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Abstract: The online monitoring and prediction of tool wear are important to maintain the stability of
machining processes. In most cases, the tool wear condition can be evaluated by signals such as force,
sound, vibration, and temperature, which are often processed via Fourier-transform based methods,
typically, the short-time Fourier transform (STFT). However, the fixed-width window function in
STFT has many limitations. In this paper, a novel tool wear monitoring method based on variational
mode decomposition (VMD) and Hilbert–Huang transformation (HHT) were developed to monitor
the wear of carbide tools in machining stainless steel. In this method, the intrinsic mode function
(IMF) was used as the fitness function, and the (K alpha) parameter sets for VMD were optimized
by the gray wolf optimization (GWO). The results show that the characteristic frequency in the
GWO-VMD-HHT method is more significant with no aliasing compared with the EMD-HHT method,
and an obvious characteristic frequency shift phenomenon is present. By utilizing the energy value of
IMF3 as the feature to classify the wear state of the cutting tool, the increase of energy reached 85.48%
when 260–315 milling passes were in severe wear state. GWO, which can accurately find the best
parameters for VMD, not only solves the problem that the Entropy Function is not suitable for force
signals, but also provides reference for the selection of parameters of VMD.

Keywords: tool condition monitoring; parameter-adaptive VMD; grey wolf optimization; Hilbert–
Huang transform

1. Introduction

In the cutting of hard-to-machine metals, such as Ti alloys and Ni-based superalloys,
tool wear is severe due to the high temperature and severe abrasion at the tool/chip
and tool/workpiece interfaces. Tool wear can cause high-surface roughness and poor-
surface quality of the workpiece. Severely worn tools often cause increased cutting forces
and significant vibrations of the cutting system. Excessive tool wear not only leads to
unexpected tool failure, but also affects the reliability and quality of the end products.
To avoid unexpected tool failure and serious accidents caused by tool wear, preemptive
tool changes must be made before tool life is reached in the production processes, and
only 50~80% of tool life is effectively used in industry practice [1]. This practice not
only increases production costs, but also poses a substantial environmental burden in
terms of the energy and materials required for tool production. Therefore, it is important
to implement online monitoring on the wear conditions of cutting tools. The accurate
monitoring of tool wear can contribute to optimal timing for tool replacements, increase
the machining efficiency, and reduced costs.

Over the past decades, there was extensive research on tool wear and tool wear
monitoring. Figure 1 shows tungsten steel tools with different coatings for different
purposes. It was proven that the wear of cutting tools is affected by many factors, and

Machines 2023, 11, 806. https://doi.org/10.3390/machines11080806 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines11080806
https://doi.org/10.3390/machines11080806
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0001-9839-181X
https://orcid.org/0000-0002-2967-5859
https://doi.org/10.3390/machines11080806
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines11080806?type=check_update&version=1


Machines 2023, 11, 806 2 of 19

different wear mechanisms exist when the machining conditions are different. In high-speed
milling processes, the cutting is interrupted, and the cutting frequency is higher, hence, tool
wear is accelerated. Li et al. [2] used cutting fluid with graphene oxide suspension in the
high speed drilling of Ti6Al4V, and found that the cutting force was significantly reduced
by 17.21% due to the reduction of friction wear. In investigating the machinability of a
titanium matrix composite (TMC), they found that the agglomeration of carbon nanotubes
(CNTs) and the presence of titanium carbide (TiC) particles formed in situ in the titanium
matrix caused sever tool wear [3]. For the advanced tools, such as polycrystalline diamond
(PCD), adhesive–abrasive were the dominant wear mechanism [4]; residual stress and
graphitization, which can cause fracture and dislodgement of diamond particles, also
affects the development of tool wear [5]. These types of wear are difficult to predict, thus,
it becomes necessary monitor the level of tool wear by developing and implementing
appropriate methods.
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Monitoring the wear of milling tools is a challenging task due to the nonlinear and
time-varying characteristics of machining processes. This makes it difficult to establish
a theoretical model for accurately monitoring. The monitoring of tool wear condition
can be classified as direct monitoring and indirect monitoring. The indirect monitoring
method does not interfere with normal cutting operations and is easier to carry out on-
line. Compared with the direct monitoring method, it can better determine the tool wear
condition and avoid the influence of cutting fluid and other factors. Cutting force [6–9],
vibration [10–12] and acoustic emission [13–15] are the most commonly used signals in
tool wear monitoring. With the continuous wearing of the tool, cutting forces generated
in cutting operation may change, thus, the force signal, which reflects the wearing con-
dition of the tool, is considered the most reliable approach to monitoring tool wear [16].
Bernini et al. [17] proposed a method for monitoring the wear of milling tools that were
used under various lubrication conditions, and verified it on different machine tools. When
the material experienced plastic deformation or fracture due to the cutting forces, the elastic
forces and the cohesive forces of the crystals can be instantaneously released in the form
of energy; acoustic emission signals are thus generated and can be detected by emission
sensors that usually have strong anti-interference ability and high sensitivity. These sensors
are easy to install with low cost, and have found wide applications in tool wear monitor-
ing. Thirukkumaran et al. [18] studied the relationship between tool wear and wavelet
coefficient with different tool geometries, and showed that wavelet packet transformation
can distinguish the relevant damage mechanism during drilling by different frequency
components. Vibration signals obtained in the milling processes can directly reflect the



