowers them to effectively identify issues, choose the most suitable
pesticide and application technology, and implement a reduced-risk crop protection scheme.

Robotic- and AI-based solutions for crop protection also offer the potential for in-
creased precision and automation, reducing the labor costs and time required for manual
inspection and treatment. For example, drones equipped with cameras and sensors can
survey large areas of crops quickly and efficiently, providing real-time data on crop health
and potential threats. In addition, robotic- and AI-based solutions can provide farmers
with real-time insights into the health and growth of their crops, enabling them to make
more informed decisions and optimize crop management practices. For example, machine
learning algorithms can analyze data on crop growth and identify patterns and trends
that may not be immediately apparent to human observers. Despite the many advantages
of robotic- and AI-based solutions for crop protection, some challenges still need to be
addressed. For example, these solutions may require significant investments in terms of
hardware, software, and training. Additionally, there may be concerns about data privacy
and security, particularly regarding sensitive information about crop yield and growth.
In conclusion, robotic- and AI-based solutions have the potential to revolutionize crop
protection and management, offering increased precision, efficiency, and cost-effectiveness.
However, it will be essential to continue to develop these technologies and address any
challenges to ensure that they are widely accessible to farmers and that they contribute to
sustainable and ethical agriculture practices.

8. Conclusions

In conclusion, integrating robotic and artificial intelligence solutions into crop protec-
tion is a promising avenue for addressing modern agriculture’s challenges. The potential ad-
vantages of these technologies include increased precision, efficiency, and cost-effectiveness,
as well as better monitoring and management of crop health. Looking to the future, several
research areas could further enhance the effectiveness of these solutions. For example, the
development of more advanced sensors and cameras, as well as improvements in machine
learning algorithms, could enable more precise and accurate monitoring of crop health
and growth. Additionally, advances in robotics could allow for more sophisticated and
automated treatment of crops, reducing the need for manual labor. Another important area
of future work is the integration of these technologies with existing agricultural practices
and infrastructure, including relevant legislation, risk assessment, and environmental as-
pects of AI modules. The availability of pesticide databases and alternative crop protection
measures will help establish a robust machine learning model. This will require collabora-
tion between farmers, agronomists, technology developers, and policymakers to ensure
that the benefits of these solutions are accessible to all and contribute to sustainable and
ethical agriculture practices. Finally, addressing data privacy and security concerns will
be essential, particularly regarding sensitive crop yield and growth information. This will
require the development of robust data protection and governance frameworks and greater
awareness among farmers and other stakeholders about the risks and benefits of these
technologies. Hence, the use of robotic and artificial intelligence solutions in crop protection
has the potential to transform modern agriculture and ensure food security in the face of
global challenges, such as climate change and population growth. Continued research
and development in this area and integrating these technologies into existing agricultural
practices will be crucial to realizing this potential and creating a more sustainable and
resilient agricultural system for the future.
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