Machines 2023, 11, 806 3 of 19

wear conditions. This is because the friction among the tool, workpiece, and chips leads to
variations in the dynamic component of the force. However, vibration signals are prone to
being affected by both machining system and environmental vibrations, which can result
in lower monitoring accuracy and reliability compared to force signals. Delolmo et al. [19]
proposed a monitoring method for high-speed broaching, and established the sensitivity be-
tween tool wear and the natural frequency of broaching. Thanks to the rapid development
of neural networks and machine learning, tool life can be accurately predicted by ana-
lyzing the mapping relationship between signal features and tool wear. Gomes et al. [20]
proposed a recursive feature elimination method to select the features of the input SVM
AI model, and the classification accuracy reached 97.54%. In the area of short-term and
long-term prediction of tool wear; Cheng et al. [21] proposed a tool state model based on
dense residual neural networks, which has greater efficiency and robustness compared to
other models. Liu et al. [22] incorporated duration and working mode into the proposed
novel-switching, hidden, semi-Markov model, and successfully monitored tool wear under
time-varying cutting conditions. Kotsiopoulos et al. [23] proposed a system to automate
quality inspection and machine condition monitoring by investigating the defects on hard
mental samples. Three different models were developed to analyze the microprofilometer
data, the ultrasound data and the shop floor data, respectively, and the results show that
the fusion model was significantly better in terms of recall, accuracy, F-score and precision.
In their review, Papageorgiou et al. [24] pointed out that among the various AI techniques,
deterministic methods are the most popular choice. However, despite the successful ap-
plication of AI in Root Cause Analysis (RCA), there are still challenges that need to be
addressed, e.g., interpretability, training quality, privacy and security.

The Fast Fourier transform (FFT) is the most widely used method in the frequency
analysis of the cutting forces. However, this method lacks the capability to describe the fre-
quency components of a signal at a certain time. In contrast, the time-frequency analysis has
a good characterization capability for both the time and frequency domains, enabling the
determination of local characteristics associated with tool wear state [25,26]. STFT solves
the problem that FFT cannot analyze non-smooth signals. It can convert one-dimensional
signals to two-dimensional signals [27]. Jauregui et al. [28] estimated the condition of
tool wear in high-speed micromilling based on cutting force signals and vibration signals.
The results showed that the main frequency changed due to tool wear. Zhou et al. [29]
established a wavelet basis selection method and found that the mean value of holder ex-
ponents (HE) value and the singular number of vibration components in the feed direction
have the highest correlation with the tool conditions. The empirical mode decomposition
(EMD) [30] was used in many practical engineering applications [31–33] since the end of
the 20th century. However, EMD is prone to endpoint effects in decomposing signals into
IMFs, which in turn causes some IMFs to lose their physical meaning. The Hilbert–Huang
transform (HHT) can decompose the transient signals of nonlinear systems and are suitable
for analyzing nonlinear and transient signals [34]. Susanto et al. [35] evaluated the machin-
ing stability via HHT, demonstrating its feasibility in the monitoring of the ever-changing
state of the machining process. Yang et al. [36] proposed a filtering criterion based on the
average energy percentage of the IMF components. The results showed that the applica-
tion of HHT in the processing of acoustic emission signals had significant potential for
monitoring grinding burn. Mahata et al. [37] proposed a monitoring method that extracts
time-frequency domain features of signals by HHT and support vector machine to identify
grinding wheel wear with 100% accuracy at both low- and high-cutting depths.

In 2013, variational mode decomposition (VMD) [38] was proposed. It is a collection
of adaptive Wiener filter banks that convert signal decomposition issues into issues with
variable decomposition. Compared to EMD, VMD has strong robustness and a solid math-
ematical theoretical foundation, but the number K of VMD modalities must be determined
manually. The number of modes can interfere with the decomposition of the signal, which
affects the recognition accuracy of useful information features. It is necessary to have some
prior knowledge of the original signal in order to determine K value. However, capturing
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the internal information characteristics of a signal is often difficult. Additionally, the band-
width for each modality acquired by VMD is determined by the penalty factor. The larger
the penalty factor, the narrower the bandwidth will be. The implementation of VMD in
engineering signal processing is somewhat hampered by the acceptable choice of algorithm
parameters and the issue of inadequate or excessive decomposition in VMD. To solve this
problem, Wei et al. [39] proposed an improved empirical variational mode decomposition
(EVMD) method for processing ultrasonic echo signals from coal and rock interfaces. Based
on their experimental results, the suitable VMD parameters were selected and the coal rock
interface was identified effectively. Su et al. [40] presented a mold-level prediction approach
based on the long short-term memory concept and the multi-mode decomposition method.
Compared to other decomposition techniques such as EMD, VMD successfully avoids
modal aliasing and boundary effects. Wei et al. [41] proposed a signal decomposition
method based on Whitening Variational Mode Decomposition (WVMD), which makes
each IMF independent of each other. However, in their method, the parameters of VMD
are manually selected. Aiming at the difficult problem of online monitoring of wheel
wear status, Wan et al. [42] proposed a method to find the optimal parameter combination
of VMD through the whale optimization algorithm, but they did not accurately find the
optimal parameter combination of VMD during the simulation signal validation process.
Liu et al. [43] analyzed the signal decomposition results under different combinations of
VMD parameters, and thus determined the optimal VMD parameters with some chance.
Bazi et al. [44] used VMD to pre-process the raw signal and then used the IMF as data
for deep learning, but again they artificially determined the combination of parameters
for the VMD. In addition, gray wolf optimization (GWO), a novel heuristic algorithm for
solving optimization problems, was proposed by Mirjalili [45]. Shi et al. [46] proposed a
method for accurately extracting wind turbine signal features by optimizing variational
mode decomposition. In their method, the two parameters of VMD are independently
selected, ignoring the relationship between the two parameters. Yan et al. [47] proposed
a genetic algorithm to search for the optimal parameter combination of VMD, but their
fitness function ignored the connection between IMF and the original signal. As such, the
construction of the VMD parameter optimization objective function can directly affect the
accuracy and efficiency of the final decomposition.

Based on the above introduction, it is clear that, for the vibration signal of rotating
machinery, most of the fitness functions in the parameter optimization of VMD are per-
mutation entropy, information entropy, etc. It is not feasible to use entropy as a fitness
function for tool wear force signals. In this research, a tool wear monitoring method based
on GWO-optimized VMD parameters is proposed. The energy difference between IMFs of
the properly decomposed signal and the original signal was used as the fitness function,
and the optimal combination of decomposition parameters for VMD was determined using
GWO. Thus, modal mixing can be avoided under the condition of the best parameter
combination. The energy of the IMF that exhibited the highest correlation with the original
signal was selected as the feature to identify the wear state of the tool and accurately
estimate the health of the tool.

2. Materials and Methods

In this section, the flow of the proposed method, the mathematical theory and its
formula, as well as the experimental setup and corresponding experimental parameters
are introduced.

2.1. Methods

Generally, time domain features such as mean, standard deviation, root mean square
can be used for tool wear prediction. However, the recognition results based on the above
features are not very reliable. VMD is a novel signal decomposition method that facilitates
the extraction of useful information about tool wear.
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2.1.1. Theoretical Foundations of VMD

VMD has the firm mathematical theoretical foundation compared to other signal
decomposition methods, and its essence is Wiener filter. Decompose the original signal
into a specified number of IMFs, and the process of VMD decomposing the signal can be
described as [38]:

min
{ωk},{ωk}

{∑K
k=1 ‖ ∂t[(δ(t) +

j
πt

) ∗ uk(t)]e−jωkt ‖2
2}, (1)

s.t. ∑K
k=1 uk(t) = f (t), (2)

where K is the number of IMF decompositions specified for the original signal, u(k) is the Kth
IMF component, and ωk is the center frequency of the Kth IMF component, δ is the Dirac
distribution. To solve Equation (1), the quadratic penalty term α and Lagrange multiplier λ
were applied to make the problem unconstrained, the VMD variational problem can be
denoted as follows:

L({uk}, {ωk}, λ) = α
K

∑
k=1
||∂t[(δt +

j
πt

) ∗ uk(t)]e−jωkt||2+|| f (t)−
K

∑
k=1

uk||
2

2

+ < λ(t), f (t)−
K

∑
k=1

uk(t) > (3)

Equation (3) can be solved using the alternating direction method of the multiplier
(ADMM). In addition, to update the mode and center frequency, the optimization problem
can be solved according to the Parseval/Plancherel theorem. The specific steps for VMD
are as follows:

(1) First, initialize û1
k , ω1

k and λ̂1, and set the initial iteration number n to 0.
(2) Iteration n = n + 1.
(3) For k = 1:K, ûk is updated for all ω ≥ 0.

ω̂n+1
k (ω) =

f̂ (ω)−∑i<k ûn+1
i (ω)−∑i>k ûn

i (ω) + λ̂n(ω)
2

1 + 2α(ω−ωn
k )

2 (4)

Update ωk:

ωn+1
k =

∫ ∞
0 ω|ûn+1

k (ω)|2dω∫ ∞
0 |û

n+1
k (ω)|2dω

(5)

where f̂ (ω), ûn+1
k (ω) and λ̂n+1

k (ω) are the Fourier transform of f (t), un+1
k (t) and

λn+1
k (t), respectively.

(4) Update λ
λ̂n+1(ω) = λ̂n(ω) + τ( f̂ (ω)−∑

k
ûn+1

k (ω)) (6)

where τ is an update parameter, which is usually set to 0.
(5) Repeat steps (3)~(5) until the iteration termination conditions are met:

∑k (||û
n+1
k − ûn

k ||
2/||ûn

k ||
2) < ε (7)

2.1.2. VMD Parameter Selection Based on Grey Wolf Optimization Algorithm

Grey wolves’ hunting mechanism is simulated by the grey wolf optimization algorithm
based on their social characteristics. There is a strict pyramid hierarchy within the wolf
in Figure 2. The three levels of wolf α, β, and δ correspond to the three solutions with the
best adaptability. The entire hunting process was guided by α, β, and δ wolves. The first
layer of gray wolves is the head wolf α, which is in the leadership position of the wolf pack.
The second layer of wolves is β wolf, which assists α wolves in leading hunting and other
behaviors and is a replacement after the death of α wolves. The third layer of wolves is
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the lowest δ wolves in leadership; the majority of the pack are grassroot ω wolves who
surround their prey.
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In each iteration, all wolves, led by the leader, more deeply explore into the space where
the prey is most likely to be present. The formula for encircling prey can be expressed as:

→
D = |

→
C ·
→
Xp(t)−

→
X(t)| (8)

→
X(t + 1) =

→
Xp(t)−

→
A ·
→
D (9)

where t denotes the current number of iterations,
→
Xp(t) indicates the current position

vector of the prey,
→
X(t) is the position vector of the gray wolf, and

→
A ,
→
C are the synergistic

coefficient vectors, and the calculation formula is as follows:

→
A = 2

→
a ·→r 1 −

→
a (10)

→
C = 2 ·→r 2 (11)

During iteration, the convergence factor
→
a decreases linearly in the interval [2, 0], and

→
r 1,
→
r 2 are random vectors in the interval [2, 0].
In the process of iteration, the optimal values of the objective function are selected by

the α, β, δ wolves in turn, and guide the grassroot ω wolves to surround their prey, the
process can be expressed as:

→
Dα = |

→
D1 ·

→
Xα −

→
X|

→
Dβ = |

→
D2 ·

→
Xβ −

→
X|

→
Dδ = |

→
D3 ·

→
Xδ −

→
X|

→
X1 =

→
Xα −

→
A1 · (

→
Dα)

→
X2 =

→
Xβ −

→
A2 · (

→
Dβ)

→
X3 =

→
Xδ −

→
A3 · (

→
Dδ)

→
X(t + 1) =

→
X1+

→
X2+

→
X3

3

(12)

where Dα, Dβ, Dδ is the distance between the optimal three wolves and their prey, Xα, Xβ,

Xδ are the position vectors of the optimal three wolves, and
→
X(t + 1) is the position of the

updated ω wolf according to the position of the optimal three wolves.

2.1.3. GWO Optimizes the VMD Parameter Flow

The key to VMD parameter optimization using GWO algorithm optimization is to
select the appropriate fitness function, and the entire wolf packs iteratively update the
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position according to the fitness function to find the minimum fitness value. The combi-
nation of (K, alpha) without under-decomposition and over-decomposition is the ideal
VMD parameter after VMD processing. If the original signal is correctly decomposed by
the VMD, the total energy of each IMF should be equal to the total energy of the original
signal. The above can be described as:

EOriginal =

√
∑n

i=1 x2
i

n
EIMFs = E1 + E2 + ···+ En

∆E = EOriginal − EIMFs

(13)

where EOriginal is the energy of the original signal, EIMFs is the total energy of the IMFs, ∆E
is the energy difference.

The steps for adapting VMD parameters based on the GWO algorithm are shown below:
(1) Initialize the VMD parameter optimization interval. where K ranges from [2, 9]

and alpha in the range [1000, 7000].
(2) Both the population number of gray wolves and the maximum number of iterations

are set to 20.
(3) According to the position of the wolf pack, the fitness function value was calculated,

and the three wolves with the largest fitness function value were used as α, β, δ wolves
in turn.

(4) Update the position of the gray wolf according to Equation (9).
(5) Repeat steps (3) and (4) until the maximum number of iterations was reached.
The process of the tool wear monitoring method based on GWO-optimized VMD

parameters is as follows. Firstly, the fitness function is determined by calculating the energy
difference between the original signal and the total IMFs. Secondly, the optimal parameters
of the VMD are searched for by the GWO algorithm. Then, VMD decomposes the original
force signal; the correlation coefficient is applied to identify the IMF that exhibits the highest
correlation with the original signal. Finally, the energy of the IMF most correlated with the
original signal and the VMD-HHT Spectrum is used to recognize the tool wear condition.
The flowchart of the entire monitoring method is shown in Figure 3.

2.2. Materials and Experimental Description

To evaluate the above proposed method, a public data set from the 2010 PHM compe-
tition was used for validation [48]. As shown in Figure 4, the cutting force signals were
recorded by a quartz 3-axis dynamometer (Kistler 9265B, Kistler Group, Eulachstrasse
22, 8408 Winterthur, Switzerland), and were converted into voltage signals via a multi-
channel charge amplifier (Kistler 5019A, Kistler Group, Eulachstrasse 22, 8408 Winterthur,
Switzerland). The flank wear of three flutes was measured by LEICA MZ12 microscope
at the end of each pass. This resulted in a total of 6 data sets (C1, C2, . . ., C6), each of
which corresponds to 315 milling passes of the corresponding milling cutter. The signal
data collected for each milling process includes high-frequency milling force and vibration
signals in the 3 axes, as well as high-frequency acoustic emission signals. All signals were
acquired by the NI DAQ PCI 1200 at a 50 kHz sampling rate, and the processing parameters
are shown in Table 1.

Table 1. Experiment parameters of PHM2010.

Spindle Speed
(r/min)

Feed Rate
(mm/min)

Radial Cutting
Depth (mm)

Axial Cutting
Depth (mm)

Sampling Rate
(kHz)

10,400 1555 0.125 0.2 50
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Depth (mm) 

Axial Cutting 
Depth (mm) 

Sampling Rate 
(kHz) 

10,400 1555 0.125 0.2 50 

Figure 3. Tool wear monitoring process.
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3. Results

Before decomposing the actual force signal, it is necessary to construct a simulation
signal to verify whether the proposed method can correctly find the best parameters of
VMD, so we designed the following simulation signal.

3.1. Simulation Signal Analysis

The simulation signal was constructed: 50 Hz sine f 1(t) with an amplitude of 0.7,
120 Hz sine f 2(t) with an amplitude of 3, 300 Hz cosine f 3(t) with an amplitude of 2, and
200 Hz cosine f 4(t) with an amplitude of 4. White noise was denoted as n(t) with the mean
of 0 and variance of 4 was added, and the signal was sampled at a rate of 1000 Hz, with a
total sampling time of 1.5 s. The simulation signal is shown in Figure 5.

f (t) = f1(t) + f2(t) + f1(t) + f4(t) + f4(t) + n(t)
f1(t) = 0.7 · sin(2π · 50t)
f2(t) = 3 · sin(2π · 120t)
f3(t) = 2 · cos(2π · 300t)
f4(t) = 4 · cos(2π · 200t)

(14)Machines 2023, 11, x FOR PEER REVIEW 10 of 21 
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Both the number of gray wolves and iterations are set to 20, and the optimal (K, alpha)
combination is found through the iterative update of the algorithm. Figure 6 shows that
the iterative convergence curve of the whole GWO algorithm. It can be seen from the curve
that it converges after 11 iterative updates, and the fitness value is 0.0023 and stabilizes at
this value, and the corresponding gray wolf position is the best parameter combination
(4, 1608). It is shown that the optimization algorithm has a strong global optimization
capability, converges quickly and successfully finds the best parameters for searching for
the optimal parameters of VMD.
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Once the GWO algorithm identifies the best combination of parameters for the VMD,
this optimal set of parameters is then inputted into the VMD algorithm. The results of the
decomposed simulation signal are shown in Figure 7; the different colors represent the different
IMFs obtained through the VMD decomposition. The VMD algorithm accurately decomposes
the simulation signal into 4 IMFs, as set out in Equation (11), meanwhile the individual IMF
components are independent of each other, and no modal confounding occurs.
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3.2. Force Signal Analysis

According to the change in flank wear of C1, there are three different stages: the initial
wear, the steady tool wear: Normal A, Normal B, and the severe wear. From the 1st to
the 60th times, high tool surface roughness and tissue defects result in poor tool wear
resistance and therefore faster wear during initial wear stage. The surface roughness of the
tool decreases after the initial wear, the surface pressure is evenly distributed, the tool wear
is stable at this stage and the amount of wear is proportional to time. In the steady wear, the
61st~150th and 151st~260th times are defined as Normal A and Normal B, respectively. As
the tool approaches its service life, the surface roughness increases, leading to an increase
in cutting temperature and accelerated tool wear. This stage corresponds to the 261st~315th
times. The wear curves and division of tool C1 are shown in Figure 8; the division of the
wear phase of tool C1 is shown in Table 2.
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Table 2. Classification of wear stages of the tool C1.

Wear State Label VB Value (µm) Times

Initial wear 1 39.64~90.44 1~60

Steady wear 2 90.62~99.88 61~150
3 100.14~138.42 151~260

Severe wear 4 138.82~165.17 261~315

To increase the efficiency of the GWO algorithm and avoid irrelevant signals in the
signals collected at the beginning of milling, the data was streamlined and 70,000 groups of
data between 70,000~140,000 were selected. Taking the X-axis force signal collected during
the 150th machining as an example, the parameters (K, alpha) of VMD were optimized by
GWO, and the convergence process curve of the GWO optimization algorithm was shown
in Figure 9. It can be seen from the curve that after four iteration updates, it converges,
and the fitness value is 7.48 and stabilizes at this value, and the corresponding gray wolf
position is the best parameter combination (8, 3977).
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The spectrogram of 150th milling X-axis force signal obtained by FFT is shown in
Figure 10a. The frequencies fa to fg are 173 Hz, 521 Hz, 1042 Hz, 1564 Hz, 2084 Hz,
2605 Hz, and 3126 Hz, respectively. Input K = 8, alpha = 3977 into VMD, the modal
components of the 150th milling X-axis force signal obtained by VMD is shown in Figure 10b.
The center frequency of IMFs after signal decompose by the VMD is very intuitive, and
no modal mixing occurred, which proves that (8, 3977) is the best parameter for VMD.
According to the parameters of the milling, the calculation shows that the spindle frequency
is fs = n/60 = 173.33 Hz, which is related to the frequencies of the spindle (rotating speed)
and cutting flutes (cutting frequency), and the flutes frequency ft = 3fs = 521 Hz, n represents
the spindle speed (rpm). From Figure 10b, it is apparent that the center frequency f 1 of IMF1
is 173.57 Hz, which is the spindle frequency. The center frequency f 2 of IMF2 is 521 Hz,
which is the flutes frequency. The tool wear information is mainly concentrated in the
low-frequency phase, and the high-frequency phase is mainly ambient noise. The frequency
characteristics of the force signal are a good indicator of tool wear in milling. During milling
processes, the spindle frequency f 1 = 173.33 Hz and its corresponding harmonic frequency
dominate in the low-frequency bands, which is consistent with previous results [26,49].
The correlation coefficients of each IMF in the VMD decomposed force signal results and
the original signal were calculated in Table 3. The correlation coefficient value between
IMF3 and the original signal has almost reached 0.9, and the center frequency f 3 of IMF3 is
1042 Hz, which is the second harmonic of the milling frequency.

Table 3. Correlation coefficients of IMFs with the original signal.

IMF IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8

correlation
coefficient 0.1775 0.3721 0.8992 0.1045 0.1075 0.0383 0.0118 0.0093

The FFT results of the X-axis force signal for the 1st, 30th, 105th, 205th, 285th and 315th
milling are shown in Figure 11. Note that the amplitude of the spindle rotation frequency
and its multiplier in the FFT results of the force signal are correlated with different tool
wear states. When the tool is slightly worn, the amplitude of the signal is very small. As
the number of millings increases, the tool wear intensifies, and the amplitude of the signal
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increases. It can be seen that frequency f 3 is closely related to the wear of the tool, and the
energy associated with its IMF can be employed as a distinguishing factor for assessing the
tool wear state.
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Milling is a very complex process, and unlike the FFT, HHT [50] achieves uniform
high resolution over the entire frequency range. The results of HHT of the IMFs signal
during milling are shown in Figure 12. The difference in the HHT spectrum is obvious, and
the color change indicates a change in signal power. The change in the frequency peak is
related to the difference in the tool wear state. In Figure 12, the information about the tool
wear state is mainly concentrated in the low frequency band. At the initial stage of wear,
the main peak of the HHT spectrum is the spindle frequency f 1. The spindle frequency f 1
changes from the dominant position during the second milling operation to “disappear”
during the 260th cutting, resulting in a frequency shift phenomenon; the main peak of
the HHT spectrum shifts to the flutes frequency f 2 and its frequency multipliers f 3 and
f 4. When the tool is slightly worn, the signal contains less wear-related information and
the large amount of noise causes the oscillation of the HHT spectrum. As the tool wears,
the energy value of the HHT peak also increases. At the stage of severe tool wear, the
energy of the HHT peak is mainly concentrated in the flutes frequency f 2 and its frequency
multipliers f 3 and f 4. The signal characteristics from the GWO-VMD-HHT results allow a
good distinction between the different wear stages of the tool.

EMD separates the original signal into several IMFs that contain information about
tool wear during milling. By EMD-HHT, the results are similar to GWO-VMD-HHT via the
high-amplitude-energy distribution in the initial tool wear phase in the range of spindle
rotation frequency f 1. During the 60th milling, the energy value of the main peak f 1 in
the HHT spectrum decreased, which is the opposite as shown in Figure 12. This indicates
that some useful information may be lost by decomposing the signal through EMD. The
frequency shift phenomenon of the energy can also be observed in Figure 13, and the energy
of the signal is mainly concentrated around the spindle frequency f 1 during the initial wear
phase. In the severe wear phase, the energy of the spindle frequency f 1 was transferred to
its frequency multiplier f 3. Compared with EMD-HHT, GWO-VMD-HHT is more suitable
for tool wear condition monitoring, which can distinguish the spindle frequency f 1 and its
frequency multiplication, and reveal the tool wear more clearly.
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The energy of the IMF3 (1042 Hz) component of the VMD, EMD decomposition of the
original signal result and the original signal were calculated as shown in Figure 14. It is
shown that the signal energy varies considerably at different stages of tool wear, and the
fact that tool wear is accompanied by an increase in signal energy means that the signal
contains more information about the tool wear in question. When the tool is in the initial
wear stage, the energy of the signal is low and less information about tool wear is shown
in the force signal. With more milling, the tool is in the normal wear phase, the signal
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contains a lot of information about tool wear, so its energy value increases rapidly. The
energy of the IMF3 component of the VMD decomposition result of the 260th milling force
signal is used as the tool failure threshold. It is evident that, when the tool is in the severe
wear stage, the energy value of IMF3 increases significantly with an increase of 85.48%.
Additionally, it can be shown in Figure 14 that the energy value of the original signal also
increases significantly during the severe wear phase, but it is not suitable as a characteristic
of tool wear because the original signal contains a lot of ambient noise, which reduces the
reliability of the judgment results. It is worth noting that the IMF energy value of EMD
decreases in the stage of severe tool wear, which is caused by the limitation of EMD being
adaptive decomposition, and the IMF bandwidth in the EMD decomposition results is
large and contains signals with different frequency components, which means that there is
no single frequency in the IMF. This also explains why the IMF energy increase of EMD
is more significant than that of VMD. Compared to EMD, the decomposition results of
GWO-VMD contain more accurate information about tool wear.
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4. Conclusions

Indeed, monitoring tool wear is a crucial aspect of the industrial milling process. The
combination of parameters of the VMD determines the correctness and efficiency of the
signal decomposition to address the difficulty that the penalty factor alpha and the number
of modal components K in the VMD are difficult to select. A tool wear condition monitoring
method combining Grey Wolf optimized VMD parameters and HHT spectrum is proposed.

(1) To address the problem that the entropy-like fitness function is not adapted to the
tool wear force signal, the energy difference between the IMFs and the original signal in the
VMD decomposition result is adopted as the fitness function. The optimal combination of
parameters for the VMD is successfully found using GWO’s superior search capability. The
force signal is accurately decomposed by the VMD with the optimal parameters, and the
IMFs in the decomposition results are independent of each other, avoiding adverse effects
such as modal confounding.

(2) The X-axis force signal shows that the frequencies associated with tool wear are
mainly in the low frequency band, and the energy of the signal is mainly concentrated in the
spindle rotation frequency and its multiplier frequency. As the tool wears, the amplitude of
the spindle frequency f1 decreases, the flutes frequency f 2 and its octave amplitude increase,
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and in the severe wear stage, the spindle frequency f 1 “disappears” and the frequency shift
phenomenon occurs. Compared with the EMD-HHT spectrum, there is no chaotic spectrum
at the characteristic frequency in the GWO-VMD-HHT spectrum, and the wear condition
of the tool can be identified according to the energy distribution of specific frequencies in
the GWO-VMD-HHT spectrum.

(3) As the number of milling operations increases, the wear of the tool increases
along with the energy value of the signal. Taking the spindle frequency multiplier f 3 as
the tool wear state characteristics, during periods of severe tool wear, the energy values
considerably rise. The energy value of IMF3 in the GWO-VMD decomposition results
can accurately and reliably characterize the tool wear state and set a reasonable tool wear
threshold through the energy value, which can replace the severely worn tool in time,
which is conducive to the production of higher surface quality workpieces, improving
productivity and reducing production costs.
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